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Abstract. Let X and Y be normed spaces over a complete field F with dual spaces X 0 and Y 0

respectively. Under certain hypotheses, for given x 2X , y 2 Y and a mapping u fromX 0�Y 0 to
F , we apply Hyers–Ulam approach to find a unique bounded bilinear mapping v near to u such
that jjvjj D jjx˝yjj.
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1. INTRODUCTION

Let X;Y; and Z be normed linear spaces over the same field F . A mapping � W
X �Y �!Z is said to be bilinear if the mappings x 7�! �.x;y/ and y 7�! �.x;y/

are linear. A bilinear mapping � W X �Y �! Z is said to be bounded if there exists
M > 0 such that jj�.x;y/jj �M jjxjjjjyjj for all x 2X and y 2 Y . The norm of � is
then defined by

jj�jj WD supfjj�.x;y/jj W .x;y/ 2BX �BY g;

where BX WD fx 2 X W jjxjj � 1g. The set of all bounded bilinear mappings from
X �Y to Z is denoted by BL.X �Y;Z/. Let X 0 and Y 0 be dual spaces of X and
Y respectively. For given x 2 X and y 2 Y , x˝y is an element of BL.X 0�Y 0;F /
defined by x˝y.f;g/ WD f .x/g.y/ for all f 2X 0 and g 2 Y 0. The algebraic tensor
product ofX and Y , X˝Y , is defined to be the linear span of fx˝y W x 2X;y 2 Y g
in BL.X 0�Y 0;F / (see [3]).

A classical question in the theory of functional equations is the following (see [4],
[6], [7], [9], [10], [8], [12], [14], [15], [20], [19], [17], [18], [21], [13], [22]): When
is it true that a function which approximately satisfies a functional equation � must
be close to an exact solution of �?
If the problem accepts a solution, we say that the equation � is stable. There are cases
in which each approximate solution is actually a true solution. In such cases, we call
the equation � superstable.
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The first stability problem concerning group homomorphisms was raised by Ulam
[22] during his talk before a Mathematical Colloquium at the University of Wis-
consin in 1940. Ulam’s problem was partially solved by Hyers [7] for mappings
between Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive
mappings and by Th. M. Rassias [16] for linear mappings by considering an un-
bounded Cauchy difference. The paper of Th. M. Rassias [16] has provided a lot
of influence in the development of what is called the generalized Hyers-Ulam stabil-
ity or the Hyers-Ulam-Rassias stability of functional equations. A generalization of
the Th. M. Rassias theorem was obtained by Gavruta [5] in 1994 by replacing the
unbounded Cauchy difference by a general control function in the spirit of Th. M.
Rassias’ approach. Badora [2] proved the generalized Hyers-Ulam stability of ring
homomorphisms, which generalizes the result of D. G. Bourgin. Miura [11] proved
the generalized Hyers-Ulam stability of Jordan homomorphisms.

In this paper, under certain hypotheses and using Hyers–Ulam approach, we find
a unique bounded bilinear mapping v near to a given mapping u W X 0 � Y 0 �! F
such that jjvjj D jjx˝yjj for x 2 X , y 2 Y . Throughout this paper, it is assumed
that X and Y are normed spaces over a complete field F with dual spaces X 0 and Y 0

respectively.

2. RESULTS

Theorem 1. Let u W X 0 � Y 0 ! F be a mapping for which there exist positive
real valued functions '1;'2, and ' on X 0 �X 0 � Y 0, X 0 � Y 0 � Y 0, and X 0 � Y 0,
respectively such that

Q'.f;g/ WD

1X
iD0

1

2iC1
'1.2

if;2if;g/ <1; (2.1)

lim
n!1

1

2n
'1.2

nf1;2
nf2;g/D lim

n!1

1

2n
'2.2

nf;g1;g2/D lim
n!1

1

2n
'.2nf;g/D 0;

