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Abstract. Let W D fw1;w2; : : : ;wkg be an ordered set of vertices of G and let v be a vertex
of G. The representation r.vjW / of v with respect to W is the k-tuple .d.v;w1/;d.v;w2/; : : : ;

d.v;wk//. W is called a resolving set or a locating set if every vertex of G is uniquely identified
by its distances from the vertices of W , or equivalently, if distinct vertices of G have distinct
representations with respect to W . A resolving set of minimum cardinality is called a metric
basis for G and this cardinality is the metric dimension of G, denoted by dim.G/.
Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a
resolving set exists).
In this paper, we study the metric dimension of barycentric subdivision of Cayley graphs
Cay.Zn˚Zm/. We prove that these subdivisions of Cayley graphs have constant metric di-
mension and only three vertices chosen appropriately suffice to resolve all the vertices of Cayley
graphs Cay.Zn˚Zm/.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Metric dimension is a parameter that has appeared in various applications of graph
theory, as diverse as, pharmaceutical chemistry [3], robot navigation [13], combinat-
orial optimization [15] and sonar and coast guard Loran [16], to name a few. Metric
dimension is a generalization of affine dimension to arbitrary metric spaces (provided
a resolving set exists).
In a connected graph G, the distance d.u;v/ between two vertices u;v 2 V.G/ is the
length of a shortest path between them. Let W D fw1;w2; : : : ; wkg be an ordered
set of vertices of G and let v be a vertex of G. The representation r.vjW / of v with
respect to W is the k-tuple .d.v;w1/;d.v;w2/; d.v;w3/; : : : ;d.v;wk//. W is called
a resolving set [3] or locating set [16] if every vertex of G is uniquely identified by
its distances from the vertices of W , or equivalently, if distinct vertices of G have
distinct representations with respect toW . A resolving set of minimum cardinality is
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called a basis for G and this cardinality is the metric dimension or location number
of G, denoted by ˇ.G/ [2].
For a given ordered set of vertices W D fw1;w2; : : : ;wkg of a graph G, the ith com-
ponent of r.vjW / is 0 if and only if v D wi . Thus, to show that W is a resolv-
ing set it suffices to verify that r.xjW / ¤ r.yjW / for each pair of distinct vertices
x;y 2 V.G/nW .
A useful property in finding ˇ.G/ is the following lemma:

Lemma 1 ([17]). Let W be a resolving set for a connected graph G and u;v 2
V.G/. If d.u;w/D d.v;w/ for all vertices w 2 V.G/nfu;vg, then fu;vg\W ¤¿.

Let F be a family of connected graphs Gn W F D .Gn/n�1 depending on n as
follows: the order jV.G/j D '.n/ and lim

n!1
'.n/ D 1. If there exists a constant

C > 0 such that ˇ.Gn/ � C for every n � 1, then we shall say that F has bounded
metric dimension; otherwise F has unbounded metric dimension.
If all graphs in F have the same metric dimension (which does not depend on n),
F is called a family with constant metric dimension [12]. Some classes of regular
graphs with constant metric dimension have been studied in [1, 10] recently while
metric dimension of some classes of convex polytopes has been determined in [7]
and [9].
Other families of graphs have unbounded metric dimension: if Wn denotes a wheel
with n spokes and J2n the graph deduced from the wheelW2n by alternately deleting
n spokes, then ˇ.Wn/Db

2nC2
5
c for every n� 7 [2] and ˇ.J2n/Db

2n
3
c [18] for every

n� 4. The generalized Petersen graphs P.n;3/ have bounded metric dimension [8].
The graphs having metric dimension 1 are characterized in the following theorem.

Theorem 1 ([3]). The metric dimension of a graph G is 1 if and only if G Š Pn,
where Pn denotes a path of length n�1 or G is one-way infinite path.

The next theorem gives a nice property of the graphs with metric dimension 2.

Theorem 2 ([14]). Let G be a graph with metric dimension 2 and let fv1;v2g �

V.G/ be a metric basis in G, then the degree of both v1 and v2 is at most 3.

Geometrically, subdividing an edge is an operation that inserts a new vertex into
the interior that results in splitting that edge into two edges. Subdividing a graph G
means performing a sequence of edge-subdivision operations. The resulting graph
is called a subdivision of the graph G. The operation of subdivision can be used to
convert a general graph into a simple graph. The barycentric subdivision of a graph
G is the subdivision in which one new vertex is inserted in the interior of each edge.
The following propositions give some nice results related to barycentric subdivision
of a graph (see [6]).

