On ideals with skew derivations of prime rings

Nadeem ur Rehman and Mohd Arif Raza
ON IDEALS WITH SKEW DERIVATIONS OF PRIME RINGS

NADEEM UR REHMAN AND MOHD ARIF RAZA

Received 24 April, 2014

Abstract. Let R be a prime ring and set $[x, y]_1 = [x, y] = xy - yx$ for all $x, y \in R$ and inductively $[x, y]_k = [x, y]_{k-1}$ for $k > 1$. We apply the theory of generalized polynomial identities with automorphism and skew derivations to obtain the following result: Let R be a prime ring and I a nonzero ideal of R. Suppose that (δ, φ) is a skew derivation of R such that $\delta([x, y]) = [x, y]_n$ for all $x, y \in I$, then R is commutative.

2010 Mathematics Subject Classification: 16N20; 16W25; 16N55; 16N60

Keywords: skew derivation, automorphism, generalized polynomial identity (GPI), prime ring, ideal

1. Introduction, Notation and Statements of the Results

Throughout this paper, unless specifically stated, R is always an associative prime ring with center $Z(R)$, Q its Martindale quotient ring. Note that Q is also prime and the center C of Q, which is called the extended centroid of R, is field (we refer the reader to [1] for the definitions and related properties of these objects). For any $x, y \in R$, the symbol $[x, y]$ stands for the commutator $xy - yx$. Recall that a ring R is called prime if for any $x, y \in R$, $xRy = \{0\}$ implies that either $x = 0$ or $y = 0$. An additive mapping $d : R \rightarrow R$ is called a derivation if $d(xy) = d(x)y + xd(y)$ holds for all $x, y \in R$. An additive mapping $F : R \rightarrow R$ is called a generalized derivation if there exists a derivation $d : R \rightarrow R$ such that $F(xy) = F(x)y + xd(y)$ holds for all $x, y \in R$, denoted by (F, d). Hence, the concept of generalized derivations covers both the concepts of a derivation and of a left multiplier.

Given any automorphism φ of R, an additive mapping $\delta : R \rightarrow R$ satisfying $\delta(xy) = \delta(x)y + \varphi(x)\delta(y)$ for all $x, y \in R$ is called a φ-derivation of R, or a skew derivation of R with respect to φ, denoted by (δ, φ). It is easy to see if $\varphi = 1_R$, the identity map of R, then a φ-derivation is merely an ordinary derivation. And if $\varphi \neq 1_R$, then $\varphi - 1_R$ is a skew derivation. Thus the concept of skew derivations can be regard as a generalization of both derivations and automorphism. When $\delta(x) = \varphi(x)b - bx$ for some $b \in Q$, then (δ, φ) is called an inner skew derivation, and otherwise it is outer. Any skew derivation (δ, φ) extends uniquely to a skew derivation of Q [12] via extensions of each map to Q. Thus we may assume that any skew derivation of
Let Q be a prime ring with an automorphism φ. Suppose that (δ, φ) is a Q-outer derivation of R. Then any generalized polynomial identity of R in the form $\phi(x_i, \delta(x_i)) = 0$ yields the generalized polynomial identity $\phi(x_i, y_i) = 0$ of R, where x_i, y_i are distinct indeterminates.

Fact 2 ([5, Theorem 1]). Let R be a prime ring with an automorphism φ. Suppose that (δ, φ) is a Q-outer derivation of R. Then any generalized polynomial identity of R in the form $\phi(x_i, \varphi(x_i)), \delta(x_i)) = 0$ yields the generalized polynomial identity $\phi(x_i, y_i, z_i) = 0$ of R, where x_i, y_i, z_i are distinct indeterminates.

Fact 3 ([14, Proposition]). Let R be a prime algebra over an infinite field k and let K be a field extension over k. Then R and $R \otimes_k K$ satisfy the same generalized polynomial identities with coefficients in R.

The next result is a slight generalization of [13, Lemma 2] and can be obtained directly by the proof of [13, Lemma 2] and Fact 3.

