Approximately algebraic tensor products

Ismail Nikoufar and Themistocles M. Rassias
APPROXIMATELY ALGEBRAIC TENSOR PRODUCTS

ISMAIL NIKOUFAR AND THEMISTOCLES M. RASSIAS

Received 23 May, 2014

Abstract. Let X and Y be normed spaces over a complete field F with dual spaces X' and Y' respectively. Under certain hypotheses, for given $x \in X$ and $y \in Y$ and a mapping u from $X' \times Y'$ to F, we apply Hyers–Ulam approach to find a unique bounded bilinear mapping v near to u such that $||v|| = ||x \otimes y||$.

2010 Mathematics Subject Classification: 46B10; 47L50; 39B72

Keywords: algebraic tensor product, dual space, stability

1. INTRODUCTION

Let X, Y, and Z be normed linear spaces over the same field F. A mapping $\phi : X \times Y \rightarrow Z$ is said to be bilinear if the mappings $x \mapsto \phi(x, y)$ and $y \mapsto \phi(x, y)$ are linear. A bilinear mapping $\phi : X \times Y \rightarrow Z$ is said to be bounded if there exists $M > 0$ such that $||\phi(x, y)|| \leq M ||x|| ||y||$ for all $x \in X$ and $y \in Y$. The norm of ϕ is then defined by

$$||\phi|| := \sup\{ ||\phi(x, y)|| : (x, y) \in B_X \times B_Y \},$$

where $B_X := \{ x \in X : ||x|| \leq 1 \}$. The set of all bounded bilinear mappings from $X \times Y$ to Z is denoted by $B\mathcal{L}(X \times Y, Z)$. Let X' and Y' be dual spaces of X and Y respectively. For given $x \in X$ and $y \in Y$, $x \otimes y$ is an element of $B\mathcal{L}(X' \times Y', F)$ defined by $x \otimes y(f, g) := f(x)g(y)$ for all $f \in X'$ and $g \in Y'$. The algebraic tensor product of X and Y, $X \otimes Y$, is defined to be the linear span of $\{ x \otimes y : x \in X, y \in Y \}$ in $B\mathcal{L}(X' \times Y', F)$ (see [3]).

A classical question in the theory of functional equations is the following (see [4], [6], [7], [9], [10], [8], [12], [14], [15], [20], [19], [17], [18], [21], [13], [22]): When is it true that a function which approximately satisfies a functional equation ζ must be close to an exact solution of ζ? If the problem accepts a solution, we say that the equation ζ is stable. There are cases in which each approximate solution is actually a true solution. In such cases, we call the equation ζ superstable.

In this paper, under certain hypotheses and using Hyers–Ulam approach, we find a unique bounded bilinear mapping v near to a given mapping u such that

$$\|v\| \leq \|x \otimes y\|$$

for $x \in X$, $y \in Y$. Throughout this paper, it is assumed that X and Y are normed spaces over a complete field F with dual spaces X^0 and Y^0 respectively.

2. Results

Theorem 1. Let $u : X' \times Y' \to \mathbb{F}$ be a mapping for which there exist positive real valued functions φ_1, φ_2, and φ on $X' \times X' \times Y'$, $X' \times Y' \times Y'$, and $X' \times Y'$, respectively such that

$$\check{\varphi}(f, g) := \sum_{i=0}^{\infty} \frac{1}{2^i+1} \varphi_1(2^i f, 2^i f, g) < \infty, \quad (2.1)$$

$$\lim_{n \to \infty} \frac{1}{2^n} \varphi_1(2^n f_1, 2^n f_2, g) = \lim_{n \to \infty} \frac{1}{2^n} \varphi_2(2^n f, g_1, g_2) = \lim_{n \to \infty} \frac{1}{2^n} \varphi(2^n f, g) = 0, \quad (2.2)$$

$$|u(cf_1 + f_2, g) - cu(f_1, g) - u(f_2, g)| \leq \varphi_1(f_1, f_2, g), \quad (2.3)$$

$$|u(f, cg_1 + g_2) - cu(f, g_1) - u(f, g_2)| \leq \varphi_2(f, g_1, g_2) \quad (2.4)$$

for all $f, f_1, f_2 \in X'$, $g, g_1, g_2 \in Y'$, and $c \in \mathbb{F}$. Then, there exists a unique bilinear mapping v from $X' \times Y'$ to \mathbb{F} such that

$$|u(f, g) - v(f, g)| \leq \check{\varphi}(f, g) \quad (f \in X', g \in Y'). \quad (2.5)$$

