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ON THE ZERO OF A RADIAL MINIMIZER OF
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Abstract. Zeros of minimizers of p-Ginzburg-Landau functional are helpful to understand the
location of vortices of superconductivity and superfluid. When p D 2 and the degree of the
boundary data around the boundary is ˙1, there exists only one zero of the p-Ginzburg-Landau
minimizers in the bounded domain. When p > 2, this becomes a more complicated problem.
This paper is concerned with the location of the zeros of a radial minimizer of a p-Ginzburg-
Landau type functional. The authors use the method of moving planes and the idea of the proof
of Pohozaev’s identity to verify that the origin is the unique zero of the radial minimizer in the
domain.
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1. INTRODUCTION

Let B D fx 2 R2I jxj < 1g and p > 2. Consider the p-Ginzburg-Landau type
functional

E".u;B/D
1
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jrujpC
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2p"p

Z
B

.1�jujp/2:

When p D 2, the minimizer u" of E".u;B/ in the class H 1
g .B;R2/ was well-studied

by many papers (see [4], [5] and the references therein), where g W @B ! @B is a
smooth map. In particular, the paper [4] pointed out that there is only one zero of
u" in B if deg.g;@B/D˙1. When p ¤ 2, the minimizer in the class W 1;p

g .B;R2/
was also researched in [2], [3], [10], [11] and [16]. The paper [10] proved that when
p > 2, the zeros of the minimizer u" are located near the finite singularities of a
p-harmonic map. The same result was generalized to higher dimensions (cf. [9]).
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However, the relation between the number of singularities and the degree deg.g;@B/
is still not clear.

In order to investigate this problem, we consider a special case. Investigate the
minimization problem of E".u;B/ in the class

W D fu.x/D f .r/
x

jxj
2W 1;p.B;R2/If .1/D 1g;

where r D jxj. By the direct method in the calculus of variations, the minimizer u"
exists, and it is called the radial minimizer. When p D 2, many papers investigated
the properties of the radial minimizer. Papers [13] and [14] discussed the stability
properties of f".r/, the modulus of u". The paper [8] also pointed out that

f".r/ > 0; .f".r//r > 0; in .0;1�:

Here .f"/r is the first order derivative of f". This means the origin is the unique zero
of f" in B .

In this paper, we will also prove that the origin is the unique zero of f" in the case
of p > 2. This improves the result in [12], which was only showed that the zeros of
u" are located near the origin.

If we define
V D ff .r/Iu.x/D f .r/

x

jxj
2W g;

then, V � ff 2 C Œ0;1�If .0/ D 0g (cf. Proposition 1.1 in [12]). Clearly, u" is a
minimizer of E".u;B/ in W if and only if f" is a minimizer of

E".f /D

Z 1

0
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2p"p
.1�f p/2�rdr

in V , where A D .fr/2C .f =r/2. According to Proposition 2.2 in [12], the Euler-
Lagrange equation which the minimizer f" satisfies is the following ODE
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f p�1.1�f p/: .1:1/

Similar to the argument of regularity results in [3], we see that the minimizer f" is a
classical solution of the equation above. By the proof of Proposition 2.1 in [3], we
can always assume

0� f".r/� 1; r 2 Œ0;1�:

Remark 1. Theorem 3.5 in [12] shows that for any given � 2 .0;1/, there exists
hD h.�/ > 0 and "0 D "0.�/ > 0 such that as " 2 .0;"0/,

f".r/ > 1��; in Œh";1�:

This means that all zeros of f" are located in Œ0;h"/ for each " 2 .0;"0/. Therefore,
we can search the zeros only in this interval. On the other hand, Theorem IV.1 in [5]
shows the relation between h and �:

�� h� �9Card J ;
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where Card J is a positive integer which is independent of " (cf. Proposition 3.4 in
[12]), and � is defined in the proof of Proposition 3.3 in [12] as

�D .
�

2C
/

p
p�2 :

These results mean that h can be suitably small as long as � is chosen small properly.

The main result of this paper, which will be proved in �2, is read as follows

Theorem 1. Let f" be the modulus of a radial minimizer of E".u;B/. Then there
exists "0 2 .0;1/, such that as " 2 .0;"0/,

f" > 0; in .0;h"�; .1:2/

.f"/r > 0; in Œ0;h"�: .1:3/

Remark 2. Clearly, Remark 1, (1.2) and (1.3) show that the origin is the unique
zero of the radial minimizer u" in B .

An analogous result for minimizer of E.u/ was proved in [3], where E.u/ DR
B Œp
�1jrujp C .4"p/�1.1� juj2/2�dx is equipped with a different penalization.

