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Abstract. Let R be a prime ring and set Œx;y�1 D Œx;y�D xy�yx for all x;y 2 R and induct-
ively Œx;y�k D ŒŒx;y�k�1;y� for k > 1. We apply the theory of generalized polynomial identities
with automorphism and skew derivations to obtain the following result: LetR be a prime ring and
I a nonzero ideal ofR. Suppose that .ı;'/ is a skew derivation ofR such that ı.Œx;y�/D Œx;y�n
for all x;y 2 I , then R is commutative.
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1. INTRODUCTION, NOTATION AND STATEMENTS OF THE RESULTS

Throughout this paper, unless specifically stated, R is always an associative prime
ring with center Z.R/, Q its Martindale quotient ring. Note that Q is also prime
and the center C of Q, which is called the extended centroid of R, is field (we refer
the reader to [1] for the definitions and related properties of these objects). For any
x;y 2 R, the symbol Œx;y� stands for the commutator xy�yx. Recall that a ring R
is called prime if for any x;y 2R, xRy D f0g implies that either x D 0 or y D 0. An
additive mapping d WR�!R is called a derivation if d.xy/D d.x/yCxd.y/ holds
for all x;y 2R. An additive mapping F WR �!R is called a generalized derivation
if there exists a derivation d WR �!R such that F.xy/D F.x/yCxd.y/ holds for
all x;y 2R, denoted by .F;d/. Hence, the concept of generalized derivations covers
both the concepts of a derivation and of a left multiplier.

Given any automorphism ' of R, an additive mapping ı W R ! R satisfying
ı.xy/D ı.x/yC'.x/ı.y/ for all x;y 2R is called a '-derivation ofR, or a skew de-
rivation ofR with respect to ', denoted by .ı;'/. It is easy to see if 'D 1R, the iden-
tity map of R, then a '-derivation is merely an ordinary derivation. And if ' ¤ 1R,
then '�1R is a skew derivation. Thus the concept of skew derivations can be regard
as a generalization of both derivations and automorphism. When ı.x/D '.x/b�bx
for some b 2 Q, then .ı;'/ is called an inner skew derivation, and otherwise it is
outer. Any skew derivation .ı;'/ extends uniquely to a skew derivation of Q [12]
via extensions of each map to Q. Thus we may assume that any skew derivation of
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R is the restriction of a skew derivation of Q. Recall that ' is called an inner auto-
morphism if when acting on Q, '.q/D uqu�1 for some invertible u 2Q. When '
is not inner, then it is called an outer automorphism. The skew derivations have been
extensively studied by many researchers from various views (see for instance [5] and
[12], where further references can be found).

Let Q�CC fXg be the free product of Q and the free algebra C fXg over C on
an infinite set X , of indeterminate. Elements of Q�CC fXg are called generalized
polynomials and a typical element in Q�CC fXg is a finite sum of monomials of
the form ˛ai0

xj1
ai1
xj2
� � �xjn

ain
where ˛ 2 C , aik 2Q and xjk 2 X . We say that

R satisfies a nontrivial generalized polynomial identity (abbreviated as GPI) if there
exists a nonzero polynomial �.xi / 2Q�CC fXg such that �.ri /D 0 for all ri 2 R.
By a generalized polynomial identity with automorphisms and skew derivations, we
mean an identity of R expressed as the form �.'j .xi /;ık.xi //, where each 'j is an
automorphism, each ık is a skew derivation of R and �.yij ;´ik/ is a generalized
polynomial in distinct indeterminates yij ;´ik .

We need some well-known facts which will be used in the sequel.

Fact 1 ([5, Theorem 1]). Let R be a prime ring with an automorphism '. Suppose
that .ı;'/ is a Q-outer derivation of R. Then any generalized polynomial identity of
R in the form �.xi ; ı.xi //D 0 yields the generalized polynomial identity �.xi ;yi /D

0 of R, where xi ;yi are distinct indeterminates.

Fact 2 ([5, Theorem 1]). Let R be a prime ring with an automorphism '. Suppose
that .ı;'/ is a Q-outer derivation of R. Then any generalized polynomial identity
of R in the form �.xi ;'.xi /;ı.xi // D 0 yields the generalized polynomial identity
�.xi ;yi ;´i /D 0 of R, where xi ;yi ;´i are distinct indeterminates.