Moreover, if the mapping u satisfies

$$\|u(f, g)\| - |f(x) g(y)| \leq \varphi(f, g) \quad (2.6)$$

for some fixed $x \in X$ and $y \in Y$, then $\|v\| = \|x \otimes y\|$ and so in particular v is bounded.
Proof. Putting $c = 1$ and replacing f_1 and f_2 in (2.3) by f and dividing both sides by 2, we get
\[
\left| \frac{1}{2} u(2f, g) - u(f, g) \right| \leq \frac{1}{2} \varphi_1(f, f, g) \tag{2.7}
\]
for all $f \in X'$ and $g \in Y'$. Replacing f by $2f$ in (2.7) and dividing both sides by 2, we find that
\[
\left| \frac{1}{2^n} u(2^n f, g) - u(f, g) \right| \leq \frac{1}{2^n} \varphi_1(2^n f, 2^n f, g) \tag{2.8}
\]
for all $f \in X'$ and $g \in Y'$. Combining (2.7) with (2.8), we obtain
\[
\left| \frac{1}{2^n} u(2^n f, g) - u(f, g) \right| \leq \frac{1}{2^n} \varphi_1(f, f, g) + \frac{1}{2^n} \varphi_1(2^n f, 2^n f, g)
\]
for all $f \in X'$ and $g \in Y'$. By induction on n, we conclude that
\[
\left| \frac{1}{2^n} u(2^n f, g) - u(f, g) \right| \leq \sum_{i=0}^{n-1} \frac{1}{2^{i+1}} \varphi_1(2^i f, 2^i f, g) \tag{2.9}
\]
for all $f \in X'$ and $g \in Y'$. We now turn to use the Cauchy convergence criterion. Replace f by $2^k f$ in (2.9) and divide both sides by 2^k, where k is an arbitrary positive integer, to get
\[
\left| \frac{1}{2^{n+k}} u(2^{n+k} f, g) - \frac{1}{2^k} u(2^k f, g) \right| \leq \sum_{i=k}^{n-1} \frac{1}{2^{i+1}} \varphi_1(2^i f, 2^i f, g)
\]
for all $f \in X'$, $g \in Y'$, and all positive integers $n \geq k$. It follows from the last inequality and (2.1) that the sequence $\{ \frac{1}{2^n} u(2^n f, g) \}$ is a Cauchy sequence for all $f \in X'$ and $g \in Y'$. Since F is a complete field, this sequence converges. Define $v(f, g) := \lim_{n \to \infty} \frac{1}{2^n} u(2^n f, g)$. Taking the limit as $n \to \infty$ in (2.9), we find that the inequality (2.5) holds for all $f \in X'$ and $g \in Y'$. Replace f_1 and f_2 in (2.3) by $2^n f_1$ and $2^n f_2$ respectively and divide both sides by 2^n and take the limit as $n \to \infty$ and apply then (2.2) to get the mapping $f \mapsto v(f, g)$ is linear. By a similar way one can replace f in (2.4) by $2^n f$ and divide both sides by 2^n to deduce that the mapping $g \mapsto v(f, g)$ is linear. Consequently, the mapping v is bilinear. Our next claim is to prove that v is unique. Let v' be another mapping satisfying (2.5). Hence,
\[
|v(f, g) - v'(f, g)| = \frac{1}{2k} |v(2^k f, g) - v'(2^k f, g)|
\]
\[
\leq \frac{2}{2k} \tilde{\varphi}(2^k f, g)
\]
\[
= 2 \sum_{i=k}^{\infty} \frac{1}{2^{i+1}} \varphi_1(2^i f, 2^i f, g)
\]
for all \(f \in X' \) and \(g \in Y' \). Passing to the limit as \(k \to \infty \), we conclude that \(v \) is unique. Replace \(f \) by \(2^n f \) in (2.6) and divide both sides by \(2^n \), to arrive at

\[
\left| \frac{1}{2^n} |u(2^n f, g)| - |f(x)g(y)| \right| \leq \frac{1}{2^n} \phi(2^n f, g) \tag{2.10}
\]

for all \(f \in X' \) and \(g \in Y' \). Taking the limit as \(n \to \infty \) in (2.10) and applying the definition of the norm, we conclude that \(||v|| = ||x \otimes y||\) and so \(v \) is bounded. \(\square \)

