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Abstract. Let R be a commutative ring with identity and M be a unitary R-module. In this
paper, we obtain a scheme (X (M), Ox;(pr)) over the primary-like spectrum X (M) of M and
prove that (X (M), © x(pr)) is a Noetherian scheme when R is a Noetherian ring.
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1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and all modules
are unital. For a submodule N of an R-module M, (N : M) denotes the ideal
{r € R|rM C N} and the annihilator of M, denoted by Ann(M), is the ideal
(0: M). An R-module M is called faithful if Ann(M) = (0). A submodule P
of an R-module M is said to be p-prime if P £ M and for p = (P : M), whenever
rm e P (wherer € Randm € M) thenm € P orr € p [7,11]. The collection of all
prime submodules of M is denoted by Spec(M). If N is a submodule of M, then
the radical of N, denoted by rad V, is the intersection of all prime submodules of M
containing N, unless no such primes exist, in which case rad N = M [&].

A submodule Q of M is said to be primary-like if Q # M and whenever rm € Q
(where r € R and m € M) implies r € (Q : M) or m € rad O [4]. An R-module
M is said to be primeful or y¥-module if either M = (0) or M # (0) and the map
Y :Spec(M) — Spec(R/Ann(M)), defined by ¢ (P) = (P : M)/Ann(M) is sur-
jective [10]. If M/ N is a ¥-module over R, then /(N : M) = (rad N : M) [10, Pro-
position 5.3]. It is easily seen that, if Q is a primary-like submodule of M such
that M/Q is a Y-module over R, then (Q : M) is a primary ideal of R and so
p = /(0 :M)is aprime ideal of R [4, Lemma 2.1], and in this case Q is called
a p-primary-like submodule of M. The primary-like spectrum of M denoted by
X (M) is defined to be the set of all primary-like submodules Q of M, where M/Q
is a Y-module.

An R-module M is said to be a ¢-module if either M = (0) or M # (0) and the
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map ¢ : X(M) — Spec(R/Ann(M)) defined by ¢(Q) = /(Q : M)/Ann(M) is
surjective. If M is a ¢-module and p is a prime ideal of R containing Ann (M), then
there exists Q € X (M) such that ¥ (S,(Q + pM)) = ¢(Q) = p/Ann(M), where
Sp(Q+pM)={meM|cme Q-+ pM for some ¢ € R\ p} is the saturation of
0 + pM in M with respect to p. Thus every ¢-module is a {¥-module; but the
following example shows that the converse is not true.

Example 1 (cf. [10, Example 1]). Let §2 be the set of all prime integers, M =
[lee plz and M’ = P,cp pLZ’ where p runs through £2. Hence M is a faithful
Y-module over Z and Spec(M) = {M’' = Sp(0)} U{pM : p € 2}. Now if ¢ is
surjective, then there exists N € X (M) such that p(N) = /(N : M) = 0. It follows
that (N : M) = 0. Since M/N is a ¥-module, we have N C ﬂpe[) pM = 0. But
0 is not prime and so is not primary-like because rad0 = 0. Hence N ¢ X (M), a
contradiction. Thus M is not a ¢p-module.

The Zariski topology on the spectrum of prime ideals of a commutative ring is one
of the main tools in algebraic geometry. Recall that the spectrum Spec(R) of a ring
R consists of all prime ideals of R and is non-empty. For each ideal I of R, we set
V(I) (or VR(I)) ={p e Spec(R) | p 2 I}). Then the sets V(I), where [ is an ideal
of R, satisfy the axioms for the closed sets of a topology on Spec(R), called the
Zariski topology (for example see [3]). It is well-known that for any ring R, there is a
sheaf of rings on Spec(R), called the structure sheaf, denoted by O gpec(r), defined
as follows: for each prime ideal p of R, let R, be the localization of R at p. For an
open set U C Spec(R) with respect to the Zariski topology, we define O gpec(r)(U)
to be the set of functions r : U — ]_[peU Rp, such thatr(p) € Ry, foreach p € U, and
such that r is a quotient of elements of R locally: to be precise, we require that for
each p € U, there is a neighborhood V' of p, contained in U, and there are elements
a,s € R, such that for each p’ € V, s ¢ p"and r(p’) = § in Ry (see for example [5],
for definition and basic properties of the sheaf O g,ec(r))-