Fact 4. Let R be a non-commutative simple algebra, finite dimensional over its center Z. Then $R \subseteq M_n(F)$ with $n > 1$ for some field F and R and $M_n(F)$ satisfy the same generalized polynomial identities with coefficients in R.

In 1992, Daif and Bell [6, Theorem 3], showed that if in a semiprime ring R there exists a nonzero ideal I of R and a derivation d such that $d([x, y]) = [x, y]$ for all $x, y \in I$, then $I \subseteq Z(R)$. If R is a prime ring, this implies that R is commutative. Later in 2011, Huang [8, Theorem 2.1], prove that if R is a prime ring, I a nonzero ideal of R and d a derivation of R such that $d([x, y])^m = [x, y]^m$ for all $x, y \in I$, then R is commutative. At this point the natural question is what happens in case the derivation is replaced by a generalized derivation. In [16], Quadri et. al., generalize
Daif and Bell result for generalized derivation, they showed that if R is a prime ring, I a nonzero ideal of R and (F, d) a generalized derivation with $d \neq 0$ such that $F([x, y]) = [x, y]$ for all $x, y \in I$, then R is commutative. In 2013, Huang and Davvaz [9], generalized Quadri et. al., results, more precisely they proved that if R be a prime ring, m, n are fixed positive integers, and (F, d) a generalized derivation with $d \neq 0$ such that $(F([x, y]))^m = [x, y]^n$ for all $x, y \in R$, then R is commutative.

Here we will continue the study of analogue problems on ideals of a prime ring involving skew derivations. The goal of this paper is to extend Daif and Bell theorem [6], and Huang theorem [8], in a systematic way by using the theory of generalized polynomial identities with automorphisms and skew derivations as developed by Kharchenko [11], Chuang [3, 4] and recently by Chuang and Lee [5].

Explicitly we shall prove the following theorem.

Theorem 1. Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. Suppose that (δ, φ) is a skew derivation of R such that $\delta([x, y]) = [x, y]^n$ for all $x, y \in I$, then R is commutative.

When $\delta = \varphi - 1_R$, we obtain the following

Corollary 1. Let R be a prime ring, I a nonzero ideal of R, and n a fixed positive integer. If φ is a non-identity automorphism of R such that $\varphi([x, y]) = [x, y]^n$ for all $x, y \in I$, then R is commutative.

Let R be a unital ring. For a unit $u \in R$, the map $\varphi_u : x \to uxu^{-1}$ defines an automorphism of R. If d is a derivation of R, then it is easy to see that the map $ud : x \to ud(x)$ defines a φ_u-derivation of R. So we have

Corollary 2. Let R be a prime unital ring, u a unit in R, I a nonzero ideal of R, and n a fixed positive integer. Suppose that φ_u is a derivation of R such that $\varphi_u([x, y]) = [x, y]^n$ for all $x, y \in I$, then R is commutative.

2. **Main Result**

Now, we are in a position to prove the main result:

Theorem 2. Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer. Suppose that (δ, φ) is a skew derivation of R such that $\delta([x, y]) = [x, y]^n$ for all $x, y \in I$, then R is commutative.

Proof. If $\delta = 0$, then $[x, y]^n = 0$ for all $x, y \in I$, which can be rewritten as $[x, y]_n = 0 = [I_x(y), y]_{n-1}$ for all $x, y \in I$.

By Lanski [13, Theorem 1], either R is commutative or $I_x = 0$, i.e., $I \subseteq Z(R)$ in which case R is also commutative by Mayne [15, Lemma 3].

