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Abstract. In this note, we define a generalized linear operator using the generalized fractional
differential operator. By employing this operator together withe the Cesaro partial sums, we
impose starlike class of analytic functions depending on the subordination relation in the unit
disk. We shall show that the functions in this class imply that the Libera-Pascu integral operator
is also in the class. Moreover, we discus some other properties of convex functions such as
convolution and inclusion properties.
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1. INTRODUCTION

In the geometric function theory (GFT) much concern is driven to different oper-
ators mapping the class of the univalent functions and its subclasses into themselves.
Numerous authors obtained sufficient conditions that guarantee such mappings can
be held. All these operators have convolution structures (Hadamard product ) with
special functions such as Gauss hypergeometric function [3], the Meijer G- and Fox
H-functions [9]. In our investigation, we use the generalized Fox-Wright functions
to obtain a new generalized operator.

Newly, fractional calculus in complex domain has established delightful implement-
ations in (GFT). The conventional ideas of fractional operators and their generaliza-
tions have been employed in realizing, for example, coefficient estimates, distortion
inequalities, the characterization properties and convolution structures for various
subclasses of analytic functions and the doings in the research monographs.

In [22], Srivastava and Owa, gave definitions for the left-sided fractional integrals
and derivatives in the complex z-plane C as follows:
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Definition 1. The fractional derivative of order « is defined, for a function f(z)
by

@ pyoe L4 [T SO
Dz f(2):= F(l_a)dZ/O (z—;‘)“dé’ 0<a<l,

where the function f(z) is analytic in simply-connected region of the complex z-
plane C containing the origin and the multiplicity of (z — ¢)™% is removed by requir-
ing log(z —¢) to be real when(z —¢) > 0.

Definition 2. The fractional integral of order « is defined, for a function f(z), by

o ._L < _ya—1 g5,
121G = o | OG-0t a0

where the function f(z) is analytic in simply-connected region of the complex z-

plane (C) containing the origin and the multiplicity of (z —)*~! is removed by
requiring log(z — ¢) to be real when (z —¢) > 0.

In [4], the author have derived a formula for the generalized fractional integral as
follows :

1 11—« z
%[D (= grrhelekg(f)de, (1.1)

where o and u # —1 are real numbers and the function g(z) is analytic in simply-
connected region of the complex z-plane C containing the origin and the multiplicity
of (zH+1 —¢iT1)=® is removed by requiring log(z#+! — ¢#*+1) to be real when
(g +1 —¢#F1) > 0. When p = 0, we arrive at the standard Srivastava-Owa fractional
integral. Further information can be found in [4]. Corresponding to the fractional
integral operator, the fractional differential operator is

_(u+D*d /Z g (@)

I7teg(z) =

D”""“g(z) = ma

where the function g(z) is analytic in simply-connected region of the complex z-

plane C containing the origin and the multiplicity of (z4T! —¢#T1)~® is removed
by requiring log(z# ! —¢#*1) to be real when (z# 11 —¢#+1) > 0. We have

1 “—1r( v 1)
(n+1) a1t A=) (A1) +v—1
r (# +1 —a)

Let + denote the class of functions f(z) normalized by

d¢; 0<a<l, (1.2)

DO!,,LLZV —

f@)=z+) an7". zel. (1.3)

n=2
Also, let 8, 8* and € denote the subclasses of # consisting of functions which are,
respectively, univalent, starlike and convex in U. It is well known that; if the function
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f(z) given by (1.3) is in the class §, then |a,| <n, n € N\{l}. Moreover, if the
function f(z) given by (1.3) is in the class €, then |a,| <1, n € N.