In the literature, there are many different generalizations of the Zariski topology
for modules over commutative rings. For example, Lu has introduced a Zariski topo-
logy on Spec (M) whose closed sets are V(N) = {P € Spec(M) | (N : M) C (P :
M)} for any submodule N of M [9]. This topological space has been investigated
from several point of views (see for example [1,2,6, 12]).

As a new generalization of the Zariski topology, the Zariski topology 7 on X (M)
is a topology in which closed sets are of the form v(N) ={Q e X(M) | /(N : M) C
v (Q : M)} (Lemma 1). There are various generalizations of sheaves from rings to
modules in which the sheaf on Spec(M) is the set of all functions r : Spec(M) —
]_[peU M,, with the property similar to that for Spec(R) (some of these types of
sheaves have been given and studied in [6, 12]). In parallel, we introduce a sheaf
(DX(M) over X(M)

We show that the set B = {X, : r € R}, where X, = X(M)—v(rM) is a basis
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for the Zariski topology over X (M) (Lemma 5). In particular, if M is a ¢-module,
then the elements X, of B are quasi-compact (Corollary 3). This basis is used to
show that O x(ar)(Xs) = Ry for each s € R, where M is a faithful ¢-module and
R = {;in :a € R,n € N} (Theorem 4). Finally we show that if M is a ¢-module over
a Noetherian ring R and X (M) is a To-space, then (X (M), O x(ar)) is a Noetherian
scheme (Theorem 5).

2. THE ZARISKI TOPOLOGY ON X (M)

We begin with a lemma to see that the sets v(N) ={Q € X(M) | /(N : M) C
Vv (Q : M)} satisfy the axioms of closed sets for a topology.

Lemma 1. Let M be an R-module. Then
M v(O0)=XM)andv(M) = @.
2) ,ﬁIV(Ni) =v()_(N;: M)M), for each family {N; | i € I} of submodules
L€ iel
of M.
3) v(N)Uv(N') =v(N NN'), for each pair N, N’ of submodules of M.

Proof. (1) and (3) are trivial.

(2) Since M/ Q is ay-module, (rad Q : M) = /(Q : M) [10, Proposition 5.3]. Also
it is easily verified that ((rad Q : M)M : M) = (rad Q : M)). Using these facts we
have the following implications.

Qe Nv(N)=V(Q:M)2) (Ni: M)

iel
= V(Q:M)M 2 (D (Ni: M)M
iel
= (V(Q: M)M : M) 2 (O _(Ni : M)M : M)
iel
= ((rad Q : M)M : M) 2 (D _(Ni : M)M : M)
iel
= (rad Q : M) 2 (O _(Ni : M))M : M)
iel
SNHOE \/((Z(N,- MM : M)
iel

= 0 € v(Q_(Ni : M)M).

iel
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For the reverse inclusion we have
Q ev(d_(Ni : M)M) = /(Q: M) 2 (Q_(N;i : M)M : M)
iel iel
=V Q:M)D({(N; MM : M) Viel
=V Q:M)D(N; :M) Viel
= V(Q:M)2V/(N;i: M) Yiel
=0 EiQIv(Ni)

0

We will use R and X R to represent R/Ann(M) and Spec(R/Ann(M)) respect-
ively.

Proposition 1. Let M be an R-module. Then qﬁ_l(Vi(T)) =v(IM), for every
ideal I € V(Ann(M)). Therefore the map ¢ is continuous with respect to the Zariski
topology on X (M).