(2.2)
ju.cf1Cf2;g/� cu.f1;g/�u.f2;g/j � '1.f1;f2;g/; (2.3)

ju.f;cg1Cg2/� cu.f;g1/�u.f;g2/j � '2.f;g1;g2/ (2.4)

for all f;f1;f2 2 X
0, g;g1;g2 2 Y

0, and c 2 F . Then, there exists a unique bilinear
mapping v from X 0�Y 0 to F such that

ju.f;g/�v.f;g/j � Q'.f;g/ .f 2X 0;g 2 Y 0/: (2.5)

Moreover, if the mapping u satisfies

jju.f;g/j� jf .x/g.y/jj � '.f;g/ (2.6)

for some fixed x 2 X and y 2 Y , then jjvjj D jjx˝ yjj and so in particular v is
bounded.
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Proof. Putting cD 1 and replacing f1 and f2 in (2.3) by f and dividing both sides
by 2, we get

j
1

2
u.2f;g/�u.f;g/j �

1

2
'1.f;f;g/ (2.7)

for all f 2X 0 and g 2 Y 0. Replacing f by 2f in (2.7) and dividing both sides by 2,
we find that

j
1

22
u.22f;g/�

1

2
u.2f;g/j �

1

22
'1.2f;2f;g/ (2.8)

for all f 2X 0 and g 2 Y 0. Combining (2.7) with (2.8), we obtain

j
1

22
u.22f;g/�u.f;g/j �

1

2
'1.f;f;g/C

1

22
'1.2f;2f;g/

for all f 2X 0 and g 2 Y 0. By induction on n, we conclude that

j
1

2n
u.2nf;g/�u.f;g/j �

n�1X
iD0

1

2iC1
'1.2

if;2if;g/ (2.9)

for all f 2 X 0 and g 2 Y 0. We now turn to use the Cauchy convergence criterion.
Replace f by 2kf in (2.9) and divide both sides by 2k , where k is an arbitrary
positive integer, to get

j
1

2nCk
u.2nCkf;g/�

1

2k
u.2kf;g/j �

nCk�1X
iDk

1

2iC1
'1.2

if;2if;g/

for all f 2 X 0, g 2 Y 0, and all positive integers n � k. It follows from the last
inequality and (2.1) that the sequence f 1

2nu.2
nf;g/g is a Cauchy sequence for all

f 2 X 0 and g 2 Y 0. Since F is a complete field, this sequence converges. Define
v.f;g/ WD limn!1

1
2nu.2

nf;g/. Taking the limit as n!1 in (2.9), we find that the
inequality (2.5) holds for all f 2X 0 and g 2 Y 0. Replace f1 and f2 in (2.3) by 2nf1

and 2nf2 respectively and divide both sides by 2n and take the limit as n!1 and
apply then (2.2) to get the mapping f 7�! v.f;g/ is linear. By a similar way one can
replace f in (2.4) by 2nf and divide both sides by 2n to deduce that the mapping
g 7�! v.f;g/ is linear. Consequently, the mapping v is bilinear. Our next claim is to
prove that v is unique. Let v0 be another mapping satisfying (2.5). Hence,

jv.f;g/�v0.f;g/j D
1

2k
jv.2kf;g/�v0.2kf;g/j

�
2

2k
Q'.2kf;g/

D 2

1X
iDk

1

2iC1
'1.2

if;2if;g/
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for all f 2 X 0 and g 2 Y 0. Passing to the limit as k !1, we conclude that v is
unique. Replace f by 2nf in (2.6) and divide both sides by 2n, to arrive atˇ̌̌̌

1

2n
ju.2nf;g/j� jf .x/g.y/j

ˇ̌̌̌
�
1

2n
'.2nf;g/ (2.10)

for all f 2 X 0 and g 2 Y 0. Taking the limit as n!1 in (2.10) and applying the
definition of the norm, we conclude that jjvjj D jjx˝yjj and so v is bounded. �

Remark 1. Under the same hypotheses of Theorem 1, with (2.1) and (2.2) replaced
by

Q'.f;g/ WD

1X
iD0

1

2iC1
'2.f;2

ig;2ig/ <1; (2.11)

lim
n!1

1

2n
'1.f1;f2;2

ng/D lim
n!1

1

2n
'2.f;2

ng1;2
ng2/D lim

n!1

1

2n
'.f;2ng/D 0;

(2.12)
there exists a unique mapping v 2BL.X 0�Y 0;F / satisfying (2.5). Note that by us-
ing (2.4) and the same method as in the proof of Theorem 1, we can define v.f;g/ WD
limn!1

1
2nu.f;2

ng/.