In our present investigation, we shall also make use the Fox-Wright generalization
q¥plz] of the hypergeometric 4 F, function defined by [20]

(Oll,Al),. ..,(aq,Aq);
a¥p z = ¢¥pl(ej. Aj)1,4:(Bj. Bj)1,p:2]
(B1,B1),...,(Bp, Bp);

. i I'(ar+ndy)...I'(ag+ndg) 2"
) = I'(Bi+nBy)...I'(Bp+nBp) n!
_ i [T=i Mo +ndj) 7

1 T(Bj+nBj)n!”

n=0

where A; >0 forall j =1,...,q, B; >0forall j =1,...,p and 1—|—ZJ?=1 B; —
Z?Zl A; > 0 for suitable values |z| < 1 and «;, B; are complex parameters. It is well
known that

(a1,1),..., (g, 1); )
qlpp Z :A_ qu(al,...,aq,ﬂl,...,ﬂp;z),
(:8191)""’(:81771);

4_,TB))
. =1 J
where A := —szl @)

making use the operator (1.2), we introduce the following extension operator @%* :
A — A:

DU f(2) (1.4)
1
o “1p (1
G+ 02711 (g +1)
F(L-i-l—oz) o
_ u+1 Zoz(l—}—,u)—uDoc,M (Z+Zanzn)
— 1
(u+ 1) 1F<m+1) n=2
F(L 1— 1“—1F(L 1)
— 1T a) Lo () —p th o1 ghtimeut
— 1 1
(n+ DT (i +1) r (s +1-0)
o (141 T (5 +1)

+
= F(#—i—l—a)

and 4 F, is the generalized hypergeometric function. Now by

z"‘(lﬂ’“)_“D""“f(z)

anzn+u—a(u+1)
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1 n
(o) r(g)
n

(1.5)

Obviously, when = 0 we have the extension fractional differential operator defined
in [13] ([5] for recent work), which contains the Carlson and Shaffer operator. In
term of the Fox-Wright generalized function,

0 F(n—l—l)]“(ﬁ—l—l—a) F(#-Fl)

QM f(z)=z+ Z a—"z”
1 n n!
n=2 F(m'i‘l) F(m+1—0l)
1
if(n+1)1“(m+l—a) Fis+1) o
= —Z
!
= F(ﬁ-l—l) F(#—i—l—a) n!
F(ﬁ+l—a) (1,1, (1, 757); (1.6)
= . 21 z | xf(2)
F(ﬁ“) (-0, 47)
F(L+l—a
+1
= — 201 [2]+ f(2)
F(m-i—l)

=W(,u;2) * f(2),

where ag = 0,a; = 1 and # is the Hadamard product. Note that %0 f(z) = f(z).
Furthermore, one can easily define a linear fractional operator involving (1.4) as fol-
lows:

D™EH f(z) = [W(a, pu;2) * ... x ¥ (a, u;2)] * f(2).

n—times

(1.7)

Recently, various results, as convolution and inclusion properties, distortion theorem,
extreme points, coefficient estimates etc., are proposed by many authors for the op-
erators due to Srivastava involving the Wright function, generalized hypergeometric
function and Meijer’s G-functions. These operators are Dziok-Srivastava [25] and
[10], Srivastava-Wright, Srivastava-Owa operators (see [8] and [21]), Cho-Kwon-
Srivastava operator [14], [19], Cho-Saigo-Srivastava operator operator [6], Jung-
Kim-Srivastava operator [2] and for recent work [7], [16], [17] and [18].
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From the partial sum
k
n=1

the Cesaro means 0y (z, f) of f(z) = Y neqanz" given by

k
ok )= 3 Yosnl@)
n=1

[s1(z2) + ... +5:(2)]

12—+(alz—Fa2z2)+—“.—k(alz-+...+—akzk)]

| o= | = | =

[a
[kalz + (k—1)asz? +...+akzk]

k—n+1
k

n

I
M»

anz
1

3
Il

k

F(2) * Z ]lﬂzn

n=1 k

= f(2) * gk (2),

where
k

g =Y %Z”-
n=1
Definition 3 (Subordination Principle). For two functions f and g analytic in U,
we say that the function f(z) is subordinated to g(z) in U and write f(z2) < g(z), if
there exists a Schwarz function w(z) analytic in U with w(0) = 0, and |w(z)| < 1,
such that f(z) = g(w(z)),z € U. In particular, if the function g(z) is univalent in
U, the above subordination is equivalent to f(0) = g(0) and f(U) C g(U).

