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DEGREE SUM CONDITION FOR FRACTIONAL
ID-k-FACTOR-CRITICAL GRAPHS
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Abstract. A graph G is called a fractional ID-k-factor-critical graph if after deleting any inde-
pendent set of G the resulting graph admits a fractional k-factor. In this paper, we prove that for
k > 2, G is a fractional ID-k-factor-critical graph if §(G) > 5 +k, 02(G) > 47", n > 6k —8.
The result is best possible in some sense.
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1. INTRODUCTION

All graphs considered in this paper are finite, loopless, and without multiple edges.
Let G be a graph with vertex set V(G) and edge set E(G). For x € V(G), the degree
and the neighborhood of x in G are denoted by dg(x) and Ng(x), respectively.
For § C V(G), we denote by G[S] the subgraph of G induced by S, and G — S =
G[V(G)\ S]. We use Ng|[x] to denote Ng (x) U {x}. We denote the minimum degree
and the maximum degree of G by 6(G) and A(G), respectively.

Let k > 1 be an integer. A spanning subgraph F of G is called a k-factor if
dfr(x) =k foreachx € V(G). Leth: E(G) — [0, 1] be afunction. If )" . h(e) =k
for any x € V(G), then we call G[F}] a fractional k-factor of G with indicator func-
tion & where Fj, = {e € E(G) : h(e) > 0}. The following result on degree condition
for fractional k-factor is known.

Theorem 1 (Yu et al. [10]). Let k be an integer with k > 2, and let G be a graph
of order n withn > 4k —3, §(G) > k. If

max{dg (). dg (v)} = 5

for each pair of non-adjacent vertices u and v of G, then G has a fractional k-factor.
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In what follows, we always assume that n is order of G, i.e., n = |V(G)|, and G
is not complete. Chang et al. [1] introduced the concept of fractional independent-
set-deletable k-factor critical (shortly, ID-k-factor critical) graph, that is, if removing
any independent / from G, the resulting graph has a fractional k-factor. Also, Chang
et al. [1] proved that if n > 6k —8 and 6(G) > 27”, then G is fractional ID-k-factor-
critical. More results on fractional ID-k-factor-critical graphs can be found in Gao
and Wang [2-6] and Jin [&].

In this paper, we focus on the degree sum condition for fractional ID-k-factor-
critical graph. Let 02(G) = min{dg (1) + dg(v)} for each pair of non-adjacent ver-
tices u and v of G. Niessen [9] researched the degree sum condition for a graph
which exists regular factor. Iida and Nishimura [7] studied the existence of factor by
virtue of 02(G), and proved thatif n > 4k —5, kn is even, §(G) > k, and 02(G) > n,
then G has a k-factor. The main result in our paper study the degree sum condition
for fractional ID-k-factor-critical graphs and give as follows:

Theorem 2. Let k > 2 be an integer, and let G be a graph of order n with n >
6k —8. If §(G) > § +k and 02(G) > %", then G is a fractional ID-k-factor-critical
graph.

Also, we will show that Theorem 2 is sharp in some sense.
In order to prove our main result, we need the following lemma which is the ne-
cessary and sufficient condition for the existence of a fractional k-factor in a graph.

Lemma 1 (L. Zhang and G. Liu [11]). Let k > 1 be an integer, and let G be a
graph. Then G has a fractional k-factor if and only if for every subset S of V(G),

86(S.T) =k|S|+ > dg-s(x)—k|T| =0

xeT

where T ={x:x € V(G)—S,dg-s(x) <k—1}.

2. PROOF OF THEOREM 2

Suppose that G satisfies the conditions of Theorem 2, but is not a fractional ID-k-
factor-critical graph. Then there exist an independent set / such that G’ = G — I has
no fractional k-factor. By the argument of Lemma 1, there exists a subset S of V(G’)
such that

86/(S.T) =k|S|+ Y dgr—s(x)—k|T| < —1. 2.1)
xe€T
Here, T = {x :x € V(G')—S,dg/—s(x) <k—1}.
If G’ is a completed graph, then G’ has fractional k-factor from the degree sum
condition, the bound of 7 and the definition of fractional k-factor. This is a contra-
diction.
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If [I| =1, then n’ > 6k —9. It is easy to verify that §(G') > k and
max{dg’ (u),dg (v)} > ”7/ = % for each pair of non-adjacent vertices u and v of
G’. Thus, the results holds from Theorem 1.