� The barycentric subdivision of any graph is a bipartite graph.
� The barycentric subdivision of any graph yields a loopless graph.
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� The barycentric subdivision of any loopless graph yields a simple graph.
A graph G is planar if it can be drawn in the plane without edge crossings. Subdi-
vision of graphs play a very important role in characterization of planar graphs. A
graph G is planar if and only if every subdivision of G is planar. Two graphs are said
to be homeomorphic if they are subdivisions of same graph G. The next theorem
gives a nice characterization of planar graphs.

Theorem 3 ([6]). A graph is planar if and only if it does not contain a subdivision
of K5 or K3;3.

Note that the problem of determining whether ˇ.G/ < k is anNP -complete prob-
lem [5].
In this paper, we study the metric dimension of barycentric subdivision of Cayley
graphs Cay.Zn˚Zm/. We prove that these subdivisions of Cayley graphs have
constant metric dimension and only three vertices chosen appropriately suffice to re-
solve all the vertices of these subdivision of Cayley graphs Cay.Zn˚Zm/.

2. THE METRIC DIMENSION OF BARYCENTRIC SUBDIVISION OF CAYLEY
GRAPHS Cay.Zn˚Zm/

Let G be a semigroup, and let S be a nonempty subset of G. The Cayley graph
Cay.G;S/ of G relative to S is defined as the graph with vertex set G and edge
set E.S/ consisting of those ordered pairs .x;y/ such that sx D y for some s 2 S .
Cayley graphs of groups are significant both in group theory and in constructions of
interesting graphs with nice properties. The Cayley graph Cay.G;S/ of a group G
is symmetric or undirected if and only if S D S�1.
The Caylay graphs Cay.Zn˚Zm/;n � 3;m � 2, is a graph which can be obtained
as the cartesian product Pm�Cn of a path on m vertices with a cycle on n vertices.
The vertex set and edge set of Cay.Zn˚Zm/ defined as: V.Cay.Zn˚Zm// D

f.xi ;yj / W 1 � i � n;1 � j � mg and E.Cay.Zn˚Zm// D f.xi ;yj /.xiC1;yj / W

1 � i � n;1 � j � mg[ f.xi ;yj /.xi ;yjC1/ W 1 � i � n;1 � j � m� 1g: We have
jV.Cay.Zn˚Zm/j Dmn; jE.Cay.Zn˚Zm/j D .2m�1/n, where jV.Cay.Zn˚

Zm/j; jE.Cay.Zn˚Z2/j denote the number of vertices, edges of the Cayley graphs
Cay.Zn˚Zm/, respectively.

The metric dimension of Cayley graphs Cay.Zn˚Z2/ has been determined in
[4] while the metric dimension of Cayley graphs Cay.Zn W S/ for all n � 7 and
S D f˙1;˙3g hase been determined in [11].
The barycentric subdivision graph S.Cay.Zn˚Zm// can be obtained by adding a
new vertex uj

i between .xi ;yj / and .xiC1;yj / and adding a new vertex vj
i between

.xi ;yj / and .xi ;yjC1/. Clearly, S.Cay.Zn˚Zm// has 3nm�n vertices and 4nm�
2n edges.
The metric dimension of Pm�Cn has been determined in [4] and Cayley graphs
Cay.Zn˚Z2/ is actually the cartesian product of P2�Cn. In the next theorem, we
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prove that the metric dimension of the barycentric subdivision S.Cay.Zn˚Zm// is
constant and only three vertices appropriately chosen suffice to resolve all the vertices
of the S.Cay.Zn˚Zm//. Note that the choice of appropriate basis vertices (also
refereed to as landmarks in [14]) is the core of the problem. For our purpose, we call
the sets of points as S1D f.xi ;yj / W 1� i � n;1� j �mg, S2D fu

j
i W 1� i � n;1�

j �mg and S3 D fv
j
i W 1� i � n;1� j �m�1g.

Theorem 4. Let S.Cay.Zn˚Zm// be the barycentric subdivision of Cayley
graphs Cay.Zn˚Zm/; then ˇ.S.Cay.Zn˚Zm///D 3 for every n� 6.

