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1. PRELIMINARIES

We present first some auxiliary concepts and results, see the monograph of Ali-
prantis and Border [1] and the manuscripts [4, 7, 18].

A partially ordered set .X;�/ is a lattice if each pair of elements x;y 2 X has a
supremum and an infimum.

A real vector space E with an order relation � on E that is compatible with the
algebraic structure of E in the sense that satisfies properties:

.1/ x � y implies xC´� yC´ for each ´ 2E;x;y 2E and

.2/ x � y implies tx � ty for each t > 0;x;y 2E

is called an ordered vector space.
An ordered vector space that is also a lattice is called a Riesz space or vector

lattice. Many familiar spaces are Riesz spaces, as is shown by the following standard
examples (see [1, 4]):

(1) The space Rn with the Euclidean norm and with the componentwise ordering
relation is a Riesz space.

(2) Given a compact Hausdorff space T , the vector space C .T / of all continuous
real functions and the vector space Cb .T / of all bounded continuous real
functions with the supremum norm and with the pointwise ordering relation
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are Riesz spaces. In particular, the space c of convergent real sequences and
the space c0 of real null-sequences are Riesz spaces.

(3) Given a measure space .X;A;�/ and 1� p �1, the Lebesgue space Lp.�/

is a Riesz space with the standard k � kp norm and the almost everywhere
pointwise ordering relation. In particular, the p̀ spaces of real sequences are
also Riesz spaces.

The symbolistic xn # x means that xn is a decreasing sequence and inffxng D x.
Some basic properties of decreasing sequences are:

˘ xn # x and ym # y implies xnCym # xCy;

˘ xn # x implies �xn # �x, for � > 0 and �xn " �x, for � < 0;

˘ xn # x and ym # y implies xn_ym # x_y and xn^ym # x^y.

The meaning of xn " x and some basic properties of increasing sequences are similar.
A Riesz space E is Archimedean if 1

n
x # 0 holds for every x 2EC, where

EC D fx 2E W x � 0g is the positive cone of E.

A Riesz space E is order complete or Dedekind complete if every non-empty sub-
set of E which is bounded above has a supremum. Any order complete Riesz space
is Archimedean. The converse is false.

Let E be a Riesz space. A sequence .bn/ in E is called order-convergent (or o-
convergent) to b, if there exists a sequence .an/ in E satisfying an # 0 and jbn�bj �

an holds for all n, written bn
o
�! b, where

jxj D x_ .�x/ for any x 2E.

A sequence .bn/ inE is called order-Cauchy (or o-Cauchy), if there exists a sequence
.an/ inE such that an # 0 and

ˇ̌
bn�bnCp

ˇ̌
� an holds for all n and p. A Riesz space

E is called o-Cauchy complete if every o-Cauchy sequence is o-convergent.
LetE;F be two Riesz spaces and f WE!F . The function f is order continuous

(or o-continuous) if bn
o
�! b in E implies f .bn/

o
�! f .b/ in F .

For notations and other facts regarding lattice and order properties, order conver-
gence and order continuity in Riesz spaces we refer to [1].

We present now the concept of vector metric space.

Definition 1. Let X be a non-empty set and E be a Riesz space. The function
d WX �X!E is said to be a vector metric (or E-metric) if it satisfies the following
properties:

.a/ d .x;y/D 0 if and only if x D y;

.b/ d .x;y/� d .x;´/Cd .y;´/ , for all x;y;´ 2X .

Also, the triple .X;d;E/ is said to be a vector metric space.
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Example 1. A Riesz space E is a vector metric space with d WE�E!E defined
by

d .x;y/D jx�yj .

This vector metric is called the absolute valued metric on E.

Now we give some useful definitions for our main results.

Let .X;d;E/ be a vector metric space. A sequence .xn/ in X is called vectorially

converging (or E-converges) to some x 2E, written xn
d;E
�! x, if there is a sequence

.an/ in E such that an # 0 and d .xn;x/ � an for all n. A sequence .xn/ in X is
called vectorially Cauchy (or E-Cauchy), if there is a sequence .an/ in E such that
an # 0 and d

�
xn;xnCp

�
� an holds for all n and p. A vector metric spaceX is called

E-complete if each E-Cauchy sequence in X E-converges to a limit in X . If E D R,
the concepts of E-convergence and metric convergence are the same, respectively
the concepts of E-Cauchy sequence and Cauchy sequence are the same. If X D E
and d is the absolute valued vector metric on X , then the concepts of vectorially
convergence and convergence in order are the same. Notice than, in particular, if
X D E and d is an absolute valued vector metric on E, then we obtain fixed point
theorems of Riesz space E.