Now we assume that $\delta \neq 0$ and $\delta([x, y]) = [x, y]^n$ for all $x, y \in I$, which can be rewritten as

$$
(\delta(x)y + \varphi(x)\delta(y)) - (\delta(y)x + \varphi(y)\delta(x)) = [x, y]_n. \tag{2.1}
$$
In the light of Kharchenko’s theory [11], we split the proof into two cases:

Case 1. Let \(\delta \) is \(Q \)-outer, then \(I \) satisfies the polynomial identities

\[
(sy + \varphi(x)t) - (tx + \varphi(y)s) = [x, y]_n, \quad \text{for all} \ x, y, s, t \in I. \tag{2.2}
\]

Firstly, we assume that \(\varphi \) is not \(Q \)-inner, then for all \(x, y, s, t, u, v \in I \), we have

\[
(sy + ut) - (tx + vs) = [x, y]_n, \quad \text{for all} \ x, y, s, t, u, v \in I.
\]

In particular \(s = t = 0 \), then \(I \) satisfied the polynomial identity \([x, y]_n = 0 \), for all \(x, y \in I \), so by Lanski [13, Theorem 1], \(R \) is commutative.

Secondly, if \(\varphi \) is \(Q \)-inner, then there exist an invertible element \(T \in Q \), \(\varphi(x) = TxT^{-1} \) for all \(x \in R \). Thus from (2.2), we have

\[
(sy + TxT^{-1}t) - (tx + TyT^{-1}s) = [x, y]_n \quad \text{for all} \ x, y, s, t \in I.
\]

In particular \(s = t = 0 \), and using the same argument presented as above, \(R \) is commutative.

Case 2. Let \(\delta \) is \(Q \)-inner, then \(\delta(x) = \varphi(x)q - qx \) for all \(x \in R \), \(q \in Q \). From (2.1), we have

\[
(\varphi(x)q - qx)y + \varphi(x)(\varphi(y)q - qy) - (\varphi(y)q - qy)x - \varphi(y)(\varphi(x)q - qx) = [x, y]_n \quad \text{for all} \ x, y \in I. \tag{2.3}
\]

If \(\varphi \) is not \(Q \)-inner, then \(I \) satisfies the polynomial identity

\[
(uq - qx)y + u(vq - qy) - (vq - qy)x - v(uq - qx) = [x, y]_n \quad \text{for all} \ x, y, u, v \in I.
\]

In particular \(u = v = 0 \), then \(I \) satisfied the following polynomial identity

\[
(-qx y + qyx) = [x, y]_n \quad \text{for all} \ x, y \in I.
\]

By Chuang [5, Theorem 1 and Theorem 2], shows that \(Q \) satisfies this polynomial identity and hence \(R \) as well. Note that this is a polynomial identity and hence there exist a field \(\mathbb{F} \) such that \(R \subseteq M_k(\mathbb{F}) \), the ring of \(k \times k \) matrices over a field \(\mathbb{F} \), where \(k \geq 1 \). Moreover, \(R \) and \(M_k(\mathbb{F}) \) satisfy the same polynomial identity[2], that is \(M_k(\mathbb{F}) \) satisfy

\[
(qyx - qxy) = [x, y]_n.
\]

Denote \(e_{ij} \) the usual matrix unit with 1 in \((i, j)\)-entry and zero elsewhere. By choosing \(x = e_{12}, y = e_{22}, q = e_{12} \), we see that

\[
0 = (q[y, x]) - [x, y]_n = (e_{12}[e_{22}, e_{12}]) - [e_{12}, e_{22}]_n
= -e_{12} \neq 0, \quad \text{a contradiction.}
\]

Now consider, if \(\varphi \) is \(Q \)-inner, then there exist an invertible element \(T \in Q \), \(\varphi(x) = TxT^{-1} \) for all \(x \in R \). From (2.3) we can write,

\[
(TxT^{-1}q - qx)y + TxT^{-1}(TyT^{-1}q - qy) - (TyT^{-1}q - qy)x
- TyT^{-1}(TxT^{-1}q - qx) = [x, y]_n \quad \text{for all} \ x, y \in I.
\]
We can see easily that if $T^{-1}q \in C$, then
\[
\delta(x) = TxT^{-1}q - qx = T(xT^{-1}q - T^{-1}qx) = T[x, T^{-1}q] = 0, \quad \text{a contradiction.}
\]
Thus $T^{-1}q \notin C$. With this,
\[
\phi(x, y) = (TxT^{-1}q - qx)y + TxT^{-1}(TyT^{-1}q - qy) - (TyT^{-1}q - qy)x - TyT^{-1}(TxT^{-1}q - qx) - [x, y]_n. \tag{2.4}
\]