Fact 3 ([14, Proposition]). Let R be a prime algebra over an infinite field k and
let K be a field extension over k. Then R and R˝k K satisfy the same generalized
polynomial identities with coefficients in R.

The next result is a slight generalization of [13, Lemma 2] and can be obtained
directly by the proof of [13, Lemma 2] and Fact 3.

Fact 4. Let R be a non-commutative simple algebra, finite dimensional over its
center Z. Then R �Mn.F / with n > 1 for some field F and R and Mn.F / satisfy
the same generalized polynomial identities with coefficients in R.

In 1992, Daif and Bell [6, Theorem 3], showed that if in a semiprime ring R there
exists a nonzero ideal I of R and a derivation d such that d.Œx;y�/ D Œx;y� for all
x;y 2 I , then I � Z.R/. If R is a prime ring, this implies that R is commutative.
Later in 2011, Huang [8, Theorem 2.1], prove that if R is a prime ring, I a nonzero
ideal of R and d a derivation of R such that d.Œx;y�/m D Œx;y�n for all x;y 2 I ,
then R is commutative. At this point the natural question is what happens in case the
derivation is replaced by a generalized derivation. In [16], Quadri et. al., generalize
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Daif and Bell result for generalized derivation, they showed that if R is a prime
ring, I a nonzero ideal of R and .F;d/ a generalized derivation with d ¤ 0 such
that F.Œx;y�/D Œx;y� for all x;y 2 I , then R is commutative. In 2013, Huang and
Davvaz [9], generalized Quadri et. al., results, more precisely they proved that if R
be a prime ring, m;n are fixed positive integers, and .F;d/ a generalized derivation
with d ¤ 0 such that .F.Œx;y�//m D Œx;y�n for all x;y 2R, then R is commutative.

Here we will continue the study of analogue problems on ideals of a prime ring
involving skew derivations. The goal of this paper is to extend Daif and Bell theorem
[6], and Huang theorem [8], in a systematic way by using the theory of general-
ized polynomial identities with automorphisms and skew derivations as developed
by Kharchenko [11], Chuang [3, 4] and recently by Chuang and Lee [5].

Explicitly we shall prove the following theorem.

Theorem 1. Let R be a prime ring, I a nonzero ideal of R and n a fixed positive
integer. Suppose that .ı;'/ is a skew derivation of R such that ı.Œx;y�/D Œx;y�n for
all x;y 2 I , then R is commutative.

When ı D '�1R, we obtain the following

Corollary 1. Let R be a prime ring, I a nonzero ideal of R, and n a fixed positive
integer. If ' is a non-identity automorphism of R such that '.Œx;y�/D Œx;y�n for all
x;y 2 I , then R is commutative.

Let R be a unital ring. For a unit u 2 R, the map 'u W x ! uxu�1 defines an
automorphism of R. If d is a derivation of R, then it is easy to see that the map
ud W x! ud.x/ defines a 'u-derivation of R. So we have

Corollary 2. Let R be a prime unital ring, u a unit in R, I a nonzero ideal of
R, and n a fixed positive integer. Suppose that 'u is a derivation of R such that
'u.Œx;y�/D Œx;y�n for all x;y 2 I , then R is commutative.

2. MAIN RESULT

Now, we are in a position to prove the main result:

Theorem 2. Let R be a prime ring, I a nonzero ideal of R and n a fixed positive
integer. Suppose that .ı;'/ is a skew derivation of R such that ı.Œx;y�/D Œx;y�n for
all x;y 2 I , then R is commutative.

Proof. If ı D 0, then Œx;y�n D 0 for all x;y 2 I , which can be rewritten as

Œx;y�n D 0D ŒIx.y/;y�n�1 for all x;y 2 I:

By Lanski [13, Theorem 1], either R is commutative or Ix D 0, i.e., I � Z.R/ in
which case R is also commutative by Mayne [15, Lemma 3].

Now we assume that ı ¤ 0 and ı.Œx;y�/D Œx;y�n for all x;y 2 I , which can be
rewritten as

.ı.x/yC'.x/ı.y//� .ı.y/xC'.y/ı.x//D Œx;y�n: (2.1)
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In the light of Kharchenko’s theory [11], we split the proof into two cases:
Case 1: Let ı is Q-outer, then I satisfies the polynomial identities

.syC'.x/t/� .txC'.y/s/D Œx;y�n; for all x;y;s; t 2 I: (2.2)

Firstly, we assume that ' is not Q-inner, then for all x;y;s; t;u;v 2 I , we have

.syCut/� .txCvs/D Œx;y�n; for all x;y;s; t;u;v 2 I:

In particular s D t D 0, then I satisfied the polynomial identity Œx;y�n D 0, for all
x;y 2 I , so by Lanski [13, Theorem 1], R is commutative.