Definition 4 (Differential subordination). Let ¢ : C> — C and let / be univalent in
U. If p is analytic in U and satisfies the differential subordination ¢ (p(z)),zp’(z)) <
h(z) then p is called a solution of the differential subordination. The univalent func-
tion q is called a dominant of the solutions of the differential subordination, p < gq. If
pand ¢(p(z)),zp'(z)) are univalent in U and satisfy the differential superordination
h(z) < ¢(p(2)).zp'(z)) then p is called a solution of the differential superordina-
tion. An analytic function ¢ is called subordinant of the solution of the differential
superordination if ¢ < p.
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Definition 5. A function f € 4 is called A—starlike; A > 0, with respect to Cesaro
means if it satisfies

A=z f'(2)+Arz(z f'(2))
(1=X)or(z. f) +Azop (2. f)

where ¢(0) = 1 and R¢’(z) > 0. Denote this class by Sox (A,q). Note that the class
S0 (0,q) takes the form

<q(z2),

2@
ox(z, f)

Some classes of partial sums are suggested and studied in [1].

<q(z2).

Definition 6. A function f € +A is in the class So]?’a’ﬂ (A,q) if it satisfies
(1=2)z(D™*# f(2)) +Az[z (D" f(2)) T
(1 =X)og(z, D™k f) + Az (oy (2, D% f))

where ¢(0) = 1 and Rq'(z) > 0.

<q(2),

We need the following preliminaries in the sequel. The Libera-Pascu integral op-
erator L, : A — s defined by

F(2):=Laf(2) = %/z f(O)tYdt, a € C, R(a) > 0.
0

For a = 1 we obtain the Libera integral operator, for @ = 0 we obtain the Alexan-
der integral operator and in the case @ = 1,2,3,... we obtain the Bernardi integral
operator.

Lemma 1 ([11]). Let h be convex univalent in U and 0, ¢ be analytic in domain
D. Let p be analytic in U, with h(0) = 8(p(0)) and p(U) C D. If the differential
equation

0lg(2)] + 24" (2)¢la(2)] = h(2)
has a univalent solution in U that satisfies q(0) = p(0) and 0[q(z)] < h(z) then the
differential subordination

0[p(2)]+2zp (2)¢[p(2)] < h(z)
implies that p(z) < q(z). The function q is the best dominant.

Lemma 2 ([16]). Let h and g be in the classes € and 8* respectively. Then, for
every analytic function ¥ with ¥ (0) = 1, we have

h(z) * g(2) ¥ (2)
h(z) * g(z)
where co denotes the closed convex hull.

ecof (U), zel,
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Lemma 3 ([12]). If f € s satisfies

/") < ? =0.4472..., (zel),

then f € €.

Our aim is to show that if f € So;"**(X.¢) then L, f(z) € So;"**(X.q). Further-
more, we shall consider some relation of differential subordination and convolution.
2. LIBERA-PASCU CLASS

Our main results are provided in this section.

Theorem 1. Let f € Saz’a’”(k,q). Denote g := D™%H g and F(z) := Lq f(2).
Define two analytic functions

0(2) := (1= )0y (z, F) + Az0}, (2, F)

and R R
(1-M)zF'(2) +Az[zF'(2)]
p(z) = .
¢(2)
Assume that for a convex univalent function h the fractional differential equation
g1 =Ne(z) +Az¢'(2)] Azq'(2)e(2) _
+ =h(z)

(1=ox(z. /) + 4204z, f)  (1=Nor(z. /) +Az04(z. )
has a univalent solution q € U satisfying p(0) = q(0). Then the subordination

P =1)e(z) + Az¢'(2)] 4 Azp'(2)e(z)
(I=Nox(z, f)+Arzop(z, /)  (1=A)or(z, f)+Azop (2, f)
q@)[(1=V)e(z) +Az¢'(2)] N 229" (2)e(2)

(1=)ox(z. /) + 4204z, f)  (1=Nor(z. /) +Az04(z. )
implies p(z) < q(z) and q is the best dominant.

Proof. Since f € So,?’“’”(k,q), then
(-2 f '@ +azlef @)
(1—Nox(z, )+ Az0y.(2, 7
From the definition of the Libera-Pascu integral operator we have
(14+a)f(z)=aF(z)+zF'(2),

by using the linear operator D™** g =g, we have

q(z).

