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Abstract. We consider certain linear operators associated with gamma function in polynomial
weighted spaces of functions of one variable and study approximation properties of these oper-
ators, including theorems on the degree of approximation.
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1. INTRODUCTION

In [11] Lupas and Müller introduced the sequence of linear positive operators fGng
defined by

Gn.f Ix/D

Z 1
0

gn.x;u/f
�n
u

�
du;

which is called gamma operator, where gn.x;u/D xnC1

nŠ
e�xuun, x 2 RC WD .0;1/.

Approximation problems for Gn in some function spaces were examined in many
papers, for example in [1, 11, 13, 15].

The above operators were modified by several authors (e.g. [3, 4, 12]) which
showed that new operators have similar approximation properties to Gn (see [2, 5,
8–10, 14]).

The approximation of functions by gamma type operators

Ln.f Ix/D
.2nC3/ŠxnC3

nŠ.nC2/Š

Z 1
0

tn

.xC t /2nC4
f .t/dt; x 2 RC

in polynomial weighted spaces Cp were studied by Karsli [6]. The space Cp, p 2
N0 WDN[f0g, is associated with the weight function

w0.x/D 1 and wp.x/D
1

1Cxp
; p 2N;
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and consists of all real-valued functions f for which f wp is uniformly continuous
and bounded on R0 D Œ0;1/. The norm on Cp is defined by

jjf jjp D sup
x2R0

wp.x/jf .x/j: (1.1)

Moreover, if f is right-side continuous at x D 0, we define Ln.f I0/D f .0/, n 2N.
We shall use the modulus of continuity of f 2 Cp,

!p.f;ı/D sup
h2Œ0;ı�

jj�hf jjp; ı � 0;

and the modulus of smoothness of f 2 Cp,

!2p.f;ı/D sup
h2Œ0;ı�

jj�2hf jjp; ı � 0;

where

�hf .x/D f .xCh/�f .x/; �2hf .x/D f .xC2h/�2f .xCh/Cf .x/

for x;h 2 R0:
In [6], it was showed that Ln defines a positive linear operator Cp ! Cp. For

f 2 Cp, p 2N0 and x 2 .0;1/, it was proved that

wp.x/ jLn.f Ix/�f .x/j �Mp!
2
p

�
f;

x
p
nC2

�
C!p

�
f;

x

nC2

�
; (1.2)

where Mp is a positive constant.
From (1.2) we conclude that if f 2 Cp, p 2N0, then

kLn.f I �/�f kp DO
�
n�1=2

�
:

Thus the question arises, whether the rate of approximation given in the paper [6]
cannot be improved. In connection with this question we propose a new family of
linear operators. The method was inspired by Kirov [7].

Let Dp, p 2N, be the set of all real-valued continuous functions f on RC, such
that

wp.x/x
kf .k/.x/; wp�k.x/f

.k/.x/; k D 0;1;2; : : : ;p

are continuous and bounded on RC, and f .p/ is uniformly continuous on RC. The
norm on Dp is given by (1.1).

We introduce the following class of operators in Dp, p 2N.

Definition 1. Fix p 2N. For functions f 2Dp we define the operators

An.f IpIx/D

Z 1
0

.2nC3/ŠxnC3tn

nŠ.nC2/Š.xC t /2nC4

pX
jD0

f .j /.t/.x� t /j

j Š
dt; (1.3)

x 2 RC, n 2N.
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Throughout this paper we shall denote byM˛;ˇ positive constants depending only
on indicated parameters ˛;ˇ, and point out that they are not the same at each occur-
rence.

2. AUXILIARY RESULTS

In this section we give some preliminary results which will be used in the rest part
of this paper.

In the sequel the following functions will be meaningful:

em.t/D t
m; �x;m.t/D .t �x/

m; m 2N0; x; t 2 R0:

Using the definition (1.3) and the equality�
xn
�.k/
D

nŠ

.n�k/Š
xn�k;

we can prove the following lemma.

Lemma 1. Fix p 2N0. Then we have

An.e0IpIx/D 1; (2.1)

An.emIpIx/D em.x/ for p �m:

In [4] the author obtained the following result.

Lemma 2 ([4]). For any m 2N0, m� nC2, we have

Ln.emIx/D
.nCm/Š.nC2�m/Š

nŠ.nC2/Š
xm (2.2)

and there exists a positive constant Mm, m 2N0, such that

Ln
�
�x;mIx

�
�Mm

xm

nŒ.mC1/=2�
; (2.3)

where Œa� denotes the integral part of a.

Lemma 3. Fix p 2N0. Then there exists a positive constant Mp such that

Ln �1=wpIx�

p �Mp; n 2N: (2.4)

Proof. For p D 0 the inequality (2.4) is obvious.
Let p 2N. Using (2.2) we obtain

!p.x/jLn.1=!pIx/j D
1

1Cxp
C

1

1Cxp
�
.nCp/Š.nC2�p/Š

nŠ.nC2/Š
xp �Mp;

which gives the assertion. �

Similarly we can prove
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Lemma 4. Fix p 2N0. Then there exists a positive constant Mp such that

sup
x2RC

wp.x/x
kLn

�
1=wp�kIx

�
�Mp; n 2N; k D 0;1;2; : : : ;p: (2.5)

Next we shall prove the following result.

Lemma 5. Fix p 2N. Then there exists a positive constant Mf;p such that

kAn.f IpI �/kp �Mf;p (2.6)

for all f 2Dp and n 2N.
Formulas (1.3) and (2.6) show that An.f Ip/ is well-defined on the space Dp,

p 2N.