Remark 1. Under the same hypotheses of Theorem 1, with (2.1) and (2.2) replaced by

\[
\tilde{\phi}(f, g) := \sum_{i=0}^{\infty} \frac{1}{2^{i+1}} \phi_2(f, 2^i g, 2^i g) < \infty, \tag{2.11}
\]

\[
\lim_{n \to \infty} \frac{1}{2^n} \phi_1(f_1, f_2, 2^n g) = \lim_{n \to \infty} \frac{1}{2^n} \phi_2(f, 2^n f_1, 2^n g_2) = \lim_{n \to \infty} \frac{1}{2^n} \phi(f, 2^n g) = 0. \tag{2.12}
\]

there exists a unique mapping \(v \in \mathcal{BL}(X' \times Y', \mathbb{F}) \) satisfying (2.5). Note that by using (2.4) and the same method as in the proof of Theorem 1, we can define \(v(f, g) := \lim_{n \to \infty} \frac{1}{2^n} u(f, 2^n g) \).

In the following corollaries, as a consequence of Theorem 1, we show the Rassias stability of algebraic tensor products.

Corollary 1. Let \(x \in X, y \in Y, \) and \(u : X' \times Y' \to \mathbb{F} \) be a mapping such that

\[
|u(f, g) - |f(x)g(y)|| \leq \alpha + \beta(||f||^p + ||g||^p) + \gamma||f||^p ||g||^p, \tag{2.13}
\]

\[
|u(cf_1 + f_2, g) - cu(f_1, g) - u(f_2, g)| \leq \alpha + \beta(||f_1||^q + ||f_2||^q + ||g||^q)
+ \gamma||f_1||^q ||f_2||^q ||g||^q,
\]

\[
|u(cf_1g_1 + g_2) - cu(f_1, g_1) - u(f_2, g_2)| \leq \alpha + \beta(||f||^r + ||g_1||^r + ||g_2||^r)
+ \gamma||f||^r ||g_1||^2 ||g_2||^2
\]

for all \(f, f_1, f_2 \in X', g, g_1, g_2 \in Y', \) and \(c \in \mathbb{F} \), where \(p, q, r < 1, \alpha > 0, \) and \(\beta, \gamma \geq 0 \). Then, there exists a unique mapping \(v \in \mathcal{BL}(X' \times Y', \mathbb{F}) \) such that \(||v|| = ||x \otimes y||\) and

\[
|u(f, g) - v(f, g)| \leq \alpha + \beta(2k||f||^q + ||g||^q) + \gamma k ||f||^q ||g||^q \tag{2.14}
\]

for all \(f \in X' \) and \(g \in Y' \), where \(k = \frac{1}{\alpha - 2\beta} \).

Remark 2. Under the hypotheses of Corollary 1 and using Remark 1, there exists a unique mapping \(v \in \mathcal{BL}(X' \times Y', \mathbb{F}) \) such that \(||v|| = ||x \otimes y||\) and

\[
|u(f, g) - v(f, g)| \leq \alpha + \beta(||f||^r + 2k||g||^r) + \gamma k ||f||^r ||g||^r
\]

for all \(f \in X' \) and \(g \in Y' \), where \(k = \frac{1}{\alpha - 2\beta} \).
Theorem 2. Let \(\{x_i\}_{i=1}^m \) and \(\{y_i\}_{i=1}^m \) be linearly independent sets in \(X \) and \(Y \) respectively and \(u \) be a mapping from \(X' \times Y' \) to \(\mathbb{F} \) for which there exist mappings \(\varphi_1 : X' \times X' \times Y' \rightarrow \mathbb{R}^+ \), \(\varphi_2 : X' \times Y' \times Y' \rightarrow \mathbb{R}^+ \), and \(\varphi : X' \times Y' \rightarrow \mathbb{R}^+ \) satisfying (2.1), (2.2), (2.3), (2.4) and