In the following corollaries, as a consequence of Theorem 1, we show the Rassias
stability of algebraic tensor products.

Corollary 1. Let x 2X , y 2 Y , and u WX 0�Y 0! F be a mapping such that

jju.f;g/j� jf .x/g.y/jj � ˛Cˇ.jjf jjpCjjgjjp/C jjf jjpjjgjjp; (2.13)

ju.cf1Cf2;g/� cu.f1;g/�u.f2;g/j � ˛Cˇ.jjf1jj
q
Cjjf2jj

q
Cjjgjjq/

C jjf1jj
q
2 jjf2jj

q
2 jjgjjq;

ju.f;cg1Cg2/� cu.f;g1/�u.f;g2/j � ˛Cˇ.jjf jj
r
Cjjg1jj

r
Cjjg2jj

r/

C jjf jjr jjg1jj
r
2 jjg2jj

r
2

for all f;f1;f2 2 X
0, g;g1;g2 2 Y

0, and c 2 F , where p;q;r;˛;ˇ; and  are con-
stants with 0� p;q;r < 1, ˛ > 0, and ˇ; � 0. Then, there exists a unique mapping
v 2BL.X 0�Y 0;F / such that jjvjj D jjx˝yjj and

ju.f;g/�v.f;g/j � ˛Cˇ.2kjjf jjqCjjgjjq/Ckjf jjqjjgjjq (2.14)

for all f 2X 0 and g 2 Y 0, where k D 1
2�2q .

Remark 2. Under the hypotheses of Corollary 1 and using Remark 1, there exists
a unique mapping v 2BL.X 0�Y 0;F / such that jjvjj D jjx˝yjj and

ju.f;g/�v.f;g/j � ˛Cˇ.jjf jjrC2kjjgjjr/Ckjf jjr jjgjjr

for all f 2X 0 and g 2 Y 0, where k D 1
2�2r .
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Theorem 2. Let fxig
m
iD1 and fyig

m
iD1 be linearly independent sets in X and Y

respectively and u be a mapping fromX 0�Y 0 to F for which there exist mappings '1 W

X 0�X 0�Y 0 �! RC, '2 W X
0�Y 0�Y 0 �! RC, and ' W X 0�Y 0 �! RC satisfying

(2.1), (2.2), (2.3), (2.4) andˇ̌̌̌
ˇju.f;g/j�

mX
iD1

jf .xi /g.yi /j

ˇ̌̌̌
ˇ� '.f;g/ (2.15)

for all f 2 X 0, g 2 Y 0. Then, there exists a unique mapping v 2 BL.X 0 �Y 0;F /
such that

ju.f;g/�v.f;g/j � Q'.f;g/ .f 2X 0;g 2 Y 0/; jjvjj �

mX
iD1

jjxi ˝yi jj: (2.16)

In the following our interest is to provide a dual for Theorem 1.

Theorem 3. Let x 2 X , y 2 Y , and let u W X 0�Y 0! F be a mapping for which
there exist mappings '1 W X

0�X 0�Y 0 �! RC, '2 W X
0�Y 0�Y 0 �! RC, and ' W

X 0�Y 0 �! RC satisfying (2.3), (2.4), (2.6), and

Q'.f;g/ WD

1X
iD0

2i'1.
f

2iC1
;
f

2iC1
;g/ <1; (2.17)

lim
n!1

2n'1.
f1

2n
;
f2

2n
;g/D lim

n!1
2n'2.

f

2n
;g1;g2/D lim

n!1
2n'.