Here we can also locate the zero of minimizers of E".u;B/ by another technique-
the method of moving planes. Such a method was first proposed by Alexandrov [1]
and developed by Serrin [15], Gidas-Ni-Nirenberg [7], and Chen-Li [6]. Now, this
method has been a powerful tool to handle the monotonicity of solutions of differen-
tial equations.

2. PROOF OF THEOREM 1

Let f D f" be a minimizer of E".f / in V . In view of f .0/ D 0 and f .h"/ >
1�� > 0, we can set

� D supfR 2 Œ0;h"/If .r/� 0; in Œ0;R�g:

Proposition 1. We have

f > 0; in .�;1�I

fr > 0; in Œ�;h"�:

Proof. The idea of the method of moving planes is used here. Thus, consider the
equation (1.1) multiplied with r�1,

�A.p�2/=2frr � .A
.p�2/=2/rfr �A

.p�2/=2fr

r
CA.p�2/=2

f

r2
D
f p�1

"p
.1�f p/:

.2:1/

Step 1. We claim that fr.h"�0/ > 0.
In fact, if the claim is not true, then we can consider two cases:

Case I W f .r/� f .h"/; in .h"� ı;h"/I

Case II W f .r/ > f .h"/; in .h"� ı;h"/
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when ı is sufficiently small. In Case I, (2.1) becomes

f p�1

rp
D
f p�1

"p
.1�f p/; in .h"� ı;h"/:

By virtue of r < h", the result above implies

f p�1

"p
.h�p� .1�f p// < 0:

Noting r > h"� ı > � , we see that f > 0. Therefore,

h�p� .1�f p/ < 0:

It is impossible if we let � in h be sufficiently small (cf. Remark 1 in $1).
In Case II, we can find a maximizer r0 2 .�;h"/ of f . Then,

f .r0/ > 0; fr.r0/D 0; and frr.r0/ < 0:

Hence, (2.1) with r D r0 leads to

f p�1.r0/

"p
Œh�p� .1�f p.r0//� < 0:

This is also impossible when we choose � sufficiently small such that h < 1.
Step 2. Moving planes from � to h". For � 2 Œ�;h"�, let r� D 2�� r be the

reflection point of r about the point �. Define

F�.r/D f .r�/�f .r/; as r 2 .�� ı;�/:

We claim that the set
S WD f� 2 Œ�;h"�I there is r 0 2 .�� ı;�/

such that F�.r
0/D 0g D¿:

Otherwise, we can suppose
�� D min

�2S
�:

Then, we claim �� > � . In fact, if �� D � , then there exists r 0 2 .� � ı;�/ such that

f .r 0� /�f .r
0/D 0:

On the other hand, in view of the definition of � , we get

f .r 0/D 0; f .r 0� / > 0:

Therefore, we see the contradiction and hence the claim means

�� 2 .�;h"�:

This consequence implies either f � Constant in some open interval I 2 .r 0; r 0�/,
or a maximizer of f in .r 0; r 0�/. Similar to the argument in Cases I and II of Step 1,
we can also deduce the contradiction. Thus, S D¿.
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The result S D¿ shows that f .r 0/ < f .r 0�/, 8r
0 2 .��ı;�/. After �moves from

� to h", it follows that f .r1/ < f .r2/ as long as � < r1 < r2 � h". Therefore,

fr.r/ > 0; 8r 2 .�;h"�: .2:2/

By virtue of the definition of � , we have

f .�/D 0I f .r/ > 0 8r 2 .�;h"�: .2:3/

This implies fr.�C0/ > 0. Combining with (2.2) yields

fr.r/ > 0; 8r 2 Œ�;h"�:

Combining (2.3) with Remark 1 in �1, we can see f .r/ > 0 in .�;1�.
Thus, we complete the proof of Proposition 1. �

Proposition 2. Let � 2 Œ0;h"/ satisfy

f .r/� 0; in Œ0;��I

fr.r/ > 0; in Œ�;h"�:

Then � D 0.

Proof. Suppose � > 0. Since the Pohozaev identity can show the properties of two
end points of an interval by investigating the integrals on this interval, we use the idea
of proof of Pohozaev’s identity here to deduce a contradiction.

Multiplying (1.1) by fr and integrating on .0;�/, we have
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By f .r/D 0 in Œ0;��, (2.4) becomesZ �

0
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Calculating the left hand side of (2.5), we obtain that
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This result, together with (2.5), impliesZ �

0

A
p�2

2 frfrrrdr D A
p�2

2 .fr/
2r jrD� : .2:6/

Noting f .r/D 0 in .0;�/, we can deduce that the left hand side of (2.6) is zero. In
view of fr.�/ > 0, we obtain that the right hand side of (2.6) is nonzero, which leads
to a contradiction. �

Combining Propositions 1 and 2, we can complete the proof of Theorem 1.
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