(14+a)f(2) =aF()+2F'(2). %(a)>0.
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By making use the first derivative of the last assertion, we obtain
T
2f(2) =

and using the fact that

a 2F'(2) + Z[Z/F—\/(Z)]/

(I4+a) (1+a)

ZF'(2) = 2F'(2),

yields

® F)+ 22 (zF @)

'@ = a0 (1+a)
= (1-N)zF'(2) + Az[z F Q)
= p@I(1 =Nk (2, F) +Az04 (2, F)]
= p(2)e(2).
A computation implies that
(1=02f '@ + Azl @) _ p@I1=Ng() +12¢/(2)]
(1= Mok (z, )+ Azo(z, f)  (1=Dox(z. f)+ 20,z )
Azp'(2)e(2)
(1—Wox(z, f) +Azal(z, f)
= p@VY () + 20 (2)9(2)
= 0[p()]+2p (29 (2),

where 0 and ¢ are analytic in U. Tt is clear that 8[g(z)] < h(z). Hence in view of
Lemma 1, we have p(z) < ¢(z) and g is the best dominant. O

Immediately, we have the following result:
Corollary 1. Let the assumptions of Theorem [ hold. Then the Libera-Pascu in-
tegral operator F(z) € Sa;cl’a’u(k,q).

3. CONVEX CLASS

In this section, we discuss the class SGZ *H(X,q) when f € €. We need the
following preliminaries:

Lemma 4. Assume thata; >0,8; >0;i =1,...,q,j =1,....,p;q < p+1.1If
for0<a <1,
1 1.
) (271)9(1-"_ M+17M+1)7
N ¥ 1 <2,
1 1y .
F(M-H +1) (I =+ g 1)

1
F(m—f—l—a
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then the operator (1.6) maps a convex function f(z) into a convex function that is
PUHt - €.

Proof. Assume that f € €, f(z) =2+ Y ,e,anz" and the operator (1.4) such
that

o0
DU f(2) =2+ Y bp",

n=2
where
bn = ¢ ap.
The following condition is satisfied (see [10]) :
00 o
pi= ) nlbal =) nelan| <1.

n=2 n=2

By using the fact that |a,| < 1 we estimate p as follows

p=D ndytlan <) ngyt
n=2 n=2
3.1)
o,
Z o [ (1)n] = Z (1),,9( n)
< 1,
where
Q(n)z(l)nf(ﬁﬂ—a) F(#%Jrl) |
F(M+1+1) -0
Since
n 1

Wn (Do
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therefore, the estimate (3.1) takes the formula

P

oo

N o)
—Z<1>n9(”) Z(1)” : Z(l)n :

Z(l)nr(M_H'i‘l— 2D 1
n=2 F(m+1) G +1-o) (Dna
Mg +1-0) & Wun FEE+1)
TG A& rGH i) O
s i Fn+2)r (241
Mg+ o g +1-o) (D
( 1+1_ ){ @.1).(1+ 45, 40 rGL

Mg +1-o)

(I—o+ o ogp)

<l1.

Hence, we estimate p in terms of the Fox-Wright function ¥ at z = 1. This com-
pletes the proof. U

Now we put

0(z):=z+ Zd)f,"“z"

n=2
°°F(M+1+l ) F(M+1+1)
I+ —i—l—oc)

(3.2)

=z+
n=2

;H—l

consequently we obtain the function
O(z):=0CV(z)
° F( +1+1) I'( +1+1 o) ,
_HZ fl—a) (A +1)
1 n+1

=z+ Z bl
n=2

We have the following result:

Lemma 5. If |y, "] <

- m, n>2,then ®(z) € €.
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Proof. By the assumption, we conclude that

oo

0"(2)| < Y n(n—D)|ysH|

n=2

Thus, in virtue of Lemma 3 yields ®©(z) € €. O

Now we provide our main result in this section.
Theorem 2. Let f € € and d“H f(z) € Sa,;”a’”“()t,q), N(g) > 0. Then f €
So;z’a’u(k,q).