We now consider |/ | > 2 and G’ is not complete. Obviously, T # @ and S # & by
|[I| >2and §(G) > 5 + k. Let dy = min{dg/—s(x) : x € T} and choose x1 € T such
that dg/—s(x1) =di1. f T — N7[x1] # @, letdy = min{dg—s(x) : x € T — N1[x1]}
and choose xp € T — N7 [x1] such that dg/—s(x2) = d>. So, di < d5. Let |S| =3,
|T|=t,|Nt[x1]| = p. Then we have p <d; +1,dg'—s(T) > di p+d,(t — p) and
ks—kt+dip+dy(t—p)<k|S|—k|T|+dg—s(T) <0. Thus,

kIT|—dgr—s(T) =1 _k|T|-1
k =k

IS] <

ie,1<s<r—1.

Let |V(G')| = n’. We obtain 2n" > 0,(G) > %” > %(61{—8). Since n’ is an

integer, we get n’ > 4k —5. If 05(G’) < n’, then w <02(G) <n'+2|1|,ie.,

n' <2|I| < 27" This contradicts to 02(G) > %” and |I| > 2. Therefore, 02(G') > n’.
Furthermore, we obtain §(G’) > k by |/| > 2 and §(G) > 5 +k.

We consider following two cases:

Case 1. T = Nr[x1]. Inthiscase,t = p <dj+1andd, =0.If d; =k —1, then
t <k, k|S|—k|T|+dg-s(T)>ks—kt+dip=ks—kt+k—-1)t>ks—t>0,
which contradicts (2.1). f 0 <dy <k—2,thent <dy+1<k—1. By 8(G') > k
and dg/(x1) <s+d;, we have s > k —dy. Thus, k|S|—k|T|+dg—s(T) > ks —
kt+dip=>k(k—dy)+(dy—k)t = (k—dy)(k—1t) > 0, which contradicts (2.1).

Case 2. T — N7[x1] # @. We consider following three subcases.

Case 2.1. di = dp = k — 1. In this subcase, k|S|—k|T| +dg—s(T) = ks —
kt+dip+do(t—p)=ks—kt+(k—-Dp+(k—1)(t—p)=ks—t >0, which
contradicts (2.1). In fact, if ks <t —1,then s + ks +1 <s-+¢ <n’. Note that x1,
x5 are not adjacent in G’. Thus, 2(s +k —1) > 02(G') > n’ > s +sk + 1. We get
s=1.Thus,2(1+k—1)>2(s +k—1) > 02(G') >n' > 4k —5,i.e,, k = 2. In this
case,dy =dy=1,s=1,t>3,n" >4 Wehave 4 <n’ <0,(G') <25 +2=4,ie,
t =3,n’ = 4. Thus, the vertex T —{x1, x>} has degree 2 in T', and we can check that
k|S|—k|T|+dg/—s(T) = 0. This is a contradiction.

Case 2.2. 0 <dy <k—2and dp = k—1. In this subcase, p <d; +1 <k —1.
Since x; and x, are not adjacent in G’, we have (s +k — 1) + (s +d1) > 02(G’) >
n' >4k —5ie,n <2s+k—14+d; and s > %. Thus,

k|S|—=k|T|+dg—s(T)
>ks—kt+dip+d(t—p)

> ks —k(n'—s)+ (dy —k +1)(d; + 1) + (k= 1)(n" —s)
=(k+1)s—n"—k+1+di+@2—k)d;
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>(k+Ds—Qs+k—1+d)—k+1+d?+Q2—k)d,
= (k—1)s =2k +2+d} +(1—k)d,

k—dy—4
z(k—l)%—zkumfﬂl—k)dl

3 3k —4
= d12+§(1—k)d1 (=)= — =2k +2.

If kK = 5, then §(k — 1) <k —2 and d; can reach to %(k— 1). We get

3k—4
di += (1—k)d1+(k—1)——2k+2
> —12——k 1)? k—l——2k 2
_16(1<) ( )"+ ( )2 +
55

=—k2——k

8 16
>Ek2—§k+§>0

16 8 16
which contradicts (2.1).
If k =2,3,4, then

—4
df—i—%(l—k)dl +(k—1)3kT—2k+2

3 3k —4
> (k—2)2+5(1—k)(k—2)+(k—l)T—2k+2
=k? -5k +5.

If k = 4, then k? — 5k + 5 > 0, which contradicts (2.1).

Ifk=3,thendy, =2,dy =0o0r1. If dy :0,thens>”——l andt<” + 1.
Thus, k|S|—k|T|+dg—s(T) = k(% —1)—k(% +1)+2(% +1—1) > 2k —5> 0,
which contradicts (2.1). Assume d; = 1. If n’ > 8 = 4k —4, then we get contradiction
similarly as what we discuss above. If n’ = 7, then n < 10 since n’ > 27” And, if
s > 3, we obtain k|S|—k|T |+ dg—s(T) > 0. The last situation is k = 3, n’ =7,
s = 2. Thus, 02(G) < 13 which contradicts 02(G) > %”.