\[
|u(f, g) - \sum_{i=1}^m f(x_i)g(y_i)| \leq \varphi(f, g) \tag{2.15}
\]

for all \(f \in X' \), \(g \in Y' \). Then, there exists a unique mapping \(v \in \mathcal{B}\mathcal{L}(X' \times Y', \mathbb{F}) \) such that

\[
|u(f, g) - v(f, g)| \leq \bar{\varphi}(f, g) \quad (f \in X', g \in Y'), \quad ||v|| \leq \sum_{i=1}^m ||x_i \otimes y_i||. \tag{2.16}
\]

In the following our interest is to provide a dual for Theorem 1.

Theorem 3. Let \(x \in X \), \(y \in Y \), and let \(u : X' \times Y' \rightarrow \mathbb{F} \) be a mapping for which there exist mappings \(\varphi_1 : X' \times X' \times Y' \rightarrow \mathbb{R}^+ \), \(\varphi_2 : X' \times Y' \times Y' \rightarrow \mathbb{R}^+ \), and \(\varphi : X' \times Y' \rightarrow \mathbb{R}^+ \) satisfying (2.3), (2.4), (2.6), and

\[
\bar{\varphi}(f, g) := \sum_{i=0}^{\infty} 2^i \varphi_1(\frac{f}{2^{i+1}}, \frac{g}{2^{i+1}}) < \infty. \tag{2.17}
\]

\[
\lim_{n \to \infty} 2^n \varphi_1(\frac{f_1}{2^n}, \frac{f_2}{2^n}, g) = \lim_{n \to \infty} 2^n \varphi_2(\frac{f}{2^n}, g_1, g_2) = \lim_{n \to \infty} 2^n \varphi(\frac{f}{2^n}, g) = 0 \tag{2.18}
\]

for all \(f, f_1, f_2 \in X' \), \(g, g_1, g_2 \in Y' \). Then, there exists a unique mapping \(v \in \mathcal{B}\mathcal{L}(X' \times Y', \mathbb{F}) \) satisfying (2.5).

Proof. By induction on \(n \), we conclude that

\[
|u(f, g) - 2^n u(\frac{f}{2^n}, g)| \leq \sum_{i=0}^{n-1} 2^i \varphi_1(\frac{f}{2^{i+1}}, \frac{f}{2^{i+1}}, g) \tag{2.19}
\]

for all \(f \in X' \) and \(g \in Y' \). Replace \(f \) by \(\frac{f}{2^n} \) in (2.19) and multiply both sides by \(2^k \), where \(k \) is an arbitrary positive integer, to get

\[
|2^k u(\frac{f}{2^k}, g) - 2^n u(\frac{f}{2^n+k}, g)| \leq \sum_{i=k}^{n-k-1} 2^i \varphi_1(\frac{f}{2^{i+1}}, \frac{f}{2^{i+1}}, g) \tag{2.20}
\]

for all \(f \in X' \), \(g \in Y' \), and all positive integers \(n \geq k \). In order to use the Cauchy convergence criterion, the last inequality and (2.17) imply the sequence \(\{2^n u(\frac{f}{2^n}, g)\} \) is a Cauchy sequence for all \(f \in X' \) and \(g \in Y' \). Due to completeness of \(\mathbb{F} \), this sequence converges. Define \(\nu(f, g) := \lim_{n \to \infty} 2^n u(\frac{f}{2^n}, g) \). Taking the limit as \(n \to \infty \) in (2.19), we deduce that the inequality (2.5) holds for all \(f \in X' \) and \(g \in Y' \). The rest of the proof is similar to that of Theorem 1. \(\square \)
Remark 3. Under the same hypotheses of Theorem 3, with (2.17) and (2.18) replaced by
\[\tilde{\varphi}(f, g) := \sum_{i=0}^{\infty} 2^i \varphi_2(f, \frac{g}{2i+1}, \frac{g}{2i+1}) < \infty, \quad (2.20)\]
\[
\lim_{n \to \infty} 2^n \varphi_1(f_1, f_2, \frac{g}{2^n}) = \lim_{n \to \infty} 2^n \varphi_2(f, \frac{g_2}{2^n}, \frac{g_2}{2^n}) = \lim_{n \to \infty} 2^n \psi(f, \frac{g}{2^n}) = 0, \quad (2.21)
\]
there exists a unique mapping \(v \in \mathcal{B}L(X' \times Y', \mathbb{F})\) satisfying (2.5). We remark that by using (2.4) and the same method as in the proof of Theorem 3, one can define \(v(f, g) := \lim_{n \to \infty} 2^n u(f, \frac{g}{2^n})\).