f

2n
;g/D 0 (2.18)

for all f;f1;f2 2 X
0, g;g1;g2 2 Y

0. Then, there exists a unique mapping v 2
BL.X 0�Y 0;F / satisfying (2.5).

Proof. By induction on n, we conclude that

ju.f;g/�2nu.
f

2n
;g/j �

n�1X
iD0

2i'1.
f

2iC1
;
f

2iC1
;g/ (2.19)

for all f 2X 0 and g 2 Y 0. Replace f by f

2k in (2.19) and multiply both sides by 2k ,
where k is an arbitrary positive integer, to get

j2ku.
f

2k
;g/�2nCku.

f

2nCk
;g/j �

nCk�1X
iDk

2i'1.
f

2iC1
;
f

2iC1
;g/

for all f 2 X 0, g 2 Y 0, and all positive integers n � k. In order to use the Cauchy
convergence criterion, the last inequality and (2.17) imply the sequence f2nu. f

2n ;g/g

is a Cauchy sequence for all f 2 X 0 and g 2 Y 0. Due to completeness of F , this
sequence converges. Define v.f;g/ WD limn!1 2

nu. f
2n ;g/. Taking the limit as n!

1 in (2.19), we deduce that the inequality (2.5) holds for all f 2X 0 and g 2 Y 0. The
rest of the proof is similar to that of Theorem 1. �
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Remark 3. Under the same hypotheses of Theorem 3, with (2.17) and (2.18) re-
placed by

Q'.f;g/ WD

1X
iD0

2i'2.f;
g

2iC1
;
g

2iC1
/ <1; (2.20)

lim
n!1

2n'1.f1;f2;
g

2n
/D lim

n!1
2n'2.f;

g1

2n
;
g2

2n
/D lim

n!1
2n'.f;

g

2n
/D 0; (2.21)

there exists a unique mapping v 2BL.X 0�Y 0;F / satisfying (2.5). We remark that
by using (2.4) and the same method as in the proof of Theorem 3, one can define
v.f;g/ WD limn!1 2

nu.f; g
2n /.

Corollary 2. Let x 2X , y 2 Y , and u WX 0�Y 0! F be a mapping such that

jju.f;g/j� jf .x/g.y/jj � ˛jjf jjpjjgjjp; (2.22)

ju.cf1Cf2;g/� cu.f1;g/�u.f2;g/j � ˇjjf1jj
q
2 jjf2jj

q
2 jjgjjq;

ju.f;cg1Cg2/� cu.f;g1/�u.f;g2/j �  jjf jj
r
jjg1jj

r
2 jjg2jj

r
2

for all f;f1;f2 2 X
0, g;g1;g2 2 Y

0, and c 2 F , where p;q;r > 1, and ˛;ˇ; > 0.
Then, there exists a unique mapping v 2BL.X 0�Y 0;F / such that jjvjj D jjx˝yjj
and

ju.f;g/�v.f;g/j �
ˇ

2q �2
jjf jjqjjgjjq .f 2X 0;g 2 Y 0/:

Proof. It is enough to define '.f;g/ WD ˛jjf jjpjjgjjp,
'1.f1;f2;g/ WDˇjjf1jj

q
2 jjf2jj

q
2 jjgjjq , and '2.f;g1;g2/ WD  jjf jj

r jjg1jj
r
2 jjg2jj

r
2 for

all f;f1;f2 2X
0 and g;g1;g2 2 Y

0 and then apply Theorem 3. �

Remark 4. Under the hypotheses of Corollary 2 and using Remark 3, there exists
a unique mapping v 2BL.X 0�Y 0;F / such that jjvjj D jjx˝yjj and

ju.f;g/�v.f;g/j �


2r �2
jjf jjr jjgjjr .f 2X 0;g 2 Y 0/:

Theorem 4. Let fxig
m
iD1 and fyig

m
iD1 be linearly independent sets in X and Y

respectively and u be a mapping fromX 0�Y 0 to F for which there exist mappings '1 W

X 0�X 0�Y 0 �! RC, '2 W X
0�Y 0�Y 0 �! RC, and ' W X 0�Y 0 �! RC satisfying

(2.17), (2.18), (2.15), (2.3), (2.4). Then, there exists a unique mapping v 2BL.X 0�

Y 0;F / satisfying (2.16).
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