Proof. We will prove the above equality by double inequalities.
Case 1. When n is even.
LetW D f.x1;y1/; .x2;y1/; .xn

2
C1;y1/g � V.S.Cay.Zn˚Zm///, we show thatW

is a resolving set for S.Cay.Zn˚Zm// in this case. For this we give representations
of any vertex of V.S.Cay.Zn˚Zm///W with respect to W .
Representations for the vertices of S.Cay.Zn˚Zm// are

r..xi ;yj /jW /D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

.2.j �1/;2j;nC2.j �1//; i D 1& 1� j �m

.2j;2.j �1/;nC2.j �2//; i D 2& 1� j �m

.2.iCj �2/;2.iCj �3/;2.n
2
Cj � i//;3� i � n

2
&1� j �m

.nC2.j �1/;nC2.j �2/;2.j �1//; i D n
2
C1& 1� j �m

.2.nCj � i/;2.nCj C1� i/;2.j C i �2/�n/; n
2
C2� i � n

& 1� j �m

and

r.u
j
i jW /D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

.2j �1;2j �1;nC2j �3/; i D 1& 1� j �m

.2.iCj /�3;2.iCj /�5;n�1�2.i �j //;2� i � n
2

& 1� j �m

.nC2j �3;nC2j �3;2j �1/; i D n
2
C1& 1� j �m

.2.nCj � i/�1;2.nCj � i/C1;2.j C i/�n�3/; n
2
C2� i � n

& 1� j �m

and

r.v
j
i jW /D

8̂̂̂̂
<̂
ˆ̂̂:
.2j �1;2j C1;nC2j �1/; i D 1& 1� j �m�1

.2.iCj /�3;2.iCj /�5;nC1�2.i �j //;2� i � n
2
C1

& 1� j �m�1

.2.nCj � i/C1;2.nCj � i/C3;2.j C i/�n�3/; n
2
C2� i � n

& 1� j �m�1
We note that there are no two vertices having the same representations implying that
ˇ.S.Cay.Zn˚Zm///� 3.
On the other hand, we show that ˇ.S.Dn// � 3. Suppose on contrary that
ˇ.S.Cay.Zn˚Zm///D 2, then there are the following possibilities to be discussed.
The behavior of the outmost cycle and innermost cycle are same.
(1) Both vertices are in the same set. Here are the following subcases.
� Both vertices belong to the set S1: When Without loss of generality, we can sup-
pose that one resolving vertex is .x1;y1/. Suppose that the second resolving vertex



METRIC DIMENSION OF BARYCENTRIC SUBDIVISION OF CAYLEY GRAPHS 641

is .xp;yj / .2� p �
n
2
C1;1� j �m/. Then for 2� p � n

2
;1� j �m�1, we have

r.uj
njf.x1;yj /; .xp;yj /g/D r.v

j
1 jf.x1;yj /; .xp;yj /g/D .1;2p�1/:

For j Dm, we have

r.um
n jf.x1;ym/; .xp;ym/g/D r.v

m�1
1 jf.x1;ym/; .xp;ym/g/D .1;2p�1/

and for p D n
2
C1;1� j �m we have

r.u
j
1 jf.x1;yj /; .xp;yj /g/D r.u

j
njf.x1;yj /; .xp;yj /g/D .1;n�1/;

a contradiction.
� Both vertices belong to the set S2. Without loss of generality, we can suppose that
one resolving vertex is uj

1 . There are two possibilities. When second resolving vertex
on the same level. Suppose that the second resolving vertex is uj

p .2 � p �
n
2
C 1/.

Then for 2� p � n
2

, we have

r.uj
njfu

j
1 ;u

j
pg/D r.v

j
1 jfu

j
1 ;u

j
pg/D .2;2p/;

for j Dm, we have

r.um
n jfu

m
1 ;u

m
p g/D r.v

m�1
1 jfum

1 ;u
m
p g/D .2;2p/

and for p D n
2
C1, we have

r..x1;yj /jfu
j
1 ;u

j
n
2
C1
g/D r..x2;yj /jfu

j
1 ;u

j
n
2
C1
g/D .1;n�1/;

a contradiction. When second resolving vertex on the different level. Suppose that
the second resolving vertex is us

p .1� p �
n
2
C1;s > j /. Then for p D 1, we have

r..x1;yj /jfu
j
1 ;u

s
1g/D r..x2;yj /jfu

j
1 ;u

s
1g//D .1;2.s�j /C1/;

for p D 2, we have

r.vs�1
3 jfu

j
1 ;u

s
2g/D r.u

s
1jfu

j
1 ;u

s
2g/D .2.sC1�j /;2/

and when 3� p � n
2
C1, we have

r.v
j
3 jfu

j
1 ;u

s
pg/D r.u

jC1
2 jfu

j
1 ;u

s
pg/D .4;2.pC s�j �3//;

a contradiction.
� Both vertices belong to the set S3. Without loss of generality, we can suppose that
one resolving vertex is vj