Assume k =2. Thend; =0andd, = 1. If G'—S—T # @, thent <n’—s—1and
k|S|—k|T|+dg-s(T)>2s=2(n"—s—1)+(n'—s—p—1)>3s—n'"—p+1>
3s—n>35s—2s+1)=5—1> 0 which contradicts (2.1). Suppose G'—S —T = &.
Ifn' >4k —3 =5, then s > "L and t < "FL. Thus, k|S|—k|T|+dg—s(T) >
k2 2_1 —kZ ;1 (2 ;1 —1)> 0, whlchcontradlcts (2.1). If n’ =4k —4 =4, then s >
2 and t <2 by s is an integer. Thus, k|S|—k|T |+ dg'—s(T) > 0, which contradicts
2.1). fn=3=4k—5,thens>1andt <2. Ifr <1, then s > 2 and we have
k|S|—k|T|+ dg—s(T) > 0, which contradicts (2.1). The last case is s = 1 and
t = 2. Then at least one vertex in 7 is of degree at least 2 in G’ — S. Thus, k|S|—
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K|T|+dg—s(T) = ks —kt +dyp+da(t — p) = k—2k + (2—1) + 1 = 0, which
contradicts (2.1).

Case2.3.0<d; <dy <k—2.Inthis subcase, k —1—dr, >1andn’'—s—¢t > 0.
So, (k—1—dp)(n'—s—t)>ks—kt+dyp+da(t—p). Thus, (k—d)(n'—s)—ks >
(di—d)p+ ' —s—t)>(dy—dz)(d1 +1)+ (' —s—1),ie.,

(k —do)(n' —s) —ks > (dy —da)(d1 + 1) + 1. (2.2)

In terms of n’ > 4k — 5, we obtain

n' 5
— > 2k ——). 2.
d22_d2(k 2) (2.3)
In view of s > %, we have
¢ di+d
(5= 2@k —dy) = “2“ 2 2k —dy). 2.4)
Adding (2.2), (2.3) and (2.4), we get
d? did 7
0z df+ 2 =2 4 di—gda + 1+ (d2—dy)k
d? did 7
2 df + 2 = dy— gy 1+ (da—dy)(d2 +2)

3 3 3
=d?+>d?——didr—=dr—d 1.
1+22 212 22 1+

Equivalent to

V15 9 3
dy———)2—2<0

3 1
(dl—(zd2+5))2+(T Wit =

We have
0<dy <dy<2

by (Yidy— 5522~ <0,

o If di = d, = 2. In this case, if n’ > 4k — 4, then s > ”7/—2 andt <n'—s <
% +2. Thus, k|S| —k|T| + do—s(T) = k(% —2) — k(% +2) +2(% +2) = 0,
which contradicts (2.1). If n’ = 4k —5,thens > 2k —4 and ¢t <n’—s <2k —1 since
s is an integer. Thus, k|S|—k|T|+dg/—s(T) > k(2k—4)—k(Q2k—1)+2Q2k—1) =
k —2 > 0, which contradicts (2.1).

o Ifdi=1andd, =2. Inthiscase,ifn’z4k—3,thensz"/T_3andt§n/—s§

WE3  Thus, k|S| —k|T|+dg—s(T) = k%53 —k2F3 1242021 > k2 >0,
which contradicts (2.1). If n’ = 4k —4, thens > 2k —3 and ¢t <n’—s <2k —1 since
s is an integer. Thus, k|S|—k|T|+dg—s(T) > k(2k —3)—k(2k —1)+2+2(2k —
1 —2) = 2k —4 > 0, which contradicts (2.1). If n’ = 4k —5, then s > 2k — 4 and

t <n'—s <2k—1. Thus, k|S|—k|T| +dg—s(T) > k(2k —4) —k(2k — 1) +2 +
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2(2k —3) =k —4>0if k > 4, which contradicts (2.1). If k =2, thenn’ =4k —5 =3.
In terms of n’ > %n, we get n=4, which contradicts || > 2. In particular, for k = 3.
If n’ > 8 = 4k — 4, then we get k|S| —k|T|+dg—s(T) >0.Ifn’ =7, thenn < 10
since n’ > 27” And, if s > 3, we get k|S|—k|T| 4+ dg/—s(T) = 0. The last situation
isk =3,n" =7,s =2. Thus, 02(G) < 13 which which contradicts 0, (G) > %”.