Proof. Suppose O € ¢~ L(VR(T)). Then ¢(Q) € VR(T) and so /(Q: M) D 1.
Hence \/(Q : M) 2 \/(IM : M). Thus Q € v(I M). The argument is reversible and
SO ¢ is continuous. O

Theorem 1. Let M be a ¢p-module over a ring R. Then ¢(v(N)) = Vi((N ' M))
and $(X(M)—v(N)) = XR—VR((N : M)) for every submodule N of M, i.e., ¢

is both closed and open.
Proof. As we have seen in Proposition 1, ¢! (Vﬁ(T)) = v(I M), for every ideal
I € V(Ann(M)). Hence for every submodule N of M, ¢_1(VR7((N M) =
V((N : M)M) =v(N). So p(v(N)) = po¢ L (VR(N : M))) = V(N : M)) as
¢ is surjective. Thus
$(X(M)—v(N)) = p(¢~ (X B) ¢~ (VR(N - M) = XX —VR(N M)
O

Corollary 1. Let M be an R-module. Then ¢ is a bijection if and only if ¢ is a
homeomorphism.

Proposition 2. Let M be an R-module and Q, Q' € X (M). Then the following
statements are equivalent.

(D) Ifv(Q) =v(Q'), then Q = Q';

(2) Foreach p € Spec(R), the set {Q € X(M) :/(Q : M) = p}isempty ora
singleton set;

3) ¢ is injective.
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Proof. (1) = (2) Let Q, Q' € X(M) and /(Q : M) = \/(Q’: M) = p. Then
v(Q) =v(Q’). Thus Q = Q" by ().
(2) = (3) Suppose Q, Q' € X (M) and ¢(Q) = ¢(Q’). Hence /(Q: M) =
V(Q': M) = p. Thus Q = Q' by (2).
(3) = (1) is clear. d
Let ¥ be a subset of X (M) for a module M. We will denote the closure of ¥ in
X(M)by Y.

Proposition 3. Let M be an R-module and let Y = {01, Q2, ..., On} be a finite
subset of X (M). Then ¥ = v(Q1)U...Uv(Qy).

Proof. Clearly, ¥ Cv(Q1)U...Uv(Qy). Assume that ¥ is any closed subset
of X(M) such that ¥ C ¥. Hence ¥ = v(NN) for the submodule N of M. Let
0 ev(Q1)U...Uv(Qy). Then there exists i (1 <i <n) such that Q € v(Q;) and
s0 /(0; - M) < (Q: M). Since 0; € 7, /(N : M) € (0 : M) S (0 : M)
and hence Q € ¥. Hence v(Q1)U...Uv(Q,) C F. Thus Y = v(Q1)U...Uv(Qp).

O

The above proposition immediately yields that the following result.

Corollary 2. Let M be an R-module. Then

() 0= v(Q) for every Q € X(M).
(2) Q' € Q ifand only if (Q": M) 2 /(O : M) if and only if v(Q") S v(Q).

Proof. By Proposition 3 is clear. O

A topological space X is a Tp-space if and only if for any two distinct points in X
there exists an open subset of X which contains one of the points but not the other.
We know that, for any ring R, Spec(R) is always a Ty-space for the usual Zariski to-
pology. In [9, P. 429], it has been shown that if M is a vector space, then (Spec(M),)
is not a Tp-space. This example can be used again to show that (X (M), T) is not
also a Typ-space. In fact v(N) = X (M) for every proper vector subspace N of M so
that the Zariski topology on X (M) is the trivial topology even when | X (M )| > 1.

Theorem 2. Let M be an R-module. Then X, (M) is a Ty-space if and only if one
of the statements (1) — (3) in Proposition 2 holds.