Proof. Let f € € and @%* f(z) € Sa,f’a’“(/\,q), NM(g) > 0. To be brief we will
write g := D™%* g and @ f(z) := @** f(z). Using (1.6) and (1.7), we can write

(1-1zf '@ + Azl @
(1=A)ox(z. f) +Azop (2, f)
in terms of @ f(z) as follows :

f(2)=6()*®f (2).
2f'(2) =0 *z@f (),
2lef (@) =z2[0:) *20f ()]
=0 *z[z®f ()
thus using Lemma 2 and Lemma 5, yields
(1 —A)z?’(z)+/\z[z?’(z2]’
(1=Mox(z, f)+Azop (2, f)
_ (1-1)O2)*z@f " (2) +AO0(2) *z[z@f ' (2)]
(1=2)0k(z,0(2) * Df (2)) + Az0;(2,0(2) * D f (2))
0@+ ((1=)28F (1) +Az[z8F ')V )

0@ * ((1- W) (2. 87 () + 120} (. 87 (2))

_ 0@ *g(2)¥(2)
T O(2)*g(2)
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where e e

g(2):=(1=N)or(z.Df (2)) +Arz0; (2, D1 (2))
and . .

7o) = 17N @+ Az QN

(1=Vor (2. D[ (2)) + Azop (2. @ f (2))

Hence

1=z (@) +rzlz f @)

(1—=Mox(z, f)+Arzop (2, f)

Gm( (1-Nf'(2) +Az[z®f ()] )

(1=M)ok(z.2f(2)) + Az01 (2. @[ (2))

C q(U).

Therefore, f € So]?’a’“()k,q). 0

Immediately we obtain the following Corollaries:
Corollary 2. Let f € €. Then
Sop th* (A .q) € Sop* M (A.q),
where N(q) > 0.
Proof. Let f € Sa;zﬂ’a’“(/\,q). Since

D"TLeH f(2) = [W(a, s 2) % ... x W(a, 13 2)] * £(2)
(n+1)—times
=[W(o, u;2) *...x (o, pw;2)] * ¥(a, 1:2) * £(2)

n—times
= D" (W, p132) * f(2))
=of(2).
Then a computation implies that

(1=)z(D"FL%R £(2)) 4+ Az[z(DPHEH £(2)) T
(1 =)o (z, DnFHLeht f) + dzoy (z, DML f)
(1=2)z@f"(2) + Az[z®] ' ()]
(1— Ao (z. Df () + Azoy(z, ®f(2))

that is f € @f(z) € SO’Z %K (X,q); hence in view of Theorem 2, we obtain that
f ESog’a’“()L,q). a

<q(2)

<q(2)
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Corollary 3. Let f € € and q(z) := lﬂ. Then

Sgntlens Ai C SghH Alﬁ c .. cseben( 12
k -z %k —z k 1—z

1
= Soy (l ﬁ)
Z

Theorem 3. f € So; """ (h,q) = &% f € Sa7 """ (A.q).
Proof. Let f € SU]?H"M’“(/\,q). Since
DML f(2) = D (2).
then a calculation implies
(1=0)z20f () + A2[2@f ')
(1= 2)(0k (2. @) + Az (0} (2. @ 1))
_ (1=)z(Dre f () 4 Azz (DT £(2)) T
(1=2A)(ok (z, DMLk £)) + Az (0 (2, DMTL@H f))
<4(2).
Hence %+ f € SaZ’“’”(A,q). O

In the following theorem, we prove the class S O';z *H (X, q) is closed under convolu-
tion with convex function.

Theorem 4. Let f € S O]’z ®H (X, q) and O be a convex function with real coeffi-
cients in U. Then f 0 € Sa,i”a’“(/\,q).

Proof. Applying Lemma 2 and using the convolution properties, we have

(1=D)z(D™* (f(2) ¥9(2)) +Azlz(D"*H(f(2) * () T
(1 =)ok (z, D1 (f % D)) + Azoy (2, D*H(f 1))

@ (-2 @ 22T @)
#(2)* (1= Doz, F (2) + 220} (2. 7 (2)) )

_ V@) *8(2)F(2)
H(z)* g(2)
where R R
g(z) == (1=N)ox(z. f (2)) + Azoy (2. f(2))
and

(1 -N)zf' (@) +Azlzf'(2))