Secondly, if ' is Q-inner, then there exist an invertible element T 2Q, '.x/ D
T xT �1 for all x 2R. Thus from (2.2), we have

.syCT xT �1t /� .txCTyT �1s/D Œx;y�n for all x;y;s; t 2 I:

In particular s D t D 0, and using the same argument presented as above, R is com-
mutative.
Case 2: Let ı is Q-inner, then ı.x/D '.x/q�qx for all x 2 R, q 2Q. From (2.1),
we have

.'.x/q�qx/yC'.x/.'.y/q�qy/� .'.y/q�qy/x�'.y/.'.x/q�qx/

D Œx;y�n for all x;y 2 I: (2.3)

If ' is not Q-inner, then I satisfies the polynomial identity

.uq�qx/yCu.vq�qy/� .vq�qy/x�v.uq�qx/

D Œx;y�n for all x;y;u;v 2 I:

In particular uD v D 0, then I satisfied the following polynomial identity

.�qxyCqyx/D Œx;y�n; for all x;y 2 I:

By Chuang [5, Theorem 1 and Theorem 2], shows that Q satisfies this polynomial
identity and hence R as well. Note that this is a polynomial identity and hence there
exist a field F such that R �Mk.F /, the ring of k�k matrices over a field F , where
k � 1. Moreover, R and Mk.F / satisfy the same polynomial identity[2], that is
Mk.F / satisfy

.qyx�qxy/D Œx;y�n:

Denote eij the usual matrix unit with 1 in .i;j /-entry and zero elsewhere. By choos-
ing x D e12, y D e22, q D e12, we see that

0D .qŒy;x�/� Œx;y�n D .e12Œe22; e12�/� Œe12; e22�n

D�e12 ¤ 0; a contradiction:

Now consider, if ' is Q-inner, then there exist an invertible element T 2Q, '.x/D
T xT �1 for all x 2R. From (2.3) we can write,

.T xT �1q�qx/yCT xT �1.TyT �1q�qy/� .TyT �1q�qy/x

�TyT �1.T xT �1q�qx/D Œx;y�n for all x;y 2 I:
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We can see easily that if T �1q 2 C , then

ı.x/D T xT �1q�qx D T .xT �1q�T �1qx/D T Œx;T �1q�D 0; a contradiction:

Thus T �1q … C . with this,

�.x;y/D .T xT �1q�qx/yCT xT �1.TyT �1q�qy/

� .TyT �1q�qy/x�TyT �1.T xT �1q�qx/� Œx;y�n: (2.4)

Since by [2] or [1, Theorem 6.4.4], I and Q satisfy the same generalized polyno-
mial identities, with this we can see easily that �.x;y/D 0 is a nontrivial generalized
polynomial identity of Q. Let F be the algebraic closure of C if C is infinite, oth-
erwise let F be C . By Fact 3, �.x;y/ is also a generalized polynomial identity of
Q˝C F . Moreover, in view of [7, Theorem 3.5], Q˝C F is a prime ring with F

as its extended centroid. Thus Q˝C F is a prime ring satisfies a nontrivial gen-
eralized polynomial identity and its extended centroid F is either an algebraically
closed field or a finite field. Since both Q and Q˝C F are prime and centrally
closed [7, Theorem 3.5], we may replace R by Q or Q˝C F . Thus we may assume
that R is centrally closed and the field F which is either algebraically closed or fi-
nite and R satisfies generalized polynomial identity (2.4). By Martindale’s theorem
[1, Corollary 6.1.7], R is a primitive ring having nonzero socle with the field D as
its associated division ring. By Jacobson theorem [10, p.75], R is isomorphic to a
dense subring of the ring of linear transformations on a vector space V over D(or
End.VD/ in brief), containing nonzero linear transformations of finite rank.

