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Abstract. In this study, we define new paranormed sequence spaces derived by the sequences of
Fibonacci numbers. Furthermore, we compute the ˛�;ˇ� and � duals and obtain bases for
these sequence spaces. Besides this, we characterize the matrix transformations from the new
paranormed sequence spaces to the Maddox’s spaces c0.q/;c.q/;`.q/ and `1.q/.
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1. PRELIMINARIES, BACKGROUND AND NOTATION

By !, we shall denote the space of all real valued sequences. Any vector sub-
space of ! is called as a sequence space. We shall write `1; c and c0 for the spaces
of all bounded, convergent and null sequences, respectively. Also by bs;cs;`1 and
p̀; we denote the spaces of all bounded, convergent, absolutely and p� absolutely

convergent series, respectively; where 1 < p <1.
A linear topological space X over the real field R is said to be a paranormed

space if there is a subadditive function g WX! R such that g.�/D 0;g.x/D g.�x/
and scalar multiplication is continuous, i.e., j˛n�˛j ! 0 and g.xn�x/! 0 imply
g.˛nxn�˛x/! 0 for all ˛0s in R and all x’s in X , where � is the zero vector in the
linear space X .

Assume here and after that .pk/ be a bounded sequences of strictly positive real
numbers with suppk DH andM Dmaxf1;H g. Then, the linear spaces c.p/;c0.p/;
`1.p/ and `.p/ were defined by Maddox [20,21] (see also Simons [27] and Nakano
[25]) as follows:

c.p/D

�
x D .xk/ 2 ! W lim

k!1
jxk � l j

pk D 0 for some l 2C

�
;

c0.p/D

�
x D .xk/ 2 ! W lim

k!1
jxkj

pk D 0

�
;
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`1.p/D

�
x D .xk/ 2 ! W sup

k2N
jxkj

pk <1

�
and

`.p/D

�
x D .xk/ 2 ! W

X
k

jxkj
pk <1

�
;

which are the complete spaces paranormed by

h1.x/D sup
k2N
jxkj

pk=M iff inf
k2N

pk > 0 and h2.x/D

�X
k

jxkj
pk

�1=M
;

respectively. We shall assume throughout that p�1
k
C .p

0

k
/�1 D 1 provided 1 <

infpk <H <1. For simplicity in notation, here and in what follows, the summation
without limits runs from 0 to1. By F and Nk , we shall denote the collection of all
finite subsets of N and the set of all n 2N such that n� k, respectively. We write by
U for the set of all sequences uD .un/ such that un ¤ 0 for all n 2N. For u 2U,
let 1=uD .1=un/.

For the sequence spaces X and Y , define the set S.X;Y / by

S.X;Y /D f´D .´k/ 2 ! W x´D .xk´k/ 2 Y for all x 2Xg: (1.1)

With the notation of (1.1), the ˛�;ˇ� and � duals of a sequence space X , which
are respectively denoted by X˛;Xˇ and X , are defined by

X˛ D S.X;`1/; X
ˇ
D S.X;cs/ and X D S.X;bs/:

Let .X;h/ be a paranormed space. A sequence .bk/ of the elements of X is called
a basis for X if and only if, for each x 2 X , there exists a unique sequence .˛k/ of
scalars such that

h

 
x�

nX
kD0

˛kbk

!
! 0 as n!1:

The series
P
˛kbk which has the sum x is then called the expansion of x with respect

to .bn/ and written as x D
P
˛kbk .

Let X;Y be any two sequence spaces and AD .ank/ be an infinite matrix of real
numbers ank , where n;k 2N. Then, we say that A defines a matrix mapping fromX

into Y , and we denote it by writing A W X ! Y , if for every sequence x D .xk/ 2 X
the sequence Ax D ..Ax/n/, the A-transform of x, is in Y , where

.Ax/n D
X
k

ankxk; .n 2N/: (1.2)

By .X W Y /, we denote the class of all matrices A such that A W X ! Y . Thus,
A 2 .X W Y / if and only if the series on the right-hand side of (1.2) converges for
each n 2N and every x 2 X , and we have Ax D f.Ax/ngn2N 2 Y for all x 2 X . A
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sequence x is said to be A- summable to ˛ if Ax converges to ˛ which is called as
the A- limit of x.