The subset ¿¤ A�X defined by

ı .A/D supfd .x;y/ W x;y 2 Ag

is called the E-diameter of X if supfd .x;y/ W x;y 2 Ag in E. Furthermore, if there
exists an a > 0 in E such that d .x;y/ � a, for x;y 2 A, then A is called an E-
bounded set.

LetX;Y be two vector metric spaces and f WX!Y . The function f is vectorially

continuous (or E-continuous) if xn
d;E
�! x in X implies f .xn/

d;E
�! f .x/ in Y .

If X is a nonempty set and T W X ! P .X/ is a multivalued operator, we denote
by FT WD fx 2X j x 2 T .x/g, where

P .X/ WD fY j Y �Xg ;

P.X/ WD fY 2P .X/ j Y ¤¿g

and in the context of a vector metric space .X;d;E/, we denote by

Pcl .X/ WD fY 2 P .X/ j Y is E-closedg ;

Pb .X/ WD fY 2 P .X/ j Y is E-boundedg ;

Graph.T / WD f.x;y/ 2X j y 2 T .x/g .
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2. FIXED POINT THEOREMS FOR CONTRACTIONS AND GENERALIZED
CONTRACTIONS IN VECTOR METRIC SPACES

In this paragraph, we prove the Contraction Principle and Reich fixed point the-
orem for multivalued operators in vector metric spaces. Also, examples are given to
obtain the existence of the fixed point using the new results.

Remark that there exists on the market some powerful background for our study,
the papers of Berinde [2], Daffer & Kaneko [5], Kaneko [8, 9], Mizoguchi & Taka-
hashi [10], and more others obtain in their results same conclusions, but not in a
vector metric space under an Archimedean assumption. Notice that in the setting of
a vector metric space can appear some difficulties, especially when we want to give
an example or an application of our result to a differential inclusion. For example, in
the case when the vector metric space is Rn, we need to introduce an absolute value
property for a matrix which converges to zero to can give an application to a differen-
tial inclusions system, see I.-R. Petre [12] (Theorem 2.2), in the case when the vector
metric space is a Riesz space E, for a working application we need to assume that E
is order complete which guarantees that a certain infimum exists in E, see I.-R. Petre
[11] (Theorem 2.28), and also for an application in generalized b-metric spaces, see
I.-R. Petre, M. Bota [13] (Theorem 3.13).

Definition 2. Let .X;d;E/ be a vector metric space. The operator T W X !
Pcl .X/ is said to be a multivalued k-contraction, if and only if k 2 Œ0;1/ and for
any x;y 2X and any u 2 T .x/, there exists v 2 T .y/ such that

d .u;v/� kd .x;y/ .

Definition 3. Let .X;d;E/ be a vector metric space and T W X ! P .X/ be a
multivalued operator. The sequence .xn/n2N �X , recursively defined by�

x0 D x; x1 D y;
xnC1 2 T .xn/ , for all n 2N;

is called the sequence of successive approximations of T starting from .x;y/ 2

Graph.T /.

Theorem 1. Let .X;d;E/ be an E-complete vector metric space with E
Archimedean and let T W X ! Pcl .X/ be a multivalued k-contraction. Then T
has a fixed point in X and for any x 2 X , there exists a sequence of successive
approximations of T starting from .x;y/2Graph.T /whichE-converges in .X;d;E/
to the fixed point of T .

Proof. Let x0 2 X such that x1 2 T x0. Then there exists x2 2 T x1 such that
d .x1;x2/ � kd .x0;x1/. Thus, define the sequence .xn/ 2 X by xnC1 2 T xn and
d .xn;xnC1/� kd .xn�1;xn/, for any n 2N�. Inductively, we obtain

d .xn;xnC1/� kd .xn�1;xn/� : : :� k
nd .x0;x1/ , for any n 2N�.
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We have

d
�
xn;xnCp

�
� d .xn;xnC1/Cd .xnC1;xnC2/C : : :Cd

�
xnCp�1;xnCp

�
�
�
kn
CknC1

C : : :CknCp�1
�
d .x0;x1/D k

n 1�k
p

1�k
d .x0;x1/

�
kn

1�k
d .x0;x1/D an �a WD bn, for any n 2N� and p 2N�,

where an D
kn

1�k
# 0 and aD d .x0;x1/ 2E

C.
On the other hand, by E Archimedean hypothesis, we have bn # 0. So, the sequence

.xn/ is E-Cauchy ı̂n X . By the E-completness of X , there is ´ 2X such that xn
d;E
�!