1 , 1 � j �m�1. Suppose that the second resolving vertex
is vs

p .2� p �
n
2
C1;1� j;s �m�1;j D s/. Then for 2� p � n

2
C1, we have

r..x1;yj /jfv
j
1 ;v

j
p g/D r..x1;yjC1/jfv

j
1 ;v

j
p g/D .1;2p�1/;

a contradiction. If one resolving vertex is vj
p and second resolving vertex is vs

p for
1� p � n

2
C1;1� j;s �m�1;s > j; then we have

r.uj
p jfv

j
p ;v

s
pg/D r.u

j
p�1jfv

j
p ;v

s
pg/D .2j;2s/;
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a contradiction. Now if we can suppose that one resolving vertex is vj
1 ;1� j �m�1:

Suppose that the second resolving vertex vs
p; .2� p �

n
2
C1;1� s �m�1;1� j �

m�2;s > j /. For 2� p � n
2

, we have

r.u
j
1 jfv

j
1 ;v

s
pg/D r.u

jC1
n jfv

j
1 ;v

s
pg/D .2;2.sCp�j �1//;

and for p D n
2
C1, we have

r.u
j
1 jfv

j
1 ;v

s
pg/D r.u

j
njfv

j
1 ;v

s
pg/D .2;nC2s�2j /;

a contradiction.
(2) Both vertices are not in the same set. Here are the following subcases.
�One vertex in the set S1 and the other one in the set S2 but in the same level. Without
loss of generality, we can suppose that one resolving vertex is .x1;yj /;1 � j � m.
Suppose that the second resolving vertex is uj

p .1� p �
n
2
C1;1� j �m/. Then for

1� p � n
2
;1� j �m�1, we have

r.uj
njf.x1;yj /;u

j
pg/D r.v

j
1 jf.x1;yj /;u

j
pg/D .1;2p/

and for 1� p � n
2
;j Dm, we have

r.um
n jf.x1;ym/;u

m
p g/D r.v

m�1
1 jf.x1;ym/;u

m
p g/D .1;2p/;

a contradiction. For p D n
2
C1;1� j �m�1 we have

r.u
j
1 jf.x1;yj /;u

j
n
2
C1
g/D r.v

j
1 jf.x1;yj /;u

j
n
2
C1
g/D .1;n/

and for p D n
2
C1;j Dm we have

r.um
1 jf.x1;ym/;u

m
n
2
C1
g/D r.vm�1

1 jf.x1;ym/;u
m
n
2
C1
g/D .1;n/;

a contradiction. Now one vertex in the set S1 and the other one in the set S2 but in
the different level .1� p � n

2
C1;1� j �m�1;1� s �m;s > j /. Without loss of

generality, we can suppose that one resolving vertex is .x1;yj /;1� j �m. Suppose
that the second resolving vertex is uj

p .1 � p �
n
2
C1;1 � j �m/: Then for p D 1,

we have

r.u
j
1 jf.x1;yj /;u

s
1g/D r.u

j
njf.x1;yj /;u

s
1g/D .1;2.s�j C1//;

and for 2� p � n
2

, we have

r.u
j
1 jf.x1;yj /;u

s
pg/D r.v

j
1 jf.x1;yj /;u

s
pg/D .1;2.sCp�j �1//:

For p D n
2
C1; we have

r.uj
njf.x1;yj /;u

s
pg/D r.v

j
1 jf.x1;yj /;u

s
pg/D .1;2.s�j �1/Cn/;

a contradiction.
�One vertex in the set S1 and the other one in the set S3 but in the same level. Without
loss of generality, we can suppose that one resolving vertex is .x1;yj /;1 � j � m.
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Suppose that the second resolving vertex is vs
p .1� p �

n
2
C1;1� s �m�1/. Then

for p D 1;1� j;s �m�1;s � j; we have

r.u
j
1 jf.x1;yj /;v

s
pg/D r.u

j
njf.x1;yj /;v

s
pg/D .1;2.s�j C1//;

a contradiction. For 2� p � n
2
;1� j;s �m�1;s D j; we have

r.uj
njf.x1;yj /;v

j
p g/D r.v

j
1 jf.x1;yj /;v

j
p g/D .1;2p/;

for p D n
2
C1; we have

r.u
j
1 jf.x1;yj /;v

j
p g/D r.u

j
njf.x1;yj /;v

j
p g/D .1;n/;

a contradiction. For 2� p � n
2
;1� j;s �m�1;s > j; we have

r.u
j
1 jf.x1;yj /;v

s
pg/D r.v

j
1 jf.x1;yj /;v

s
pg/D .1;2.sCp�j �1//;

for p D n
2
C1; we have

r.u
j
1 jf.x1;yj /;v

s
pg/D r.u

j
njf.x1;yj /;v

s
pg/D .1;2.sCp�j �1//;

a contradiction.
� One vertex in the set S2 and the other one in the set S3 but in the same level.
Without loss of generality, we can suppose that one resolving vertex is uj