Proof. Let f 2Dp, p 2N. From this, using the elementary inequality

.aCb/k � 2k�1.akCbk/; a;b � 0; k 2N0;

we obtain

jx� t jk
ˇ̌̌
f .k/.t/

ˇ̌̌
� 2k�1

ˇ̌̌
f .k/.t/

ˇ̌̌ �
xkC tk

�
�Mf;p;k

 
1

wp.t/
C

xk

wp�k.t/

!
;

x; t 2 RC, k D 0;1;2; : : : ;p. By linearity of An we have

wp.x/jAn.f IpIx/j

�Mf;pwp.x/

Z 1
0

.2nC3/ŠxnC3tn

nŠ.nC2/Š.xC t /2nC4

8<: 1

wp.t/
C

pX
jD0

xj

wp�j .t/

9=;dt
DMf;pwp.x/

8<:Ln �1=wpIx�C
pX
jD0

xjLn
�
1=wp�j Ix

�9=; :
Thus, using (2.4) and (2.5) we conclude that

wp.x/jAn.f IpIx/j �Mf;p;

which gives the result. �

3. MAIN RESULTS

In this section we give theorems on the degree of approximation of the function
f 2Dp, p 2N, by the operators An.f Ip/.

Theorem 1. Fix p 2N0. Then there exists a positive constant Mp such that, for
every f 2D2pC1, we have

kAn.f I2pC1I �/�f k2pC1 �
Mp

npC
1
2

kf .2pC1/k0; n 2N:
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Proof. Let f 2D2pC1, p 2N0. This implies that f .2pC1/ 2 C0.
Observe that we can write

f .x/D

2pC1X
jD0

f .j /.t/.x� t /j

j Š

C
.x� t /2pC1

.2p/Š

Z 1

0

.1� s/2p
n
f .2pC1/ .tC s.x� t //�f .2pC1/.t/

o
ds:

Using (2.1) and (1.3), we obtain

w2pC1.x/jAn.f I2pC1Ix/�f .x/j

� w2pC1.x/

Z 1
0

.2nC3/ŠxnC3tn

nŠ.nC2/Š.xC t /2nC4

ˇ̌̌̌
ˇ̌2pC1X
jD0

f .j /.t/.x� t /j

j Š
�f .x/

ˇ̌̌̌
ˇ̌dt

� w2pC1.x/

Z 1
0

.2nC3/ŠxnC3tn

nŠ.nC2/Š.xC t /2nC4
�
jx� t j2pC1

.2p/Š

�

Z 1

0

.1� s/2p
nˇ̌̌
f .2pC1/ .tC s.x� t //

ˇ̌̌
C

ˇ̌̌
f .2pC1/.t/

ˇ̌̌o
ds dt:

By our assumption we have

w2pC1.x/jAn.f I2pC1Ix/�f .x/j

�Mpw2pC1.x/kf
.2pC1/

k0

Z 1
0

.2nC3/ŠxnC3tn

nŠ.nC2/Š.xC t /2nC4
�
jx� t j2pC1

.2pC1/Š
dt

�Mpw2pC1.x/kf
.2pC1/

k0Ln
�
j�x;2pC1jIx

�
: (3.1)

Moreover, by the Cauchy-Schwarz inequality and using (2.3), we get

w2pC1.x/Ln
�
j�x;2pC1jIx

�
� w2pC1.x/

�
Ln
�
�x;4pC2Ix

��1=2
�

�
Mp

x4pC2

.1Cx2pC1/2
�

1

nŒ.4pC3/=2�

�1=2
�

Mp

npC
1
2

: (3.2)

Combining (3.2) with (3.1) we immediately conclude

kAn.f I2pC1I �/�f k2pC1 �
Mp

npC
1
2

kf .2pC1/k0

for n 2N and p 2N0. The theorem is proved. �
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Theorem 2. Fix p 2N0. Then there exists a positive constant Mp such that, for
every f 2D2pC2, we have

kAn.f I2pC2I �/�f k2pC2 �
Mp

npC1
kf .2pC2/k0; n 2N:

Proof. Let f 2D2pC2, p 2N0. Then f .2pC2/ 2 C0. Similarly as in the proof of
Theorem 1, we can write

w2pC2.x/jAn.f I2pC2Ix/�f .x/j

� w2pC2.x/

Z 1
0

.2nC3/ŠxnC3tn

nŠ.nC2/Š.xC t /2nC4
�
.x� t /2pC2

.2pC1/Š

�

Z 1

0

.1� s/2pC1
nˇ̌̌
f .2pC2/ .tC s.x� t //

ˇ̌̌
C

ˇ̌̌
f .2pC2/.t/

ˇ̌̌o
ds dt:

From this, by our assumption and using (2.3), we obtain

w2pC2.x/jAn.f I2pC2Ix/�f .x/j

�Mpw2pC2.x/kf
.2pC2/

k0

Z 1
0

.2nC3/ŠxnC3tn

nŠ.nC2/Š.xC t /2nC4
.x� t /2pC2dt

DMpw2pC2.x/kf
.2pC2/

k0Ln
�
�x;2pC2Ix

�
�Mpkf

.2pC2/
k0

x2pC2

1Cx2pC2
�

1

nŒ.2pC3/=2�
�

Mp

npC1
kf .2pC2/k0

for x 2 RC, n 2N and p 2N0. This completes the proof of Theorem 2. �

Corollary 1. For every fixed f 2Dp, p 2N we have

kAn.f IpI �/�f kp DO
�
n�p=2

�
:

Remark 1. Corollary 1 shows that the operators An, n 2N, give a better order of
approximation of functions f 2Dp, p 2N, than Ln.
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