For a sequence space X , the matrix domain XA of an infinite matrix A is defined
by

XA D fx D .xk/ 2 ! W Ax 2Xg: (1.3)
The approach constructing a new paranormed sequence space by means of the matrix
domain of a particular limitation method has recently been employed by Malkowsky
[23], Et and Çolak [15], Malkowsky and Savaş [24], Altay and Başar [3, 4], F. Başar
et al., [9], Aydın and Başar [5, 6].

Define the sequence ffng1nD0 of Fibonacci numbers given by the linear recurrence
relations

f0 D f1 D 1 and fn D fn�1Cfn�2; n� 2:

In modern science and particularly physics, there is quite an interest in the theory and
applications of Fibonacci numbers. The ratio of the successive Fibonacci numbers is
as known golden ratio. There are many applications of golden ratio in many places of
mathematics and physics, in general theory of high energy particle theory [26]. Also,
some basic properties of Fibonacci numbers [19] are given as follows:

lim
n!1

fnC1

fn
D
1C
p
5

2
D ˛ .golden ratio/

nX
kD0

fk D fnC2�1 .n 2N/ and
X
k

1

fk
converges

fn�1fnC1�f
2
n D .�1/

nC1 .n� 1/ .Cassini formula/:
Substituting for fnC1 in Cassini’s formula yields f 2n�1Cfnfn�1�f

2
n D .�1/

nC1.
Let fn be the nth Fibonacci number for every n 2N. Then, the infinite Fibonacci

matrix bF D .bf nk/ is defined by

bf nk D
8̂̂̂̂
<̂
ˆ̂̂:
�
fnC1

fn
.k D n�1/;

fn

fnC1
.k D n/;

0 .0� k < n�1 or k > n/

where n;k 2N [17]. Recently, a lot of papers have been studying by many research-
ers on Fibonacci sequences. For instance, see [11–13].

The main purpose of this study is to introduce the sequence spaces c0.bF ;p/;
c.bF ;p/; `1.bF ;p/ and `.bF ;p/ which are the set of all sequences whose bF�trans
forms are in the spaces c0.p/;c.p/;`1.p/ and `.p/, respectively. Also, we have
investigated some topological structures, which have completeness, the ˛�;ˇ� and
� duals, and the bases of these sequence spaces. Besides this, we characterize some
matrix mappings on these spaces.
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2. THE PARANORMED FIBONACCI DIFFERENCE SEQUENCE SPACES

In this section, we define the new sequence spaces c0.bF ;p/;c.bF ;p/; `1.bF ;p/
and `.bF ;p/ by using the sequences of Fibonacci numbers, and prove that these se-
quence spaces are the complete paranormed linear metric spaces and compute their
˛�;ˇ� and � duals. Moreover, we give the basis for the spaces c0.bF ;p/;c.bF ;p/
and `.bF ;p/.

In [14], Choudhary and Mishra have defined the sequence space `.p/ which con-
sists of all sequences such that S -transforms are in `.p/, where S D .snk/ is defined
by

snk D

�
1; .0� k � n/;

0; .k > n/:

Başar and Altay [8] have recently examined the space bs.p/ which is formerly
defined by Başar in [7] as the set of all series whose sequences of partial sums
are in `1.p/. More recently, Altay and Başar have studied the sequence spaces
r t .p/;r t1.p/ in [1] and r tc.p/;r

t
0.p/ in [2] which are derived by the Riesz means

from the sequence spaces `.p/;`1.p/;c.p/ and c0.p/ of Maddox, respectively.
With the notation of (1.3), the spaces `.p/;bs.p/;r t .p/;r t1.p/;r

t
c.p/ and r t0.p/may

be redefined by

`.p/D Œ`.p/�S ; bs.p/D Œ`1.p/�S ; r
t .p/D Œ`.p/�Rt ;

r t1.p/D Œ`1.p/�Rt ; r tc.p/D Œc.p/�Rt ; r t0.p/D Œc0.p/�Rt :