´. Hence, there exists .an/ in E such that an # 0 and d .xn;´/� an.
We know xnC1 2 T xn for any n 2N and by the multivalued k-contraction condi-

tion it follows that there exists u 2 T ´ such that

d .xnC1;u/� kd .xn;´/ , for any n 2N.

Then the following estimation holds:

d .´;u/� d .xnC1;u/Cd .xnC1;´/

� kd .xn;´/CanC1 � .kC1/an # 0.

Thus, we have there exists ´D u 2 T ´, i.e., T has a fixed point in X . �

We can give an example to show that Theorem 1 generalize Nadler’s classical
metric fixed point theorem.

Example 2. Let E D R2 with componentwise ordering and let

X D
˚
.x;0/ 2 R2

W 0� x � 1
	
[
˚
.0;x/ 2 R2

W 0� x � 1
	

.

The mapping d WX �X !E is defined by

d ..x;0/ ; .y;0//D

�
4

3
jx�yj ; jx�yj

�
;

d ..0;x/ ; .0;y//D

�
jx�yj ;

2

3
jx�yj

�
;

d ..x;0/ ; .0;y//D

�
4

3
xCy;xC

2

3
y

�
:

ThenX is anE-complete vector metric space. Let T WX!Pcl .X/with T .x1;x2/D

fu.x1;x2/ ;v .x1;x2/g, where u;v WX !X are defined by

u..x;0//D .0;x/ and u..0;x//D
�x
2
;0
�

;

v ..x;0//D .0;x/ and v ..0;x//D
�x
3
;0
�

.

We have the following possibilities
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Case 1: for any .x;0/ ; .y;0/ 2 X and any .0;x/ 2 T .x;0/, there exists .0;y/ 2
T .y;0/

Case 2: for any .x;0/ ; .0;y/ 2 X and any .0;x/ 2 T .x;0/, there exists
�y

2
;0
�
2

T .0;y/ or
�y

3
;0
�
2 T .0;y/

Case 3: for any .0;x/ ; .y;0/2X and any
�

x
2
;0
�
2 T .0;x/ or any

�
x
3
;0
�
2 T .0;x/,

there exists .0;y/ 2 T .y;0/
Case 4: for any .0;x/ ; .0;y/ 2 X and any

�
x
2
;0
�
2 T .0;x/, there exists

�y
2
;0
�
2

T .0;y/, respectively for any .0;x/ ; .0;y/ 2X and any
�

x
3
;0
�
2 T .0;x/, there exists�y

3
;0
�
2 T .0;y/

such that for all of these cases condition (2) holds for k D 3
4

.
From Theorem 1 it follows that T has a fixed point in X , but T is not a contraction
mapping (for example, using the Chebyshev metric) on X � R2, thus we can not
apply the classical Nadler’s fixed point theorem.

Definition 4. Let .X;d;E/ be a vector metric space. The operator T W X !
Pcl .X/ is said to be a multivalued .a;b;c/-contraction, if and only if a;b;c 2 RC
with aC bC c < 1 and for any x;y 2 X and any u 2 T .x/, there exists v 2 T .y/
such that

d .u;v/� ad .x;y/Cbd .x;u/C cd .y;v/ .

Theorem 2. Let .X;d;E/ be an E-complete vector metric space with E
Archimedean and let T W X ! Pcl .X/ be a multivalued .a;b;c/-contraction. Then
T has a fixed point in X and for any x 2 X , there exists a sequence of success-
ive approximations of T starting from .x;y/ 2 Graph.T / which E-converges in
.X;d;E/ to the fixed point of T .

Proof. Let x0 2 X such that x1 2 T x0. Then there exists x2 2 T x1 such that
d .x1;x2/ � ad .x0;x1/C bd .x0;x1/C cd .x1;x2/, where a;b;c 2 RC with aC
bC c < 1. Thus, define the sequence .xn/ 2 X by xnC1 2 T xn and d .xn;xnC1/ �

.aCb/d .xn�1;xn/C cd .xn;xnC1/, for any n 2N�. Inductively, we obtain

d .xn;xnC1/�
aCb

1� c
d .xn�1;xn/� : : :�

�
aCb

1� c

�n

d .x0;x1/ , for any n 2N�.

Since a;b;c 2 RC with aCbC c < 1, we have 0 � aCb < 1� c. We denote k WD
aCb
1�c
2 Œ0;1/.