Proof. First suppose X (M) is a To-space. We prove the item(1) of proposition 2.
For this assume v(Q) = v(Q’) and Q # Q’. Since X (M) is a Tp-space, Q # O’
Thus by Corollary 2 we have v(Q) # v(Q’), a contradiction. Conversely, suppose
that Q # Q' € X(M) and v(Q) # v(Q’). Therefore by Corollary 2, O # Q’. Thus
X (M) is a Tp-space. O

Foreachr € R, we set X = X(M)—v(rM) and Dy = XR_ V(R7). 1t is easily
seen that Xo, = &, X1, = X(M).
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Lemma 2. Let M be an R-module. Then ¢(X,) C Dy, the equality holds if M is
a ¢-module.

Proof. By Proposition 1, ¢~1(Dy) = ¢~ (XR = V(RF)) = X(M) —v(rM) =
Xr. The equality follows form Theorem 1. 0

Lemma 3. Let r,s € R. Then the following hold.
1) Xps = Xr N Xs.
(2) Xyn = Xy foralln € N.
(3) Ifr is nilpotent, then X, = Q.

Proof. (1) By Proposition 1, X5 = ¢! (Dy5). Hence X,s = ¢~ 1 (D7) N~ (D5)
= X, N Xs.
(2) follows from (1).
(3) Since r is nilpotent, 7" = 0 for some n € N. Hence by (2), X = Xpn = Xo =
@. O

Lemma 4. Let r,s € R and M be a faithful ¢-module over R. If Xs C X, then
s € v/ Rr.

Proof. Suppose Xs C X. Hence ¢ (Xs) € ¢ (X,). Since M is a ¢p-module, Dy C
D+ by Lemma 2. Now since M is faithful, Dy € D,. Thus we have s € / Rr. ]

Lemma 5. Let M be an R-module. Then the set 8 = {X, : r € R} forms a basis
for the Zariski topology on X (M).

Proof. If X(M) = @, then B = @ and the proposition is trivially true. Hence
we assume that X (M) # @ and let U be any open set in X (M). Hence U =
X(M)—v(IM) for some ideal I of R. Note that v(IM) = V(Za,-elaiM) =
v(Q_g,er@M : M)M) = Ng;erv(aiM). Hence U = X (M) —Ngerv(aiM) =
Ug, e Xg; . This proves that 8 is a basis for the Zariski topology on X (M). O

Theorem 3. Let M be a ¢-module over a ring R. Then Xr and Xp, N...N Xy,
are quasi-compact subsets of X (M).

Proof. For any open covering of X, there is a family {r) € R: A € A} of elements
of R such that X, € Upep X, by Lemma 5. Dy = ¢(X;) € Ujeyg @(Xr,) =
Ujea D7, by Proposition 2. It follows that there exists a finite subset A" of A
such that Dy C Uy e 4 D7, as Dy is quasi-compact, whence by Proposition 2, X, =
¢~ 1 (D7) € Upea Xy, . Thus X, is quasi-compact. For the other part, it suffices to
show that the intersection X, N X, is a quasi-compact set. Let £2 be any open cov-
ering of X, N X;,. Then £2 also covers each X, (i = 1,2) which is quasi-compact.
Hence each X, has a finite subcover and so X, N X, has a finite subcover. O

Corollary 3. Let M be a ¢p-module over a ring R. Then X (M) is quasi-compact
and has a basis of quasi-compact open subsets.
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3. SHEAF, LOCALLY RINGED SPACE AND SCHEME

Let M be an R-module. For every open subset U of X' (M) we define © x(pr)(U)