Since by [2] or [1, Theorem 6.4.4], I and Q satisfy the same generalized polynomial identities, with this we can see easily that $\phi(x, y) = 0$ is a nontrivial generalized polynomial identity of Q. Let \mathcal{F} be the algebraic closure of C if C is infinite, otherwise let \mathcal{F} be C. By Fact 3, $\phi(x, y)$ is also a generalized polynomial identity of $Q \otimes_C \mathcal{F}$. Moreover, in view of [7, Theorem 3.5], $Q \otimes_C \mathcal{F}$ is a prime ring with \mathcal{F} as its extended centroid. Thus $Q \otimes_C \mathcal{F}$ is a prime ring satisfies a nontrivial generalized polynomial identity and its extended centroid \mathcal{F} is either an algebraically closed field or a finite field. Since both Q and $Q \otimes_C \mathcal{F}$ are prime and centrally closed [7, Theorem 3.5], we may replace R by Q or $Q \otimes_C \mathcal{F}$. Thus we may assume that R is centrally closed and the field \mathcal{F} which is either algebraically closed or finite and R satisfies generalized polynomial identity (2.4). By Martindale’s theorem [1, Corollary 6.1.7], R is a primitive ring having nonzero socle with the field \mathcal{D} as its associated division ring. By Jacobson theorem [10, p.75], R is isomorphic to a dense subring of the ring of linear transformations on a vector space V over \mathcal{D} (or $\text{End}(V_D)$) in brief), containing nonzero linear transformations of finite rank.

We assume that $\text{dim}(V_D) \geq 2$, otherwise we are done.

Step 1. We want to show that w and $T^{-1}qw$ are linearly \mathcal{D}-dependent for all $w \in \mathcal{V}$. If $T^{-1}qw = 0$ then $\{w, T^{-1}qw\}$ is linearly \mathcal{D}-dependent. Suppose on contrary that w_0 and $T^{-1}qw_0$ are linearly \mathcal{D}-independent for some $w_0 \in \mathcal{D}$.

If $T^{-1}w_0 \notin \text{Span}_\mathcal{D}\{w_0, T^{-1}qw_0\}$ then $\{w_0, T^{-1}qw_0, T^{-1}w_0\}$ are linearly \mathcal{D}-independent. By the density of R there exist $x, y \in R$ such that
\[
\begin{align*}
xw_0 &= 0, & xT^{-1}qw_0 &= T^{-1}w_0, & xT^{-1}w_0 &= 0, \\yw_0 &= w_0, & yT^{-1}qw_0 &= 0, & yT^{-1}w_0 &= T^{-1}w_0.
\end{align*}
\]

With all these, we obtained from (2.4),
\[
-w_0 = ((TxT^{-1}q - qx)y + TxT^{-1}(TyT^{-1}q - qy) - (TyT^{-1}q - qy)x \\
- TyT^{-1}(TxT^{-1}q - qx) - [x, y]_n)w_0, \quad \text{a contradiction.}
\]

If $T^{-1}w_0 \in \text{Span}_\mathcal{D}\{w_0, T^{-1}qw_0\}$ then $T^{-1}w_0 = w_0\beta + T^{-1}qw_0\gamma$ for some $\beta, \gamma \in \mathcal{D}$ and $\beta \neq 0$. Since w_0 and $T^{-1}qw_0$ are linearly \mathcal{D}-independent, by the density of R there exist $x, y \in R$ such that
\[
\begin{align*}
xw_0 &= 0, & xT^{-1}qw_0 &= w_0\beta + T^{-1}qw_0\gamma, \\
yw_0 &= w_0, & yT^{-1}qw_0 &= 0.
\end{align*}
\]
The application of (2.4) implies that
\[0 = (T x T^{-1} q - q x) y + T x T^{-1} (T y T^{-1} q - q y) - (T y T^{-1} q - q y) x \]
and we arrive at a contradiction. So we conclude that \(\{ w_0, T^{-1} w_0 \} \) are linearly \(D \)-dependent, for all \(w_0 \in V \) as claimed.