We have

d
�
xn;xnCp

�
� d .xn;xnC1/Cd .xnC1;xnC2/C : : :Cd

�
xnCp�1;xnCp

�
�
�
kn
CknC1

C : : :CknCp�1
�
d .x0;x1/D k

n 1�k
p

1�k
d .x0;x1/

�
kn

1�k
d .x0;x1/D an �a WD bn, for any n 2N� and p 2N�,
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where an D
kn

1�k
# 0 and aD d .x0;x1/ 2E

C.
On the other hand, by E Archimedean hypothesis, we have bn # 0. So, the sequence

.xn/ is E-Cauchy ı̂n X . By the E-completness of X , there is ´ 2X such that xn
d;E
�!

´. Hence, there exists .an/ in E such that an # 0 and d .xn;´/� an.
We know xnC1 2 T xn for any n 2N and by the multivalued .a;b;c/-contraction

condition it follows that there exists u 2 T ´ such that

d .xnC1;u/� ad .xn;´/Cbd .xn;xnC1/C cd .´;u/ , for any n 2N.

Since

d .´;u/� d .xnC1;u/Cd .xnC1;´/

� ad .xn;´/Cbd .xn;xnC1/C cd .´;u/CanC1

� .aC1/anCbd .xn;xnC1/C cd .´;u/ , hence

d .´;u/�
aC1

1� c
anC

b

1� c
d .xn;xnC1/ # 0.

Thus, we have there exists ´D u 2 T ´, i.e., T has a fixed point in X . �

Example 3. Let E D R2 and consider the set X , the mapping d WX �X !E and
the multivalued operator T W X ! Pcl .X/ be defined as in Example 2. It is easily
to seen that T is a multivalued

�
1
7
; 1

7
; 2

3

�
contraction. From Theorem 2 it follows

that that T has a fixed point in X , but T is not a
�

1
7
; 1

7
; 2

3

�
contraction mapping with

respect to the Chebyshev metric on X � R2. Thus we can not apply the classical
Reich’s fixed point theorem.

Remark 1. Theorem 1 and Theorem 2 generalize several known results in the
theory of fixed points (see Nadler [17], Covitz-Nadler [14], Reich [15], Bucur, Guran,
Petruşel [3]), etc. Notice also that here we do not need a closed graph condition on
T , as in [3], for example.

3. THE THEORY OF THE CONTRACTION PRINCIPLE IN VECTOR METRIC SPACES

Our aim is to construct a theory of the fixed point theorems for multivalued oper-
ators in vector metric spaces. The novelity is given by a study of several properties of
fixed points such as: the existence of fixed points and strict fixed points, data depend-
ence of fixed points, convergence of the fixed point sets for a sequence of multivalued
operators, Ulam stability of the inclusion x 2 T .x/, well-posedness property of the
fixed point problem, limit shadowing property of the multivalued operator and oth-
ers, using the approach introduced in [16] and [14]. This theory can be similarly
considered for fixed point theorems for classes of multivalued generalized contrac-
tions in vector metric spaces.
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Definition 5. Let X;Y be two nonempty subsets and T W X ! P .Y / be a multi-
valued operator. Then a singlevalued operator t WX ! Y is called a selection of T if
and only if t .x/ 2 T .x/, for any x 2X .

Definition 6. Let .X;d;E/ be a vector metric space. Then, T W X ! P .X/ is
called a multivalued weakly Picard operator (briefly MWP operator) if for each
x 2X and each y 2 T .x/ there exists a sequence .xn/n2N in X such that:
i/ x0 D x;x1 D y;
i i/ xnC1 2 T .xn/, for all n 2N;
i i i/ the sequence .xn/n2N is E-convergent and its limit is a fixed point of T .

Definition 7. Let .X;d;E/ be a vector metric space and T W X ! P .X/ be a
MWP operator. Then we define the multivalued operator T1 WGraph.T /!P .FT /

by the formula fT1 .x;y/D ´ 2 FT : there exists a sequence of successive approx-
imations of T starting from .x;y/ that E-converges to ´g.

Definition 8. Let .X;d;E/ be a vector metric space and T WX!P .X/ aMWP

operator. Then T is said to be a c-multivalued weakly Picard operator (briefly c-
MWP operator) if and only if there exists a selection t1 of T1 such that
d .x; t1 .x;y//� cd .x;y/, for all .x;y/ 2 Graph.T /.