Following Choudhary and Mishra [14], Başar and Altay [8], Altay and Başar [1, 2],
we define the sequence spaces c0.bF ;p/;c.bF ;p/; `1.bF ;p/ and `.bF ;p/ by

c0.bF ;p/D �x D .xk/ 2 ! W lim
n!1

ˇ̌̌̌
fn

fnC1
xn�

fnC1

fn
xn�1

ˇ̌̌̌pn

D 0

�
c.bF ;p/D �x D .xk/ 2 ! W 9l 2C 3 lim

n!1

ˇ̌̌̌
fn

fnC1
xn�

fnC1

fn
xn�1� l

ˇ̌̌̌pn

D 0

�
`1.bF ;p/D �x D .xk/ 2 ! W sup

n2N

ˇ̌̌̌
fn

fnC1
xn�

fnC1

fn
xn�1

ˇ̌̌̌pn

<1

�
and

`.bF ;p/D �x D .xk/ 2 ! WX
n

ˇ̌̌̌
fn

fnC1
xn�

fnC1

fn
xn�1

ˇ̌̌̌pn

<1

�
:

In the case .pk/D eD .1;1;1; :::/; the sequence spaces c0.bF ;p/;c.bF ;p/; `1.bF ;p/
and `.bF ;p/ are , respectively, reduced to the sequence spaces c0.bF /;c.bF /; `1.bF /
and p̀.bF / which are introduced by E.E.Kara [17] and M. Başarır et al. [10].
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With the notation (1.3), we may redefine the spaces c0.bF ;p/;c.bF ;p/; `1.bF ;p/
and `.bF ;p/ as follows:

c0.bF ;p/D fc0.p/gbF ; c.bF ;p/D fc.p/gbF ;
`1.bF ;p/D f`1.p/gbF ; `.bF ;p/D f`.p/gbF :

Define the sequence y D .yk/, which will be frequently used as the bF�transform of
a sequence x D .xk/, i.e.,

yk D bF k.x/D fk

fkC1
xk �

fkC1

fk
xk�1I .k 2N0/: (2.1)

Since the proof may also be obtained in the similar way as for the other spaces, to
avoid the repetition of the similar statements, we give the proof only for one of those
spaces. Now, we may begin with the following theorem which is essential in the
study.

Theorem 1. (i) The sequence spaces c0.bF ;p/;c.bF ;p/ and `1.bF ;p/ are the
complete linear metric spaces paranormed by g, defined by

g.x/D sup
k2N

ˇ̌̌̌
fk

fkC1
xk �

fkC1

fk
xk�1

ˇ̌̌̌pk=M

:

g is a paranorm for the spaces c.bF ;p/ and `1.bF ;p/ only in the trivial case infpk >
0 when c.bF ;p/D c.bF / and `1.bF ;p/D `1.bF /.
(ii) p̀.bF / is a complete linear metric space paranormed by

g�.x/D

�X
k

ˇ̌̌̌
fk

fkC1
xk �

fkC1

fk
xk�1

ˇ̌̌̌pk
�1=M

:

Proof. We prove the theorem for the space c0.bF ;p/. The linearity of c0.bF ;p/
with respect to the coordinatewise addition and scalar multiplication follows from
the following inequalities which are satisfied for x;´ 2 c0.bF ;p/ (see [22, p.30]):

sup
k2N

ˇ̌̌̌
fk

fkC1
.xkC´k/�

fkC1

fk
.xk�1C´k�1/

ˇ̌̌̌pk=M

� sup
k2N

ˇ̌̌̌
fk

fkC1
xk �

fkC1

fk
xk�1

ˇ̌̌̌pk=M

C sup
k2N

ˇ̌̌̌
fk

fkC1
´k �

fkC1

fk
´k�1

ˇ̌̌̌pk=M

(2.2)

and for any ˛ 2 R (see [20]),

j˛jpk �maxf1; j˛jM g: (2.3)
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It is clear that g.�/D 0 and g.x/D g.�x/ for all x 2 c0.bF ;p/. Again the inequalities
(2.2) and (2.3) yield the subadditivity of g and

g.˛x/�maxf1; j˛jgg.x/:

Let fxng be any sequence of the points xn 2 c0.bF ;p/ such that g.xn�x/! 0 and
.˛n/ also be any sequence of scalars such that ˛n! ˛. Then, since the inequality

g.xn/� g.x/Cg.xn�x/

holds by the subadditivity of g, fg.xn/g is bounded and we thus have

g.˛nx
n
�˛x/D sup

k2N

ˇ̌̌̌
fk

fkC1
.˛nx

n
k �˛xk/�

fkC1

fk
.˛nx

n
k�1�˛xk�1/

ˇ̌̌̌pk=M

� j˛n�˛j g.x
n/Cj˛j g.xn�x/;

which tends to zero as n!1. That is to say that the scalar multiplication is con-
tinuous. Hence, g is a paranorm on the space c0.bF ;p/.