e Ifdy =0and d, = 2. Inthis case, if n’ > 4k —4, then s > ”7/—1 andt <n—s <
% 4 1. Thus, k|S|—k|T| +dg—s(T) = k(% —=1) = k(& + 1) +2(% +1-1) =
n’ —2k > 2k —4 > 0, which contradicts (2.1). If n’ = 4k —5, then s > 2k —3 and
t <n’—s <2k —2since s is an integer. Thus, k|S|—k|T |+ dg—s(T) > k(2k —
3)—k(2k —2)+2(2k —2—1) = 3k — 6 > 0, which contradicts (2.1).

o Ifdy =dy =1. In this case,sz%/—l andtfn’—sf%/—i-l. If n >
4k —2, then k|S|—k|T| + dgr—s(T) = k(% —1) = k(% + 1) + (%% + 1) > 0, which
contradicts (2.1). If n’ =4k —3,then s > 2k —2and t <n’—s <2k —1. Thus,
k|S|—k|T|+dg-s(T) > kQRk—-2)—kQ2k—1)4+ 2k —1) = k—1 > 0, which
contradicts (2.1). If n’ =4k —4,then s > 2k —3 and ¢t <2k —1. If s > 2k -2
or t <2k —2, then we have k|S|—k|T|+dg—s(T) >0. If s =2k —3 and t =
2k — 1, then at least one vertex in 7 is of degree at least 2 in 7 since ¢ is odd.
Thus, k|S|—k|T|+dg—s(T) > k(2k —3) —k(2k — 1) + 2k — 1) + 1 = 0, which
contradicts (2.1). If n’ = 4k — 5, then s > 2k —3 and ¢ < 2k — 2 since s is an integer.
Thus, k|S|—k|T|+dg—s(T) > k(2k —3)—k(2k —2)+ (2k —2) = k—2 > 0, which
contradicts (2.1).

e If d; =0and d = 1. In this case, s > ”/2_1,t <n'—s= ”/T'H and p <di+1=
1. Thus, k|S|—k|T|+dg/—s(T) = k(51 —k("FL) + 2L —1) > k=3 > 0if
k > 3, which contradicts (2.1). If k =2 and n’ > 5 = 4k — 3, then k|S|—k|T| +
dgr—s(T) = k"L —k"F 4 (" 1) > k —2 = 0, which contradicts (2.1). If
n'=4=4k—4,thens >2and ¢t <2. Thus, k|S|—k|T|+dg—s(T) > 2k —2k +
(2—1) > 0, which contradicts (2.1). The last situation is k =2 and n’ = 3 = 4k — 5.
Thens >1and¢ <2. If s >2or¢ <1, then we get k|S|—k|T|+dg-s(T) =0,
which contradicts (2.1). Otherwise, s = 1 and t = 2. Then at least one vertex in 7" has
degree at least 2 in T since ¢ is even and dy = 0. Thus, k|S|—k|T |+ dg/—s(T) >
2—4+ 141 =0, which contradicts (2.1).

o If di = d, =0. In this case, s > "7/ andt < ”7/ Thus, k|S|—k|T|+dg—s(T) >
0, which contradicts (2.1).

Thus, we complete the proof of Theorem 2. O

Remark 1. We construct some graphs to show that the bounds in the Theorem 2
are best possible.

Fork >3,let G = 2k —3)K1 V (Kpr—4V (k—1)K3). Thenn = 6k —9, §(G) =
4k—6>2+k and 02(G) =8k —12 =22 Let I = (2k —3)K1, S = Kpk_4. Then
T =(k—-1)K, and k|S|—k|T|+dg—s(T) = -2 < 0. So, G is not a fractional
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ID-k-factor-critical graph. For k =2 and |G| = 3 = 6k —9, then G is not a fractional
ID-k-factor-critical graph. Thus, the bound of 7 is best possible.

Ifk>3. LetG =(2k—2)K1 V(Ky—3V (2k—2)K1). Thenn = 6k —7,5(G) =
4k —5>2+k,butoa(G) =8k —10 < 2. Let I = (2k —2)K1, S = Kp—3. Then
T =2k—-2)K1,dg—s(T)=0and k|S|+ ) ,crdc—s(x)—k|T| =—k <0. So,
G is not a fractional ID-k-factor-critical graph. The condition 0, (G) > 47” is best
possible for k > 3.

At last, the condition that §(G) > 5 + k cannot be replaced by 5 +k —1. We
consider a such graph G: n is divided by 3 and G = 5K, Vv G'. Let I = K;.
Deleting I form G, we have §(G') = k —1if §(G) = § + k — 1. Therefore, G — 1
has no fractional k-factor by the definition.
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