to be a subring of [[{R, | p = /(Q : M), Q € U}, the ring of functions r : U —
[KRy | p = V/(Q:M),0Q € U}, where r(Q) € Ry, for each Q0 € U and p =
v/ (O : M) such that for each Q € U, there is a neighborhood V of Q , contained in U
, and elements s,¢ € R, such that foreach Q" € V,t ¢ p’' = \/(Q' : M), and r(Q’) =
£in Ry Itis easy to check that © x;(ar)(U) is a commutative ring with identity. Fur-
thermore, for open sets V € U we define o, v : Oxar)(U) — Ox(ar)(V) given
by {rp}oeu — {rl/),}Q/ev, where p = /(Q : M) and p' = \/(Q': M). It is easy to
check that © x(pr) is a sheaf of rings.
For any sheaf O on a topological space X and for any x € X, the stalk of O at x,
denoted by Oy, is O, = {m | there exists a neighborhood U of x and r € Ox(U)
such that m is the germ of r at the point x}. We say that m is the germ of r at the point
x if there exists a neighborhood V containing x such that ¥V C U and dq v (r) = m.
Two such pairs < U,r > and < V,s > define the same element for m of O if and
only if there is an open neighborhood W of x with W € UN YV such that x €¢ W
rlw = slw.

Lemma 6. Let M be an R-module. Then for each Q € X(M), the stalk O¢ of
the sheaf © x(pr) is isomorphic to Ry, where p = /(Q : M).

Proof. Assume Q € X(M) and m € Og. Therefore there exists a neighborhood
U of Q and r € Ox(pr)(U) such that m is the germ of r at the point Q. For p =
V(O : M) we define u: ©Og — R, given by m +— r(Q). It is easy to check that
W is a well-defined homomorphism. Suppose V is another neighborhood of Q and
s € Ox(pm) (V) such that m is the germ of s at the point Q. Hence there is an open
neighborhood W of Q with W C U NV such that |y = s|w. Since Q € W, then
r(Q) =s(Q). The map u is surjective, because any element of R, can be represented
as a quotient £ with a € R and s € R\ p. Now we define r(Q’) = £ in Ry, where
p = (Q': M) forall Q' € X5 . Then r € O(Xy). If m is the equivalent class of
r in O, then w(m) = $. To show that j is injective, let U be a neighborhood of
Q, and let r,r" € Ox(ar)(U) be elements having the same value r(Q) = r'(Q) at
Q. By the definition of our sheaf, we may assume that r = € and r’ = ‘S’—,/, where

a,a’ € Rands,s" € R\ p. Since § and ?—,/ have the same image in Ry, it follows from
the definition of localization that there is an s” € R\ p such that s”(s’a —sa’) = 0 in
R. Therefore £ = ‘s’—// in every local ring R, such that s,s’,s” € R\ p’. But the set of
such Q’, where p’ = /(Q’ : M) is the open set Xz N Xy N Xy, which contains Q.
Hence r = r’ in a whole neighborhood of Q, so they have the same stalk at Q. [

A locally ringed space (X, Ox) is a pair consisting of a topological space X and a
sheaf of rings Ox all of whose stalks are local rings.
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Corollary 4. Let M be an R-module. Then (X.(M),Ox ) is a locally ringed
space.

Proof. Use Lemma 6. O

Let (X, Ox) be a locally ringed space. The stalk Ox . of X at x is said to be the
local ring of X at x. A morphism of ringed spaces (£, f#) : (X,0x) — (Y,Oy) is
given by a continuous map f : X — Y and an f-map of sheaves of rings f #. 0y —
Ox. You can think of f# as a map Oy — fxOx, where f,Ox is a sheaf over X
defined by fxOx (V) = Ox(f~1(V)) for any open subset V C Y. Moreover the
restriction map on an inclusion of open sets of Y is defined naturally. A morphism of

locally ringed spaces (f, /%) : (X, Ox) — (Y, Oy) is a morphism of ringed spaces
such that for all x € X the induced ring map Oy, r(x) — Oxx is a local ring map.

Proposition 4. Let M and M’ be R-modules and & : M — M’ be an isomorph-
ism of modules. Then m induces a morphism of locally ringed spaces (f, f ﬁ) :

(X (M"), Ox(arry) = (X (M), Ox(ar))-

Proof. We define f(Q’) = n~1(Q’) For any Q' € X(M’). It is easily seen that
f is well-defined. In the following it is shown that £ ~1(v(N)) = v((N : M)M’) for
any closed set v(N) of X(M) and so f is continuous.

