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1. INTRODUCTION

Recently, after an experiment, we stumbled upon the following double inequality�
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; x > 1: (1.1)

In this paper, we present a proof of this inequality using several tools from number
theory.

Recall that a Mersenne number is a positive integer that is one less than a power
of two:

2n
�1:

The sum of the reciprocals of all Mersenne numbers, namely

E D
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D 1:6066951524152917637833: : :

is known as the Erdős-Borwein constant. This mysterious number is known to be
irrational, as shown by Erdős [4] in 1948.

More recently, using Padé approximant techniques, P. Borwein [2] established the
irrationality of more general numbers
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for x a positive integer, x > 1. We remark that the numbers EB.x/ can be written as
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We have the following approximation of these irrational numbers.

Theorem 1. Let x be a real number such that x > 1. Then
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It is clear that this series has an asymptotic behaviour, i.e.,
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The case x D 2 of this theorem can be written as
29
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In other words, we have

1:60416: : : < E < 1:61814: : :

2. PROOF OF THEOREM 1

Let n be a positive integer. The divisors function �.n/ is defined as the number of
divisors of n, unity and n itself included, i.e.,
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In number theory, the inequality
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is well-known. It is an easy exercise to show that
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for any positive integer n.
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To prove the inequality we consider: the generating function of �.n/ [1, s. 24.3.3],
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and the generating function of bn=kc,
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where k is a positive integer.
For 0 < q < 1, we can write
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Thus we deduce that
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Replacing q by 1=x in this inequality, we get
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On the other hand, due to Clausen’s [3], we have the following identity:
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For x > 1, we obtain
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and Theorem 1 is proved.

3. CONCLUDING REMARKS

Lower and upper bounds of Erdős-Borwein constants has been introduced in the
paper. For x > 1, it is an easy exercise to prove that
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So by Theorem 1, we derive the double inequality (1.1) that can be written in terms
of Erdős-Borwein constants as follows

Corollary 1. For x > 1,�
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:
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