It remains to prove the completeness of the space c0.bF ;p/. Let fxig be any
Cauchy sequence in the space c0.bF ;p/, where xi D fx.i/0 ;x

.i/
1 ; :::g. Then, for a given

" > 0 there exists a positive integer n0."/ such that

g.xi �xj / <
"

2

for all i;j � n0."/. We obtain by using definition of g for each fixed k 2N thatˇ̌
fbFxigk �fbFxj gk ˇ̌pk=M

� sup
k2N

ˇ̌
fbFxigk �fbFxj gk ˇ̌pk=M <

"

2
(2.4)

for every i;j � n0."/, which leads us to the fact that f.bFx0/k; .bFx1/k; :::g is a
Cauchy sequence of real numbers for every fixed k 2 N. Since R is complete, it
converges, say

fbFxigk! fbFxgk
as i !1. Using these infinitely many limits .bFx/0; .bFx/1; :::, we define the se-
quence f.bFx/0; .bFx/1; :::g. We have from (2.4) with j !1 thatˇ̌

fbFxigk �fbFxgk ˇ̌pk=M
�
"

2
.i � n0."// (2.5)

for every fixed k 2N. Since xi D fx.i/
k
g 2 c0.bF ;p/,ˇ̌

fbFxigk ˇ̌pk=M <
"

2

for all k 2N. Therefore, we obtain (2.5) thatˇ̌
fbFxgk ˇ̌pk=M

�
ˇ̌
fbFxgk �fbFxigk ˇ̌pk=M

C
ˇ̌
fbFxigk ˇ̌pk=M

< " .i � n0."//:
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This shows that the sequence fbFxg belongs to the space c0.p/. Since fxig was an
arbitrary Cauchy sequence, the space c0.bF ;p/ is complete and this concludes the
proof. �

Therefore, one can easily check that the absolute property does not hold on the
spaces c0.bF ;p/;c.bF ;p/ , `1.bF ;p/ and `.bF ;p/ that is h.x/ ¤ h.jxj/ for at least
one sequence in those spaces, and this says that c0.bF ;p/;c.bF ;p/; `1.bF ;p/ and
`.bF ;p/ are the sequence spaces of non-absolute type; where jxj D .jxkj/.

Theorem 2. The sequence spaces c0.bF ;p/;c.bF ;p/ ,`1.bF ;p/ and `.bF ;p/ are
linearly isomorphic to the spaces c0.p/;c.p/;`1.p/ and `.p/, respectively, where
0 < pk �H <1.

Proof. We establish this for the space `1.bF ;p/. To prove the theorem, we should
show the existence of a linear bijection between the spaces `1.bF ;p/ and `1.p/
for 0 < pk �H <1. With the notation of (2.1), define the transformation T from
`1.bF ;p/ to `1.p/ by x 7! y D T x. The linearity of T is trivial. Further, it is
obvious that x D � whenever T x D � and hence T is injective.

Let y D .yk/ 2 `1.p/ and define the sequence x D .xk/ by

xk D

kX
jD0

f 2
kC1

fjfjC1
yj I .k 2N/:

Then, we get that

g.x/D sup
k2N

ˇ̌̌̌
fk

fkC1
xk �

fkC1

fk
xk�1

ˇ̌̌̌pk=M

D sup
k2N

ˇ̌̌̌
fk

fkC1

kX
jD0

f 2
kC1

fjfjC1
yj �

fkC1

fk

k�1X
jD0

f 2
k

fjfjC1
yj

ˇ̌̌̌pk=M

D sup
k2N
jykj

pk=M D h1.y/ <1:

Thus, we deduce that x 2 `1.bF ;p/ and consequently T is surjective and paranorm
preserving. Hence, T is a linear bijection and this says us that the spaces `1.bF ;p/
and `1.p/ are linearly isomorphic, as desired. �

We shall quote some lemmas which are needed in proving related to the duals our
theorems.