Definition 9. Let .X;d;E/ be a vector metric space and let .Tn/n2N be a sequence
of ordered sets in Pcl .X/. Then Tn is called Hausdorff E-convergent to an ordered

and closed set T of X , denoted by Tn
H;d;E
�! T as n!1 if and only if there exists a

sequence .an/� E such that an # 0 as n!1 and for any un 2 Tn .x/, there exists
v 2 T .x/ (respectively for any v 2 T .x/, there exists un 2 Tn .x/) such that

d .un;v/� an, for any n 2N.

Definition 10. Let .X;d;E/ be an E-complete vector metric space and T W X !
P .X/. By definition, T is called a multivalued Picard operator (brieflyMP operator)
if and only if:
i/ .SF /T D FT D fx

�g;

i i/ T n .x/
H;d;E
�! fx�g as n!1, for each x 2X .

Lemma 1 (Extended Cauchy Lemma). Let E be an order complete Riesz space.

Let an 2 RC;bn 2 E
C;n 2 N� such that

1P
iD0

jai j < C1 and bn
o
�! 0 as n!1.

Then
nX

iD0

an�ibi
o
�! 0 as n!1.
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Proof. We split the above sum in two parts:

nX
iD0

an�ibi D

Œn
2 �X

iD0

an�ibi C

nX
iDŒn

2 �C1

an�ibi .

From bi
o
�! 0 as i !1 it follows that there exists a sequence ci # 0 in E such that

jbi j � ci holds for all i .
For the first part of the sum we have:ˇ̌̌̌

ˇ̌ Œ
n
2 �X

iD0

an�ibi

ˇ̌̌̌
ˇ̌� Œ

n
2 �X

iD0

jan�i j jbi j �

Œn
2 �X

iD0

jan�i jci

D

Œn
2 �X

iD0

jan�i jc0 � c0

1X
iDŒn

2 �C1

jai j WD xn # 0 as n!1,

since E is Archimedean.
Since ci # 0 as i !1, we have there exists mn WD sup

˚
ci W i �

�
n
2

�
C1

	
# 0 as

n!1, because the space E is order complete.
For the second part of the sum we have:ˇ̌̌̌
ˇ̌̌ nX
iDŒn

2 �C1

an�ibi

ˇ̌̌̌
ˇ̌̌� nX

iDŒn
2 �C1

jan�i j jbi j

�

nX
iDŒn

2 �C1

jan�i jci �mn

1X
iD0

jai j WD yn # 0 as n!1.

Sinceˇ̌̌̌
ˇ

nX
iD0

an�ibi

ˇ̌̌̌
ˇ�

ˇ̌̌̌
ˇ̌ Œ

n
2 �X

iD0

an�ibi

ˇ̌̌̌
ˇ̌C

ˇ̌̌̌
ˇ̌̌ nX
iDŒn

2 �C1

an�ibi

ˇ̌̌̌
ˇ̌̌� xnCyn D ´n # 0 as n!1,

thus
nX

iD0

an�ibi
o
�! 0 as n!1.

�
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Theorem 3. Let .X;d;E/ be an E-complete vector metric space with E
Archimedean and let T WX!Pcl .X/ a multivalued k-contraction. Then the follow-
ing statements hold:
i/ FT ¤¿;
i i/ T is a 1

1�k
-multivalued weakly Picard operator;

i i i/ Let S W X ! Pcl .X/ be a multivalued k-contraction and � 2 EC such that
for any u 2 S .x/, there exists v 2 T .x/ such that d .u;v/ � � (respectively for any
u 2 T .x/, there exists v 2 S .x/ such that d .u;v/ � �). Then for any p 2 FS , there
exists q 2 FT such that d .p;q/ � 1

1�k
� (respectively for any p 2 FT , there exists

q 2 FS such that d .p;q/� 1
1�k

�).
iv/ Let Tn W X ! Pcl .X/;n 2 N be a sequence of multivalued k-contractions

such that Tn .x/
H;d;E
�! T .x/ as n!1, uniformly with respect to x 2 X . Then,

FTn

H;d;E
�! FT as n!1.

v/ (Ulam-Hyers stability of the inclusion x 2 T .x/) Let � 2EC be such that there
exists y 2T .x/ : d .x;y/� �. Then, there exists x� 2FT such that d .x;x�/� 1

1�k
�.