Corollary 2. Let \(x \in X, y \in Y,\) and \(u: X' \times Y' \to \mathbb{F}\) be a mapping such that
\[||u(f, g)| - |f(x)g(y)|| \leq \alpha ||f||^p ||g||^p, \quad (2.22)\]
\[|u(cf_1 + f_2, g) - cu(f_1, g) - u(f_2, g)| \leq \beta ||f_1||^2 ||f_2||^2 ||g||^q, \quad (2.23)\]
\[|u(f, cg_1 + g_2) - cu(f, g_1) - u(f, g_2)| \leq \gamma ||f||^r ||g_1||^2 ||g_2||^q, \quad (2.24)\]
for all \(f, f_1, f_2 \in X', g, g_1, g_2 \in Y',\) and \(c \in \mathbb{F},\) where \(p, q, r > 1,\) and \(\alpha, \beta, \gamma > 0.\) Then, there exists a unique mapping \(v \in \mathcal{B}L(X' \times Y', \mathbb{F})\) such that \(||v|| = ||x \otimes y||\) and
\[|u(f, g) - v(f, g)| \leq \frac{\beta}{2q - 2} ||f||^q ||g||^q (f \in X', g \in Y'). \quad (2.25)\]

Proof. It is enough to define \(\varphi(f, g) := \alpha ||f||^p ||g||^p,\)
\[\varphi_1(f_1, f_2, g) := \beta ||f_1||^2 ||f_2||^2 ||g||^q, \quad \text{and} \quad \varphi_2(f, g_1, g_2) := \gamma ||f||^r ||g_1||^2 ||g_2||^q \quad (2.26)\]
for all \(f, f_1, f_2 \in X'\) and \(g, g_1, g_2 \in Y'\) and then apply Theorem 3. \(\square\)

Remark 4. Under the hypotheses of Corollary 2 and using Remark 3, there exists a unique mapping \(v \in \mathcal{B}L(X' \times Y', \mathbb{F})\) such that \(||v|| = ||x \otimes y||\) and
\[|u(f, g) - v(f, g)| \leq \frac{\gamma}{2r - 2} ||f||^r ||g||^r (f \in X', g \in Y'). \quad (2.27)\]

Theorem 4. Let \(\{x_i\}_{i=1}^m\) and \(\{y_j\}_{j=1}^n\) be linearly independent sets in \(X\) and \(Y\) respectively and \(u\) be a mapping from \(X' \times Y'\) to \(\mathbb{F}\) for which there exist mappings \(\varphi_1: X' \times X' \times Y' \to \mathbb{R}^+,\)
\(\varphi_2 : X' \times Y' \times Y' \to \mathbb{R}^+,\) and \(\varphi : X' \times Y' \to \mathbb{R}^+\) satisfying (2.17), (2.18), (2.19), (2.20). Then, there exists a unique mapping \(v \in \mathcal{B}L(X' \times Y', \mathbb{F})\) satisfying (2.16).

Acknowledgement

The authors would like to thank the anonymous referee for his/her valuable comments concerning the statement of Theorem 1.
REFERENCES

Authors’ addresses

Ismail Nikoufar
Department of Mathematics, Payame Noor University, P.O. BOX 19395-3697 Tehran, Iran
E-mail address: nikoufar@pnu.ac.ir
Themistocles M. Rassias
Department of Mathematics, National Technical University of Athens, Zografou, Campus 15780
Athens, Greece
E-mail address: trassias@math.ntua.gr