Lemma 1 ([16], Theorem 5.1.1 with qn D 1). A 2 .c0.p/ W `.q// if and only if

sup
K2F

X
n

ˇ̌̌̌
ˇX
k2K

ankB
�1=pk

ˇ̌̌̌
ˇ<1; .9B 2N2/: (2.6)
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Lemma 2 ([16], Theorem 5.1.9 with qn D 1). A 2 .c0.p/ W c.q// if and only if

sup
n2N

X
k

jankjB
�1=pk <1 .9B 2N2/; (2.7)

9.˛k/� R 3 lim
n!1

jank �˛kj D 0 for al l k 2N; (2.8)

9.˛k/� R 3 sup
n2N

X
k

jank �˛kjB
�1=pk <1: .9B 2N2/ (2.9)

Lemma 3 ([16], Theorem 5.1.13 with qn D 1). A 2 .c0.p/ W `1.q// if and only if

sup
n2N

X
k

jankjB
�1=pk <1: .9B 2N2/ (2.10)

Lemma 4 ([16], Theorem 5.1.0 with qn D 1). (i) Let 1 < pk � H <1 for all
k 2N. Then, A 2 .`.p/ W `1/ if and only if there exists an integer B > 1 such that

sup
K2F

X
k

ˇ̌̌̌
ˇX
n2K

ankB
�1

ˇ̌̌̌
ˇ
p
0

k

<1: (2.11)

(ii) Let 0 < pk � 1 for all k 2N. Then, A 2 .`.p/ W `1/ if and only if

sup
K2F

sup
k2N

ˇ̌̌̌
ˇX
n2K

ank

ˇ̌̌̌
ˇ
pk

<1: (2.12)

Lemma 5 ([16], Theorem 1 (i)-(ii)). (i) Let 1 < pk �H <1 for all k 2N. Then,
A 2 .`.p/ W `1/ if and only if there exists an integer B > 1 such that

sup
n2N

X
k

jankB
�1
j
p
0

k <1: (2.13)

(ii) Let 0 < pk � 1 for all k 2N. Then, A 2 .`.p/ W `1/ if and only if

sup
n;k2N

jankj
pk <1: (2.14)

Lemma 6 ([16], Corollary for Theorem 1). Let 0 < pk �H <1 for all k 2N.
Then, A 2 .`.p/ W c/ if and only if (2.13), (2.14) hold, and

lim
n!1

ank D ˇk; .k 2N/ (2.15)

also holds.

Theorem 3. Let K� D fk 2N W 0 � k � ng\K for K 2 F and B 2N2. Define
the sets bF 1.p/;bF 2.p/;bF 3.p/;bF 4.p/;bF 5.p/;bF 6.p/;bF 7.p/ and bF 8.p/ as follows:

bF 1.p/D [
B>1

�
aD .ak/ 2 ! W sup

K2F

X
n

ˇ̌̌̌ X
k2K�

f 2nC1

fkfkC1
anB

�1=pk

ˇ̌̌̌
<1

�
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bF 2.p/D �aD .ak/ 2 ! WX
n

ˇ̌̌̌ nX
kD0

f 2nC1

fkfkC1
an

ˇ̌̌̌
<1

�

bF 3.p/D [
B>1

�
aD .ak/ 2 ! W sup

n2N

nX
kD0

ˇ̌̌̌ nX
jDk

f 2jC1

fkfkC1
aj

ˇ̌̌̌
B�1=pk <1

�

bF 4.p/D �aD .ak/ 2 ! W ˇ̌̌̌ 1X
jDk

f 2jC1

fkfkC1
aj

ˇ̌̌̌
<1 for all k 2N

�
bF 5.p/D [

B>1

�
aD .ak/ 2 ! W 9.˛k/� R

3 sup
n2N

nX
kD0

ˇ̌̌̌ nX
jDk

f 2jC1

fkfkC1
aj �˛k

ˇ̌̌̌
B�1=pk <1

�

bF 6.p/D �aD .ak/ 2 ! W 9˛ 2 R 3 lim
n!1

ˇ̌̌̌ nX
kD0

nX
jDk

f 2jC1

fkfkC1
aj �˛

ˇ̌̌̌
D 0

�

bF 7.p/D �aD .ak/ 2 ! W sup
n2N

ˇ̌̌̌ nX
kD0

nX
jDk

f 2jC1

fkfkC1
aj

ˇ̌̌̌
<1

�
Then

(i) fc0.bF ;p/g˛ D bF 1.p/
(ii) fc.bF ;p/g˛ D bF 1.p/\bF 2.p/
(iii) fc0.bF ;p/gˇ D bF 3.p/\bF 4.p/\bF 5.p/
(iv) fc.bF ;p/gˇ D fc0.bF ;p/gˇ \bF 6.p/
(v) fc0.bF ;p/g D bF 3.p/ (vi) fc.bF ;p/g D bF 3.p/\bF 7.p/
Proof. We give the proof for the space c0.bF ;p/. Let us take any a D .an/ 2 !