Proof. i/ It follows from Theorem 1.
i i/ Let x0 D x;x1 D y 2X and define the sequence xnC1 2 T .xn/, for all n 2N,

which from Theorem 1 E-converges in .X;d;E/ to x�, for all x 2 X and FT ¤ ¿.
We know that d

�
xn;xnCp

�
� kn 1�kp

1�k
d .x0;x1/, for any n 2 N� and p 2 N� and

letting p!1, we get that

d
�
xn;x

�
�
�

kn

1�k
d .x0;x1/ , for any n 2N�.

For nD 1, we get

d
�
x1;x

�
�
�

k

1�k
d .x0;x1/ .

Then

d
�
x0;x

�
�
� d .x0;x1/Cd

�
x1;x

�
�
�

1

1�k
d .x0;x1/ .

Hence, T is a 1
1�k

-multivalued weakly Picard operator.
i i i/ Let x0 2 FS be arbitrary chosen. Then, by i i/, we have that there exists

t1 .x0;x1/ 2 FT such that

d .x0; t
1 .x0;x1//�

1

1�k
d .x0;x1/ , for any x1 2 T .x0/ .

Since there exists x1 2 T .x0/ such that d .x0;x1/� �, we have that

d .x0; t
1 .x0;x1//�

1

1�k
�.
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By a similar procedure we can prove that, for any y0 2 FT there exists s1 .y0;y1/ 2

FS such that

d .y0; s
1 .y0;y1//�

1

1�k
�.

iv/ Since Tn .x/
H;d;E
�! T .x/ as n!1, thus there exists .�n/ in E such that

�n # 0 and for any un 2 Tn .x/, there exists v 2 T .x/ (respectively for any v 2 T .x/,
there exists un 2 Tn .x/) such that

d .un;v/� �n, for any n 2N. (3.1)

By i i i/, follows immediately that for any x0n
2 FTn

(respectively for any y0 2 FT )
we have that there exists t1 .x0n

;x1/ 2 FT (respectively, there exists s1 .y0;y1n
/ 2

FTn
) such that

d .x0n
; t1 .x0n

;x1//�
1

1�k
�n, for any n 2N, respectively

d .y0; s
1 .y0;y1n

//�
1

1�k
�n, for any n 2N.

Letting in (3.1) n!1, we obtain that there exists an WD
1

1�k
�n � E such that

an # 0 as n!1 and for any pn WD x0n
2 FTn

, there exists q WD t1 .x0n
;x1/ 2 FT

(respectively for any q WD y0 2 FT , there exists pn WD s
1 .y0;y1n

/ 2 FTn
) such that

d .pn;q/� an, for any n 2N.

Hence, FTn

H;d;E
�! FT as n!1.

v/ Let � 2 EC and x 2 X . By hypothesis, there exists y 2 T .x/ such that
d .x;y/ � �. By the proof of i i/, we have that there exists x� WD t1 .x;y/ 2 FT

such that

d
�
x;x�

�
�

1

1�k
d .x;y/�

1

1�k
�.

�

A second result for multivalued contractions in vector metric spaces is as follows.

Theorem 4. Let .X;d;E/ be an E-complete vector metric space with E
Archimedean and let T WX!Pcl .X/ a multivalued k-contraction with .SF /T ¤¿.
Then the following statements hold:
i/ FT D .SF /T D fx

�g;
i i/ FT n D .SF /T n D fx�g for n 2N�;

i i i/ T n .x/
H;d;E
�! fx�g as n!1, for each x 2X ;

iv/ Let S W X ! Pcl .X/ a multivalued operator and � 2 EC such that FS ¤ ¿
and for any u 2 S .x/, there exists v 2 T .x/ such that d .u;v/ � � (respectively for
any u 2 T .x/, there exists v 2 S .x/ such that d .u;v/ � �). Then for any p 2 FS ,
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there exists q 2 FT such that d .p;q/ � 1
1�k

� (respectively for any p 2 FT , there
exists q 2 FS such that d .p;q/� 1

1�k
�);

v/ Let Tn WX ! Pcl .X/;n 2N be a sequence of multivalued operators such that

FTn
¤¿ for each n 2N and Tn .x/

H;d;E
�! T .x/ as n!1, uniformly with respect

to x 2X . Then, FTn

H;d;E
�! FT as n!1.

vi/ (Well-posedness property of the fixed point problem) If .xn/n2N is a sequence
in X such that there exists yn 2 T .xn/ ;n 2N with the property

d .xn;yn/
o
�! 0, as n!1,

then xn
d;E
�! x�, as n!1.

vi i/ (Limit shadowing property of the multivalued operator) If .yn/n2N is a se-
quence in X such that there exists un 2 T .yn/ ;n 2N with the property

d .ynC1;un/
o
�! 0, as n!1,

then there exists a sequence .xn/n2N � X of successive approximations for T , such
that

d .xn;yn/
o
�! 0, as n!1.