1 ;1� j �m.
Suppose that the second resolving vertex is vs

1 .1� p �
n
2
C1;1� s �m�1/. Then

for p D 1;1� j;s �m�1;s � j; we have

r.usC1
1 jfu

j
1 ;v

s
1g/D r.u

sC1
n jfu

j
1 ;v

s
1g/D .2.s�j C2/;2/;

a contradiction. For 2� p � n
2
;1� j �m;1� s �m�1;s D j; we have

r.uj
njfu

j
1 ;v

j
p g/D r.v

j
1 jfu

j
1 ;v

j
p g/D .2;2p/;

for p D n
2
C1; we have

r.uj
njfu

j
1 ;v

j
p g/D r.v

j
2 jfu

j
1 ;v

j
p g/D .2;n/;

a contradiction. For p D 2;1� j;s �m�1;s > j; we have

r.u
j
2 jfu

j
1 ;v

s
pg/D r.v

j
n jfu

j
1 ;v

s
pg/D .2;2.s�j C1//;

for 3� p � n
2
C1; we have

r.u
j
2 jfu

j
1 ;v

s
pg/D r.v

j
2 jfu

j
1 ;v

s
pg/D .2;2.sCp�j �2//;

a contradiction.
Case 2. When n is even.
Let W D f.x1;y1/; .x2;y1/;un

2
C1g � V.S.Cay.Zn˚Zm///, we show that W is a

resolving set for S.Cay.Zn˚Zm// in this case. For this we give representations of
any vertex of V.S.Cay.Zn˚Zm///W with respect to W .
Representations for the vertices of S.Cay.Zn˚Zm// are
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r..xi ;yj /jW /D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

.2.j �1/;2j;nC2j �2/; i D 1& 1� j �m

.2j;2.j �1/;nC2j �4/; i D 2& 1� j �m

.2.iCj �2/;2.iCj �3/;n�2.i �j //;3� i � nC1
2

& 1� j �m

.nC2j �3;nC2j �3;2j �1/; i D nC3
2

& 1� j �m

.2.nCj � i/;2.nCj C1� i/;2.j C i/�n�3/; nC5
2
� i � n

& 1� j �m

r.u
j
i jW /D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

.2j �1;2j �1;nC2j �3/; i D 1& 1� j �m

.2.iCj /�3;2.iCj /�5;n�1C2.j � i//;2� i � n�1
2

& 1� j �m

.nC2j �2;nC2j �4;2j �2/; i D nC1
2

& 1� j �m

.2.nCj � i/�1;2.nCj � i/C1;2.j C i/�n�3/; nC3
2
� i � n

& 1� j �m
and

r.v
j
i jW /D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

.2j �1;2j C1;nC2j �1/; i D 1& 1� j �m�1

.2.iCj /�3;2.iCj /�5;n�2iC2j C1//;2� i � nC1
2

& 1� j �m�1

.nC2.j �1/;nC2.j �1/;2j /; i D nC3
2

& 1� j �m�1

.2.nCj � i/C1;2.nCj � iC1/C1;2j C2i �n�3/;
nC5

2
� i � n& 1� j �m�1

Again we see that there are no two vertices having the same representations which
implies that ˇ.S.Cay.Zn˚Zm///� 3.
On the other hand, suppose that ˇ.S.Cay.Zn˚Zm///D 2, then there are the same
possibilities as in case (1) and contradictions can be deduced analogously. This im-
plies that ˇ.S.Cay.Zn˚Zm///D 3 in this case, which completes the proof. �

3. CONCLUSION

The problem of determining whether ˇ.G/ < k is an NP -complete problem. In
this paper, we have studied the metric dimension of barycentric subdivision of Cayley
graphs Cay.Zn˚Zm/. We proved that these subdivisions of Cayley graphs have
constant metric dimension and only three vertices chosen appropriately suffice to
resolve all the vertices of subdivisions of Cayley graphs Cay.Zn˚Zm/. It is natural
to ask for characterization of graph classes with constant metric dimension.
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