and define the matrix C D .cnk/ via the sequence aD .an/ by

cnk D

8<:
f 2nC1

fkfkC1
an; 0� k � n;

0; k > n;

where n;k 2N. Bearing in mind (2.1) we immediately derive that

anxn D

nX
kD0

f 2nC1

fkfkC1
anyk D .Cy/nI .n 2N/: (2.16)
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We therefore observe by (2.16) that ax D .anxn/ 2 `1 whenever x 2 c0.bF ;p/ if
and only if Cy 2 `1 whenever y 2 c0.p/. This means that a D .an/ 2 fc0.bF ;p/g˛
whenever x D .xn/ 2 c0.bF ;p/ if and only if C 2 .c0.p/ W `1/. Then, we derive by
Lemma 1 that

fc0.bF ;p/g˛ D bF 1.p/:
Consider the following equations for n 2N,

nX
kD0

akxk D

nX
kD0

ak

� kX
jD0

f 2
kC1

fjfjC1
yj

�

D

nX
kD0

� nX
jDk

f 2jC1

fkfkC1
aj

�
yk

D .Dy/n (2.17)

where D D .dnk/ is defined by

dnk D

8̂<̂
:

nX
jDk

f 2jC1

fkfkC1
aj ; 0� k � n;

0; k > n;

where n;k 2N. Thus, we deduce from Lemma 2 with (2.17) that ax D .akxk/ 2 cs
whenever x D .xk/ 2 c0.bF ;p/ if and only if Dy 2 c whenever y D .yk/ 2 c0.p/.
This means that a D .an/ 2 fc0.bF ;p/gˇ whenever x D .xn/ 2 c0.bF ;p/ if and only
if D 2 .c0.p/ W c/. Therefore we derive from Lemma 2 that

fc0.bF ;p/gˇ D bF 3.p/\bF 4.p/\bF 5.p/:
As this, we deduce from Lemma 3 with (2.17) that ax D .akxk/ 2 bs whenever

x D .xk/ 2 c0.bF ;p/ if and only if Dy 2 `1 whenever y D .yk/ 2 c0.p/. This
means that a D .an/ 2 fc0.bF ;p/g whenever x D .xn/ 2 c0.bF ;p/ if and only if
D 2 .c0.p/ W `1/. Therefore we obtain Lemma 3 that

fc0.bF ;p/g D bF 3.p/
and this completes the proof. �

Theorem 4. Let K� D fk 2N W 0 � k � ng\K for K 2 F and B 2N2. Define
the sets bF 8.p/;bF 9.p/;bF 10.p/ and bF 11.p/ as follows:

bF 8.p/D \
B>1

�
aD .ak/ 2 ! W sup

K2F

X
n

ˇ̌̌̌ X
k2K�

nX
jDk

f 2jC1

fkfkC1
ajB

1=pk

ˇ̌̌̌
<1

�

bF 9.p/D \
B>1

�
aD .ak/ 2 ! W sup

n2N

nX
kD0

ˇ̌̌̌ nX
jDk

f 2jC1

fkfkC1
aj

ˇ̌̌̌
B1=pk <1

�
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bF 10.p/D \
B>1

�
aD .ak/ 2 ! W 9.˛k/� R

3 lim
n!1

nX
kD0

ˇ̌̌̌ nX
jDk

f 2jC1

fkfkC1
aj �˛k

ˇ̌̌̌
B1=pk D 0

�

bF 11.p/D \
B>1

�
aD .ak/ 2 ! W sup

n2N

nX
kD0

ˇ̌̌̌ nX
jDk

f 2jC1

fkfkC1
aj

ˇ̌̌̌
B1=pk <1

�
Then

(i) f`1.bF ;p/g˛ D bF 8.p/
(ii) f`1.bF ;p/gˇ D bF 9.p/\bF 10.p/
(iii) f`1.bF ;p/g D bF 11.p/.
Proof. This may be obtained in the similar way, as mentioned in the proof of

Theorem 3 with Lemmas 4(i), 5(i), 6 instead of Lemmas 1-3. So, we omit the details.
�

Theorem 5. Let K� D fk 2N W 0 � k � ng\K for K 2 F and B 2N2. Define
the sets bF 12.p/;bF 13.p/;bF 14.p/;bF 15.p/ and bF 16.p/ as follows:

bF 12.p/D �aD .ak/ 2 ! W sup
K2F

sup
k2N

ˇ̌̌̌ X
n2K�

nX
jDk

f 2jC1

fkfkC1
aj

ˇ̌̌̌pk

<1

�

bF 13.p/D [
B>1

�
aD .ak/ 2 ! W sup

K2F

X
k

ˇ̌̌̌ X
n2K

nX
jDk

f 2jC1

fkfkC1
ajB

�1

ˇ̌̌̌p0
k

<1

�

bF 14.p/D [
B>1

�
aD .ak/ 2 ! W sup

n2N

nX
kD0

ˇ̌̌̌ nX
jDk

f 2jC1

fkfkC1
ajB

�1

ˇ̌̌̌p0
k

<1

�

bF 15.p/D �aD .ak/ 2 ! W sup
n;k2N

ˇ̌̌̌ nX
jDk

f 2jC1

fkfkC1
aj

ˇ̌̌̌pk

<1

�

bF 16.p/D �aD .ak/ 2 ! W lim
n!1

nX
jDk

f 2jC1

fkfkC1
aj exists

�
Then

(i)

f`.bF ;p/g˛ D ( bF 12.p/; 0 < pk � 1bF 13.p/; 1 < pk �H <1
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(ii)

f`.bF ;p/g D ( bF 15.p/; 0 < pk � 1bF 14.p/; 1 < pk �H <1:

(iii) Let 0 < pk �H <1. Then

f`.bF ;p/gˇ D bF 14.p/\bF 15.p/\bF 16.p/:
Proof. This may be obtained in the similar way, as mentioned in the proof of

Theorem 3 with Lemmas 4(ii), 5(ii), 6 instead of Lemmas 1-3. So, we omit the
details. �

Now, we may give the sequence of the points of the spaces c0.bF ;p/; `.bF ;p/ and
c.bF ;p/ which forms a Schauder basis for those spaces. Because of the isomorphism
T , defined in the proof of Theorem 2, between the sequence spaces c0.bF ;p/ and
c0.p/, `.bF ;p/ and `.p/, c.bF ;p/ and c.p/ is onto, the inverse image of the basis
of the spaces c0.p/;`.p/ and c.p/ is the basis for our new spaces c0.bF ;p/; `.bF ;p/
and c.bF ;p/, respectively. Therefore, we have:

Theorem 6. Let �k D .bFx/k for all k 2 N. We define the sequence b.k/ D
fb
.k/
n gn2N for every fixed k 2N by

b.k/n D

8<:
f 2nC1

fkfkC1
; n� k;

0; n < k:

Then
(a) The sequence fb.k/gk2N is a basis for the space c0.bF ;p/ and any x 2 c0.bF ;p/
has a unique representation in the form

x D
X
k

�kb
.k/:

(b) The sequence fb.k/gk2N is a basis for the space `.bF ;p/ and any x 2 `.bF ;p/ has
a unique representation in the form

x D
X
k

�kb
.k/:

(c) The set f´;b.k/g is a basis for the space c.bF ;p/ and any x 2 c.bF ;p/ has a unique
representation in the form

x D l´C
X
k

.�k � l/b
.k/
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where l D limk!1.bFx/k and ´D .´k/ with

´k D

kX
jD0

f 2
kC1

fjfjC1
:

3. SOME MATRIX MAPPINGS ON THE SEQUENCE SPACES c0. OF ;p/;c. OF ;p/;

`1. OF ;p/ AND `. OF ;p/

In this section, we characterize some matrix mappings on the spaces c0.bF ;p/;
c.bF ;p/;`1.bF ;p/ and `.bF ;p/. Firstly, we may give the following theorem which is
useful for deriving the characterization of the certain matrix classes.