Q' e [T V(N) & f(Q") ev(N)
& V(f(Q):M)2 V(N : M)
& V(@) : M) 2 V(N :M)M : M)

& \/(m QN M) 2 V(N : M)M : M)
& (rad(x~ Q") : M)M D (N : M)M
& 7 Y radQ") > (N : M)M

& radQ' D (N :M)M’

& Q' ev((N:M)M).

Assume U is an open subset of X (M) and r € Ox(pr)(U). Let Q € £7HW).
Then f(Q) = 7~ 1(Q) € U. Assume that ‘W is an open neighborhood of 7~ (Q)
with W € U and a,s € R such that for each Q' e W ,s ¢ p' = \/(Q': M) and
r(Q)=%in Ry. Since 771 (Q) € W, then Q € f~1(W). Since f is continuous,
f~1('W) is an open subset of X (M’). We show that for each Q" € f~1(W) we
have s ¢ /(Q” : M’). Suppose, on the contrary, s € /(Q” : M’) for some Q" €
F7HW). Son~1(Q") = f(Q") € W. Since 7 is an epimorphism, /(0" : M') =

(m~1(Q"): M). Hence s € 1/(r~1(Q") : M), a contradiction. Therefore, we can
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define fﬁ(‘ll) :Oxon) (W) — (Dx(M/)(f_l(‘U) given by ff‘(‘l,()(r) =ro f. Sup-
pose VC U and Q € f~1(V). According to the commutativity of the following
diagram:

Py = L1

|

1)

i

b= i

U

We have ("o f)|r-1(v)(Q) = 1’|y o f(Q). Now, we show that the following dia-
gram commutes.

R A (70 . -
Oxan ) Oxar (FHU))
UtV JU} L) f=1 (V)
¥
Ox(a)(V) ——— Oxun (f~HV)
FHY)

Suppose that 7" € O x(pr)(U). For each Q € U, we have

Py por 0y S FDENQ) = 0y 13y (70 Q) =
("o Nlp=1m(Q) =r'lv o f(Q) = puw(r) o f(Q) = fH(V)puw (r')(Q).

It follows that f# : Ox ) — f+Ox(m) is a morphism of sheaves. By Lemma 6,
the map fg : Oxm), r(0) = Ox(m),0 on stalks is clearly the map of local rings

R sroyan — R yoary- Thus the proof is completed. O

Proposition 5. Let g : R — R’ be a ring homomorphism, M’ be an R'-module
and M be a ¢p-module over R such that X;(M) is a Ty-space and Anng(M) C
Anng(M'). Then g induces a morphism of locally ringed spaces

(f (X (M), Oxpary) = (X (M), Oxc(ar))-

Proof. Since Anng(M) C Anng(M’), theng : R — R’ is induced by g. It is well
known % : Spec(R') — Spec(R) given by p +— g~ '(p) and h : XR _ xR given
by 7 — g () are continuous maps. Also by Proposition 1, ¢as : X (M) - X R
is a continuous map and by Corollary 1 and Theorem 2, ¢ps : X(M) — X R is a

homeomorphism. Therefore the map f : X(M') — X (M) given by Q + ¢, oho
¢ (Q) is continuous. For each Q € X (M), we get a local homomorphism
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. /
8 St R/ @mmy = R oy

given by L - ::8 This map is well-defined, because if s ¢ h(\/(Q :r' M')) =

g Y(V(Q :gr M), then g(s) ¢ /(O :rr M’). Let U € X (M) be an open sub-
set and r € O (pr)(U). Suppose Q € f£~H(U). Then f(Q) € U and there ex-
ists a neighborhood W of f(Q) with W C U and elements a,s € R such that for

each Q' € W, we have s ¢ \/(Q’:r M) and r(Q') = § € R sgrzary- Hence
s ¢ +/(f(Q):r M). By definition of f, we have
f(Q) = (37 0hodp)(Q) = ($pf' o) (V(Q :r M"))