We assume that dim.VD/� 2, otherwise we are done.
Step 1:We want to show that w and T �1qw are linearly D-dependent for all w 2V .
If T �1qw D 0 then fw;T �1qwg is linearly D-dependent. Suppose on contrary that
w0 and T �1qw0 are linearly D-independent for some w0 2D .

If T �1w0 … SpanDfw0;T
�1qw0g then fw0;T

�1qw0;T
�1w0g are linearly D-

independent. By the density of R there exist x;y 2R such that

xw0 D 0; xT �1qw0 D T
�1w0; xT �1w0 D 0

yw0 D w0; yT �1qw0 D 0; yT �1w0 D T
�1w0:

With all these, we obtained from (2.4),

�w0 D
�
.T xT �1q�qx/yCT xT �1.TyT �1q�qy/� .TyT �1q�qy/x

�TyT �1.T xT �1q�qx/� Œx;y�n
�
w0; a contradiction:

If T �1w0 2 SpanDfw0;T
�1qw0g then T �1w0 D w0ˇC T

�1qw0
 for some
ˇ;
 2 D and ˇ ¤ 0. Since w0 and T �1qw0 are linearly D-independent, by the
density of R there exist x;y 2R such that

xw0 D 0; xT �1qw0 D w0ˇCT
�1qw0


yw0 D w0; yT �1qw0 D 0:
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The application of (2.4) implies that

0D
�
.T xT �1q�qx/yCT xT �1.TyT �1q�qy/� .TyT �1q�qy/x

�TyT �1.T xT �1q�qx/� Œx;y�n
�
w0 D�Tw0ˇ D�w0ˇ ¤ 0;

and we arrive at a contradiction. So we conclude that fw0;T
�1w0g are linearly D-

dependent, for all w0 2 V as claimed.
Step 2: By using the arguments presented above, we prove that T �1qw0Dw0�.w/,
for all w 2 V , where �.w/ 2D depends on w 2 V . In fact, it is easy to check that
�.w/ is independent of choice w 2 V . Indeed, for any w;´ 2 V , in view of above
situation, there exist �.w/;�.´/;�.wC´/ 2D such that

T �1qw D w�.w/; T �1q´D ´�.´/; T �1q.wC´/D .wC´/�.wC´/

and therefore,

w�.w/C´�.´/D T �1q.wC´/D .wC´/�.wC´/:

Hence,
w.�.w/��.wC´//C´.�.´/��.wC´//D 0:

Since w and ´ are D-independent, then �.w/ D �.´/ D �.wC ´/. Otherwise, w
and ´ are D-dependent, say w D �´ for some � 2D . Thus,

w�.w/D T �1qw D T �1q�´D �T �1q´D �´�.´/D w�.´/

i.e., V.�.w/��.´// D 0. Since V is faithful, we get �.w/ D �.´/. Hence, we
conclude that there exists � 2D such that T �1qw D w� for all w 2 V .

At last, we want to show that � 2Z.D/ (the center of D). Indeed, for any � 2D ,
we have

T �1q.w�/D .w�/�D w.��/;

and on the other hand,

T �1q.w�/D .T �1qw/�D .w�/�D w.��/:

Therefore, V.�����/D 0 and thus, ��D ��, which implies that �2Z.D/. Hence,
T �1q 2 C , a contradiction. With this completes the proof of the theorem. �

The following example demonstrates that the hypothesis of primeness of R is es-
sential in Theorem 1.

Example 1. Let S be the set of all integers. Consider

RD

��
a b

0 0

�
j a;b 2 S

�
and I D

��
0 b

0 0

�
j b 2 S

�
. Define maps ' W R!

R by '
�
a b

0 0

�
D

�
a �b

0 0

�
and ı W R! R by ı

�
a b

0 0

�
D

�
a �2b

0 0

�
.

The fact that
�
0 1

0 0

�
¤ 0 and

�
0 1

0 0

�
R

�
0 1

0 0

�
D 0 implies that R is not
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prime. It is easy to check that I is a nonzero ideal ofR and .ı;'/ is a skew derivation
of R such that ı.Œx;y�/D Œx;y�n for all x;y 2 I . However, R is not commutative.

Remark 1. In view of the above result, it is an obvious question, what about the
commutativity of R, if ı.Œx;y�/m D Œx;y�n for all x;y 2 I (or a Lie ideal L). Unfor-
tunately, we are unable to solve it and leave as an open question whether or not this
result can be prove.
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