Proof. i/ Let x� 2 .SF /T and we prove that x� is the unique strict fixed point of
T .

We suppose there exists y 2 .SF /T ;y ¤ x
�, then T .y/D fyg.

From
d
�
x�;y

�
D d

�
T
�
x�
�
;T .y/

�
� kd

�
x�;y

�
,

we obtain the contradiction k � 1. Thus, .SF /T D fx
�g.

We know that fx�g � FT and prove that FT � fx
�g.

Let y 2 FT ;y ¤ x
�. Since x�;y 2 X and for any u WD y 2 T .y/, there exists

v 2 T .x�/D fx�g such that

d
�
y;x�

�
� kd

�
x�;y

�
,

we obtain the contradiction k � 1. Thus, FT � fx
�g.

Hence, FT D fx
�g.

i i/ Let x� 2 .SF /T n , for n 2N� and we prove that x� is the unique strict fixed
point of T n.
We suppose there exists y 2 .SF /T n ;y ¤ x�, then T n .y/D fyg, for n 2N�.
Let x�;y 2X and for any u1 2 T .y/, there exists v1 2 T .x

�/ such that

d .u1;v1/� kd
�
x�;y

�
.

Let u1;v1 2 X and for any u2 2 T .u1/ � T .T .y// D T
2 .y/, there exists v2 2

T .v1/� T .T .x
�//D T 2 .x�/ such that

d .u2;v2/� kd .u1;v1/� k
2d
�
x�;y

�
.
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Inductively, let un�1;vn�1 2 X;n � 2 and for any un 2 T .un�1/ � T
n .y/ D fyg,

there exists vn 2 T .vn�1/� T
n .x�/D fx�g such that

d
�
y;x�

�
� knd

�
x�;y

�
, for any n 2N�.

Thus, y D x� and .SF /T n D fx�g.
We know that fx�g � FT n and prove that FT n � fx�g.
Let y 2 FT n ;y ¤ x�. Similarly, we have that for any x�;y 2 X and for any un WD

y 2 T n .y/, there exists vn 2 T
n .x�/D fx�g such that

d
�
y;x�

�
� knd

�
x�;y

�
, for any n 2N�.

Thus, y D x� and hence FT n D .SF /T n D fx�g.
i i i/ Let x;x� 2X and for any u1 WD x 2 T .x/, there exists v1 2 T .x

�/ such that

d .u1;v1/� kd
�
x;x�

�
.

Let u1;v1 2 X and for any u2 2 T .u1/ � T .T .x// D T
2 .x/, there exists v2 2

T .v1/� T .T .x
�//D T 2 .x�/ such that

d .u2;v2/� kd .u1;v1/� k
2d
�
x;x�

�
.

Inductively, let un�1;vn�1 2 X;n � 2 and for any un 2 T .un�1/ � T
n .x/, there

exists vn 2 T .vn�1/� T
n .x�/D fx�g such that

d .un;vn/� k
nd
�
x;x�

�
, for any n 2N�. (3.2)

By a similar procedure, we can obtain that for any un�1;vn�1 2X;n� 2 and for any
un 2 T .vn�1/� T

n .x�/D fx�g, there exists vn 2 T .vu�1/� T
n .x/ such that

d .un;vn/� k
nd
�
x�;x

�
, for any n 2N�. (3.3)

Letting in (3.2) and (3.3) n!1, we obtain that there exists an WD k
nd .x�;x/�E

such that an # 0 as n!1 and hence T n .x/
H;d;E
�! fx�g as n!1, for each x 2X .

iv/ Let y 2 FS . Then, there exists x� 2 T .y/ such that

d
�
y;x�

�
� d .y;x/Cd

�
x;x�

�
, for any x 2 T .y/ .

Since, for any x 2 T .y/, there exists x� 2 T .x�/ D fx�g such that d .x;x�/ �
kd .y;x�/, we obtain

d
�
y;x�

�
� �Ckd

�
y;x�

�
and thus,

d
�
y;x�

�
�

1

1�k
�.