=y (& (V(Q :r M) =3 (g7 (V(Q i M")))

—K,

for some K € X(M). Now since M is a ¢-module, /(K :g M) = ¢pp(K) =

g1 (/(Q :r M")) and hence \/(f(Q) :r M) = /(K :g M) =g~ ({/(Q :r' M")).
Therefore s ¢ \/(f(Q) :r M) follows that g(s) ¢ \/(Q :g M’). Thus gW(%)

define a section on (DX(M/)(f_l ('W)). Since

1
By > Ry

F

R - = sl
g A/ Qg MT)) Qe M)

is a commutative diagram of natural maps, we define
SHU) : Oxany (W) = fxOxarry(U) = Oy (f ~H(W))

which is given by f#(U)(r)(Q) = gm(r(f(Q))) for each r € O (ar)(U)
and Q € f~1(U). Suppose V C U and Q € f~1(V). According to the following
commutative diagram

We have gm o rl'v o f(Q) = (gmo ro f)|f_1('V)(Q) COI’ISideI‘il’lg
the diagram
It is easy to check that

p}—l(u)’f—l(V)f#(u)(r)(Q) = p}_l(U),f_l(V)gWr Of(Q) =
@ foma” ° Ir—1on(Q) =8 jgamIve /(@)= SRV (rlv)(Q) =
SEV)puv(r)(Q).
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: !
P (7)) Moo
<
e i
i i x‘“*m,_‘x
f Ty o
i I -
i — ¥ — B
i —_— 'q\/lrQ'- Jz“”’]_
= T
9. /G O v of HV(Q;R“'W)
y fHU) o
Oxan ) Ox(ary (f7HU))
Py ’P} I(f-a‘].f I[v}
Oxn (V) ———— Oxn (f7HV)

Ff)

Thus the diagram is commutative and it follows that f#: O xm) = J«Oxmry is
a morphism of sheaves. By Lemma 6, the map fg :Ox ), 7(0) ~ Oxm),0 on

stalks is clearly R - ~ — R’ . Thus the proof is completed. ]
AN D)) 0 p p
. R/

Theorem 4. Let s € R and M be a faithful ¢-module over a ring R. Then
Oxam)(Xs) = Ry.
Proof. Suppose i : Ry — Ox(ar)(Xs) givenby 5+ (r: O+ 5 € R o))

Indeed u sends that 7 to the section r € © x(ar)(Xs5) which assigns to each Q the

image of {7 € R jgupy- 1t is clear that u(57) is unique, since the range of r is .
Therefore to show that u is well-defined, it suffices to verify that s ¢ \/(Q : M).
Since Q € X5 = X(M)—v(sM), we have /(sM : M) Z \/(Q : M). Now if s €
V(O : M) (or equivalently s € 1/(Q : M)), we have
re(sM:M)=r"M CsM C /(Q:M)M forsomen >0
=>r"e(V(Q MM :M)=((rad(Q): M)M : M)
=r"e@ad(Q): M) =/ (Q: M)
=re(Q: M)
which gives the contradiction \/ (sM:M) C \/ (Q : M). Moreover i is a homo-
morphism, since O x(ar)(Xs) is a ring with the operations (r; +72)(Q) = r1(Q) +

r2(Q) and (r112)(Q) = r1(Q)r2(Q). Now we are going to show that u is inject-
ive. Let u(37) = M(%), then for every Q € X, 7 and % have the same image in
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Ry, where p = \/(Q : M). Thus there exists r € R\ p such that z(s"a —s"a’) = 0.
Let I = Ann(s™a —s"a’). Thent €[ and ¢t ¢ p, so I £ p. This happens for

any Q € X5. Hence we conclude that V(/)N{,/(Q: M) | Q € X5} = @ and so
V(Q:M)| Qe Xys} S Spec(R)—V(I). Since M is a ¢-module, by Lemma 2

we have
Dy ={y(Q:M)| Q€ Xs} < D).