F(z):= — = .
(1= (z. f(2)) +rzo) (2. [ (2))
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Hence
(1=0)z(D™ (£ (2) ¥9(2))) +Az[z (D" (f(2) * ¥ (2))) ]
(1= )0k (2, D™@H(f %))+ Azoy (2, D@k (f 5 )
L —x)zfA'(z) + )Lz[z?’(z)A]’
(1=M)ok(z. [ (2)) + Azoy (2. £ (2))
< q(U).
Therefore, f x 0 € Sa;:’a’u(k,q). O

4. CLASS a,'z HH

In this section, we proceed to show that the function

f€Sop M (h.q) = or(z. £ (2) € Sop “" (X.q)
and -
feSa " (M.q) = or(z.f (2)) € So.**(X.q)
whenever g € €.
Theorem 5. Letg € €. If f € So*,?’a’“()&,q) then ok(Z,7(Z)) € So,?’a’“(k,q).
Proof. By the definition of oy (2, /) we obtain the following facts:
204(2, f) = 2.1 (2) * gk (2),
2lzop (2. ) = 2(2 f'(2)) * gr (2),

0k (2,0%(2, [) = 0k (2, [ % gk) = (f * 8k) * gk = 0k (2. [ ) * &k
and since g € € we pose that

(1—X)zo}(z, f) + Azlzop(z, )Y
(1= )0k (z.0x (2. £)) + Az0} (2, 0% (2. f))
_ (=2 @) * k@) + Azl f (@) * gk (2)
(=) (ok(z ) * 8k (2)) + Azop (2. 1) * gk (2)
{A=Dz(F' @) +Azlz f ()]} * g (2)

T (= Nor(z 1) + Az 2 1)) * gk ()
<q(2).

Hence oy (2. /(2)) € SUZ’“’”(A,q). O
Similarly, we have the following result:

Theorem 6. Letq € €. If f € Saz’a’“()t,q) then
0k (2,2 (2)) € So " (A, q).
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Proof. By using the relation

Of(2) = f(2)%6(2),
where 6(z) is defined in (3.2), implies

(1-1)zo; (2, of)+ Azlzop (2, of)]

(1= )0k (2.0% (2, 1)) + Az0} (2,01 (2. D 1))

(=27 (2) * gr(2) + Az[z®f ()] * g (2)

(1= 1) (ox (2. BF) * gk (2)) + Az0}. (2. BF * gx (2)
{A=N)z2@f"(2) +Az[z0F ()]} * gk (2)
{(1=)ok (2. 9f) +Az20} (2. Bf )} * g (2)
{A=)z2f (@) +Azlz f ()]} * gk (2) % 6(2)

{(1=N)og(z. f) + 120} (2. )} * g1 (2) ¥ 0(2)
<q(z).

Since 0(z), gr(z) and ¢g(z) are convex in the unit disk, therefore,
ok (2. @f (2)) € So " (X.q). 0

5. CONCLUSION

It is well known that the classical Cesaro means retains the zero free property
of the derivatives of bounded convex functions in the unit disk [23]. Furthermore,
for univalent functions f € +, the partial sums f; in general are not univalent in
the unit disk U; though they are univalent for |z| < 1/4 as shown by Szeg6 (1928)
(see [24]). Robertson (1936) showed that when f is univalent in U; then also all
the Cesaro sums are univalent in the unit disk U (see[15]). Therefor from above,
we have illustrated classes of univalent functions involving the Cesaro partial sums
instead of the usual partial sums to preserve the geometry properties of the func-
tion. We have considered a linear fractional operator defined by using the general-
ized Srivastava-Owa fractional differential operator. We have imposed that for the
function f € SUZ’“’M(A,(]) the Cesaro partial sums oy (z, D™ %*@*H f(z)) and
o (z, D% f(z)) are also in the class SGZ’O”“(A,Q) (Theorem 5 & Theorem 6).
Moreover, we have proved that for the function f € S o;; “®H (X, q), the Libera-Pascu
integral operator F(z) € S 0,’; “®H (X, q) (Theorem 1). For convex function f, we have
shown that the fractional differential operator maps a convex function into a convex
function (@%* : € — €) (Lemma 2). Depending on this property, we have illustrated
some convolution relations (Corollary 2 & Corollary 3).
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