Theorem 7 ([18], Theorem 4.1). Let � be an FK-space, U be a triangle, V be its
inverse and � be arbitrary subset of !. Then we have A 2 .�U W �/ if and only if

E.n/ D .e
.n/

mk
/ 2 .� W c/ for all n 2N (3.1)

and
E D .enk/ 2 .� W �/ (3.2)

where

e
.n/

mk
D

8̂<̂
:

mX
jDk

anj vjk; 0� k �m;

0; k > m;

and

enk D

1X
jDk

anj vjk for all k;m;n 2N:

Now, we may quote our theorems on the characterization of some matrix classes
concerning with the sequence spaces c0.bF ;p/;c.bF ;p/ and `1.bF ;p/. The necessary
and sufficient conditions characterizing the matrix mappings between the sequence
spaces of Maddox are determined by Grosse-Erdmann [16]. Let N and K denote
the finite subset of N, L and M also denote the natural numbers. Prior to giving the
theorems, let us suppose that .qn/ is a non-decreasing bounded sequence of positive
numbers and consider the following conditions:

lim
m!1

mX
jDk

f 2jC1

fkfkC1
anj D enk; (3.3)

8L;
X
k

jenkjL
1=pk <1; (3.4)

9.˛k/� R 3 lim
m!1

ˇ̌̌̌ mX
jDk

f 2jC1

fkfkC1
anj �˛k

ˇ̌̌̌
D 0 for all k 2N; (3.5)
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9M; sup
m2N

mX
kD0

ˇ̌̌̌ mX
jDk

f 2jC1

fkfkC1
anj

ˇ̌̌̌
M�1=pk <1; (3.6)

8L;9M; sup
m2N

mX
kD0

ˇ̌̌̌ mX
jDk

f 2jC1

fkfkC1
anj

ˇ̌̌̌
L1=qnM�1=pk <1; (3.7)

lim
m!1

X
k

ˇ̌̌̌ mX
jDk

f 2jC1

fkfkC1
anj �˛

ˇ̌̌̌
D 0; (3.8)

8L; sup
n2N

X
k

jenkjL
1=pk <1; (3.9)

lim
n!1

enk D ˛k for all k 2N; (3.10)

8L; lim
n!1

X
k

jenkjL
1=pk <1; (3.11)

8L; lim
n!1

X
k

jenkjL
1=pk D 0; (3.12)

9M; sup
n2N

�X
k2K

jenkjM
�1=pk

�qn

<1; (3.13)

lim
n!1

jenkj
qn D 0; for all k 2N; (3.14)

8L;9M; sup
n2N

X
k

jenkjL
1=qnM�1=pk <1; (3.15)

lim
n!1

jenk �˛kj
qn D 0; for all k 2N; (3.16)

9M; sup
n2N

X
k

jenkjM
�1=pk <1; (3.17)

8L;9M; sup
n2N

X
k

jenk �˛kjL
1=qnM�1=pk <1; (3.18)

sup
n2N

ˇ̌̌̌X
k

enk

ˇ̌̌̌qn

<1; (3.19)

lim
n!1

ˇ̌̌̌X
k

enk

ˇ̌̌̌qn

D 0; (3.20)

lim
n!1

ˇ̌̌̌X
k

enk �˛

ˇ̌̌̌qn

D 0; (3.21)
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Theorem 8. (i) A 2 .`1.bF ;p/ W `1/ if and only if (3.3), (3.4) and (3.9) hold.

(ii) A 2 .`1.bF ;p/ W c/ if and only if (3.3), (3.4), (3.10) and (3.11) hold.

(iii) A 2 .`1.bF ;p/ W c0/ if and only if (3.3), (3.4) and (3.12) hold.

Theorem 9. (i) A 2 .c0.bF ;p/ W `1.q// if and only if (3.5), (3.6), (3.7) and (3.13)
hold.

(ii) A 2 .c0.bF ;p/ W c0.q// if and only if (3.5), (3.6), (3.7), (3.14) and (3.15) hold.

(iii) A 2 .c0.bF ;p/ W c.q// if and only if (3.5), (3.6), (3.7), (3.16), (3.17) and (3.18)
hold.

Theorem 10. (i) A 2 .c.bF ;p/ W `1.q// if and only if (3.5), (3.6), (3.7), (3.8),
(3.13) and (3.19) hold.

(ii) A 2 .c.bF ;p/ W c0.q// if and only if (3.5), (3.6), (3.7), (3.8), (3.14), (3.15) and
(3.20) hold.

(iii)A2 .c.bF ;p/ W c.q// if and only if (3.5), (3.6), (3.7), (3.8), (3.16), (3.17), (3.18)
and (3.21) hold.
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