Therefore s € /1 and so s* € I for some positive integer /. Now we have st(s™a —

"a") = 0 which shows that & = ;’—,,; in R,. Thus w is injective. Now we show that
surjective. Assume r € O x(pr)(Xy). Then we can cover X; with open subset V;, on
which s is represented by Z—f ,with b; ¢ /(Q : M) forall Q € V; andso V; C Xp,.
By Lemma 5, the open sets of the form X form a basis for the Zariski topology. So,
we may assume that V; = X, for some k; € R. Since Xy, € Xp,, by Lemma 4,

ki € </Rb;. Thus k?* € Rb; for some n € N. So k?* = cb; and ”l =Ti=c‘f1’ We

see that r is represented by h_i’ (aj = ca;,h; = k?') on X, and (since Xy, = xk,'?)
the X, cover Xs. The open cover Xy = UXp, has a finite subcover by Theorem
3. Assume X5 C Xp, U---UXy,. For1 <i,j <n, Z—’ and ’ both represent r
on Xp, N Xp, . By Lemma 3 Xp, N X, = Xp,p, and by 1nJect1V1ty of u, we get

4

Z, = Z in Ry, p,; . Hence for some n;;, we have (h;h;)" (h;a; —h,-a].) =0. Let
m= max{n,j |1 <i,j <n}. Then
W (hia}) =R (hjal) = 0.

hm+1

By replacing each h; by and a} by h;a}, we still see that r is represented on

Xh by , and furthermore, we have h;a; = h; a for all i, j. Since Xy € Xp, U
‘U th, by Lemma 2 we have

= ¢(Xs) CUT_ ¢ (Xp,) =U7_| Dp,.

Hence there are ¢q,++- ¢, € R and n’ € N, such that s = Yoicihi.Leta=)",ca;
Then for each j we have

L — cal . — hea! — o N
hja—ziclaih]—Zic,h,aj—ajs

It follows that S"T = h—’ on Xy, So u(ﬁ) = r everywhere, which shows that u is
surjective. O

Corollary 5. Let M be a faithful ¢-module over a ring R. Then © x(pr)(X (M) =
R.

Proof. Use Theorem 4. ]
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An affine scheme is a locally ringed space isomorphic as a locally ringed space
to Spec(R) for some ring R. A scheme is a locally ringed space with the property
that every point has an open neighborhood which is an affine scheme. A scheme
is locally Noetherian if it can be covered by open affine subsets Spec(R;), where
each R; is a Noetherian ring. A scheme is Noetherian if it is locally Noetherian and
quasi-compact [5].

Theorem 5. Let M be a ¢-module over a ring R such that X (M) is a Ty-
space. Then (X(M),Ox(pm)) is a scheme. Moreover, if R is Noetherian, then
(X (M),Ox(nm)) is a Noetherian scheme.

Proof. Suppose r € R. Therefore by Proposition 1, ¢|x, is continuous. Also
by Theorem 2, ¢|x, is a bijection. Let ¥ be a closed subset of X,. Then ¥ =

X Nv(N) for some submodule N of M. Hence ¢p(F) = (X)) NV ({/(N : M)) is
a closed subset of ¢(X,). Thus ¢|x, is a homeomorphism. Assume that X (M) =
Uier Xr,;. Since ¢ is a bijection, then fori € I we have X, = ¢(X,,) ={/(Q : M) |
0 € Xy;} = Dy, = Spec(Ry;). Thus by Theorem 4, X, is an affine scheme. So
it implies that (X (M), O (ar)) is a scheme. For the last statement, since R is No-
etherian, so is R;; for each i € I . Hence (X (M), Ox(pr)) is a locally Noetherian
scheme. By Corollary 3, X (M) is quasi-compact. Thus (X (M), Ox(ar)) is a No-
etherian scheme. ]
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