Step 2. By using the arguments presented above, we prove that \(T^{-1} q w_0 = w_0 \mu(w) \) for all \(w \in V \), where \(\mu(w) \in D \) depends on \(w \in V \). In fact, it is easy to check that \(\mu(w) \) is independent of choice \(w \in V \). Indeed, for any \(w, z \in V \), in view of above situation, there exist \(\mu(w), \mu(z), \mu(w + z) \in D \) such that
\[T^{-1} q w = w \mu(w), \quad T^{-1} q z = z \mu(z), \quad T^{-1} q (w + z) = (w + z) \mu(w + z) \]
and therefore,
\[w \mu(w) + z \mu(z) = T^{-1} q (w + z) = (w + z) \mu(w + z). \]
Hence,
\[w (\mu(w) - \mu(w + z)) + z (\mu(z) - \mu(w + z)) = 0. \]
Since \(w \) and \(z \) are \(D \)-independent, then \(\mu(w) = \mu(z) = \mu(w + z) \). Otherwise, \(w \) and \(z \) are \(D \)-dependent, say \(w = \lambda z \) for some \(\lambda \in D \). Thus,
\[w \mu(w) = T^{-1} q w = T^{-1} q z = \lambda T^{-1} q z = \lambda z \mu(z) = w \mu(z) \]
i.e., \(V (\mu(w) - \mu(z)) = 0 \). Since \(V \) is faithful, we get \(\mu(w) = \mu(z) \). Hence, we conclude that there exists \(\chi \in D \) such that \(T^{-1} q w = w \chi \) for all \(w \in V \).

At last, we want to show that \(\chi \in Z(D) \) (the center of \(D \)). Indeed, for any \(\eta \in D \), we have
\[T^{-1} q (w \eta) = (w \eta) \chi = w (\eta \chi). \]
and on the other hand,
\[T^{-1} q (w \eta) = (T^{-1} q w) \eta = (w \chi) \eta = w (\chi \eta). \]
Therefore, \(V (\eta \chi - \chi \eta) = 0 \) and thus, \(\eta \chi = \chi \eta \), which implies that \(\chi \in Z(D) \). Hence, \(T^{-1} q \in C \), a contradiction. With this completes the proof of the theorem. \(\square \)

The following example demonstrates that the hypothesis of primeness of \(R \) is essential in Theorem 1.

Example 1. Let \(S \) be the set of all integers. Consider
\[R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in S \right\} \quad \text{and} \quad I = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in S \right\}. \] Define maps \(\varphi : R \to R \) by \(\varphi \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & -b \\ 0 & 0 \end{pmatrix} \) and \(\delta : R \to R \) by \(\delta \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} a & -2b \\ 0 & 0 \end{pmatrix} \). The fact that \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq 0 \) and \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} R \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0 \) implies that \(R \) is not
prime. It is easy to check that I is a nonzero ideal of R and (δ, φ) is a skew derivation of R such that $\delta([x, y]) = [x, y]_n$ for all $x, y \in I$. However, R is not commutative.

Remark 1. In view of the above result, it is an obvious question, what about the commutativity of R, if $\delta([x, y])^m = [x, y]_n$ for all $x, y \in I$(or a Lie ideal L). Unfortunately, we are unable to solve it and leave as an open question whether or not this result can be prove.

REFERENCES

Authors’ addresses

Nadeem ur Rehman
Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India

E-mail address: nu.rehman.mm@amu.ac.in
Mohd Arif Raza
Department of Mathematics, Aligarh Muslim University, 202002, Aligarh, India
E-mail address: arifraza03@gmail.com