Hence, for any y 2 FS , there exists x� 2 FT such that

d
�
y;x�

�
�

1

1�k
�.
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By a similar procedure, we obtain that for any y 2 FT , there exists x� 2 FS such that

d
�
y;x�

�
�

1

1�k
�.

v/ It follows from iv/ (see also, Theorem 3 iv/).
vi/ Let xn;x

� 2 X;n 2N. Then, for any yn 2 T .xn/, there exists u 2 T .x�/D
fx�g such that

d
�
yn;x

�
�
� kd

�
xn;x

�
�

.
Since

d
�
xn;x

�
�
� d .xn;yn/Cd

�
yn;x

�
�
� d .xn;yn/Ckd

�
xn;x

�
�

,

thus
d
�
xn;x

�
�
�

1

1�k
d .xn;yn/ , for any n 2N. (3.4)

By d .xn;yn/
o
�! 0 as n!1, we obtain that there exists .an/ in E such that an # 0

as n!1 and
jd .xn;yn/j � an, for any n 2N. (3.5)

Letting in (3.4) n!1 and using (3.5), we have

d
�
xn;x

�
�
�

1

1�k
an # 0, as n!1.

Hence, xn
d;E
�! x� as n!1.

vi i/ Let yn;x
� 2X;n 2N. Then, for any un 2 T .yn/, there exists vn 2 T .x

�/D

fx�g such that
d
�
un;x

�
�
� kd

�
yn;x

�
�

.
Then:

d
�
ynC1;x

�
�
� d .ynC1;un/Cd

�
un;x

�
�
� d .ynC1;un/Ckd

�
yn;x

�
�

� d .ynC1;un/Ck
�
d .yn;un�1/Ckd

�
yn�1;x

�
��

D d .ynC1;un/Ckd .yn;un�1/Ck
2d
�
yn�1;x

�
�

and thus, inductively we get that:

d
�
ynC1;x

�
�
� d .ynC1;un/Ckd .yn;un�1/C : : :Ck

nd .y1;u0/Ck
nC1d

�
y0;x

�
�

D

nX
iD0

kn�id .yiC1;ui /Ck
nC1d

�
y0;x

�
� o
�! 0 as n!1,

which follows from Lemma 1.
By o-convergence definition to 0, we have there exists .an/ in E such that an # 0 as
n!1 and jd .ynC1;x

�/j � anC1, for any n 2N.
On the other hand, by the proof of Theorem 3 i/-i i/, we know that there exists a

sequence .xn/n2N of successive approximations for T starting from arbitrary .x;y/2
Graph.T / which E-converge to a fixed point x� 2 X of the operator T . Since, the
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fixed point is unique, we get that d .xn;x
�/

o
�! 0 as n!1 (by definition, there

exists .bn/ in E such that bn # 0 as n!1 and jd .xn;x
�/j � bn, for any n 2 N).

Thus, for such a sequence .xn/n2N, we have

jd .xn;yn/j �
ˇ̌
d
�
xn;x

�
�ˇ̌
C
ˇ̌
d
�
x�;yn

�ˇ̌
� .bnCan/# 0 as n!1, for each x 2X .

Hence,
d .xn;yn/

o
�! 0, as n!1.

�

A third result for multivalued k-contractions in vector metric spaces is the follow-
ing.

Theorem 5. Let .X;d;E/ be an E-complete vector metric space with E
Archimedean and let T W X ! Pcp .X/ be a multivalued k-contraction such that
T .FT /D FT . Then the following statements hold:

i/ T .x/D FT , for each x 2 FT ;

i i/ If .xn/n2N � X is a sequence such that xn
d;E
�! x� 2 FT as n!1, then

T .xn/
H;d;E
�! FT as n!1.

Proof. i/ Let x 2 FT be arbitrary chosen. Then, x 2 T .x/ and thus FT � T .x/.
On the other hand T .x/� T .FT /� FT .
Thus, T .x/D FT , for each x 2 FT .

i i/ Since xn
d;E
�! x� 2FT as n!1, it follows that there exists a sequence .an/�

E such that an # 0 as n!1 and

d
�
xn;x

�
�
� an, for any n 2N.

Let xn 2X;n 2N;x� 2X . Then, for any un 2 T .xn/, there exists u 2 T .x�/D FT

(respectively, for any u 2 T .x�/D FT , there exists un 2 T .xn/) such that

d .un;u/� kd
�
xn;x

�
�
� kan # 0, as n!1,

since E is Archimedean. Hence, T .xn/
H;d;E
�! FT as n!1. �

Open questions.
The above considerations give rise to the following tasks:
(a) To construct a similar theory for some multivalued generalized contraction in

vector metric spaces.
(b) To give fixed point theorems for nonlinear contractions in vector metric spaces

(see [2, 5, 6, 10, 18, 19]).
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