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Abstract. In this paper we give a new proof of a result by S. Reich and A.J. Zaslavski (S. Reich
and A.J. Zaslavski, A fixed point theorem for Matkowski contractions, Fixed Point Theory,
8(2007), No. 2, 303-307). Some new fixed point theorems for nonself generalized contractions
are also given.
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1. INTRODUCTION

There are many techniques in the fixed point theory of nonself operators (see [10],
[4], [6], [91, [19], [20], [2], ...). An exotic result is given in [14] (see also, [13] and
[15]). This result read as follows:

Theorem 1. Let (X,d) be a complete metric space, Y C X a nonempty closed
subset and f : Y — X be a @-contraction, where ¢ is a comparison function. We
suppose that there exists a bounded sequence (x,),en+ such that f" (x,) is defined
foralln € N*. Then f has a unique fixed point x* and f" (x,) — x*.

The aim of this paper is to give a new proof of this theorem and to obtain other
results of this type.

2. PRELIMINARIES
2.1. Notations

N={0,1,2,...}, N* ={1,2,3,...}.

Ry ={xeR|x>0},RL ={xeR|x>0}

Let (X, d) be a metric space. We will use the following symbols:
PX)y={Y|Y CX}
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P(X)={Y C X | Y isnonempty}, P,(X):={Y € P(X) | Y is bounded},

P (X):={Y € P(X) | Y isclosed}, Pp;(X):= Pp(X)N Pe;(X).
If f:X — X is an operator then Fr := {x € X| x = f (x)} denotes the fixed point
set of the operator f. In the case when the operator f has an unique fixed point
x* € X then we write Fy = {x*}.

The diameter functional § : P(X) — R4 U{+o00} is defined by

8(A) :=sup{d(a,b) | a,b € A}.

2.2. Comparison functions

Let ¢ : R+ — R4 be a function. We consider the following conditions relative to
@:
(ip) @ is increasing;
(iip) @ (¢) <t,Vt >0;
(iliy) ¢ (0) =0;
(ivy) ¢" (t) > 0asn — oo, VI € Ry;
(Vg) t—@(t) > 00 ast — oo;
(Vig) ioj e" (t) < +o0, Vt € Ry
n=0
Definition 1 (I.A. Rus [17]). By definition the function ¢ is a comparison function
if it satisfies the conditions (i) and (ivy).

Definition 2. A comparison function is:

(a) strict comparison function if it satisfies the condition (vy);
(b) strong comparison function if it satisfies the condition (viyp).

It is clear that if ¢ is a comparison function then ¢ (¢) < ¢, V¢ > 0, and ¢ (0) = 0.
o0

If ¢ is a strong comparison function then the functions ¢ and )_ ¢” are continuous
int =0. "=

For example, if ¢ (¢) := at, t € R4, a € [0;1], then ¢ is a strict and strong com-
parison function and ¢ (¢) := IL_H, t € R4, is a strict comparison function which is
not a strong comparison function.

Let ¢ : Rt — R4 be a strict comparison function. In this case we define the
function 6, : Ry — R4, defined by,

6, (1) = supis € Ry | s—¢(s) <1}

We remark that 6, is increasing and 6, (f) — 0 as t — 0. The function 6, appears
when we study the data dependence of the fixed points.
For more considerations on comparison functions see [17], [1], [21] and [5].
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2.3. Maximal displacement functional

Let (X, d) be a metric space, Y € P.;(X) and f : Y — X be a continuous nonself
operator. By the maximal displacement functional corresponding to f we understand
the functional E¢ : P (Y') — R4 U {+o0} defined by

Er (A) :=sup{d (x, f (x)) | x € A}.
We have that:
(i) A,Be P(Y),AC Bimply Ef (A) < Ef (B);
(i) Ef (A)=Es(A) forall A€ P (Y).
Definition 3. An operator f : Y — X is a-graphic contraction if 0 <« < 1 and
xeY, f(x)eY imply
d(f?(x),f (x) <ad (x, f (x)).
Example 1. If f 1Y — X is a-contraction then f is a-graphic contraction.

Example 2. If f .Y — X is a-Kannan operator, i.e., 0 < o < %, and
d(f (). f)=aldx, fx)+d . f ()], Vx,y €Y,
then f is ;2 -graphic contraction.
Also, we have that:

Lemma 1. Let (X,d) be a metric space, Y € P,;(X) and f :Y — X be a con-
tinuous «-graphic contraction. Then:

(@) Ef (f (A)) <aEy(A), forall ACY with f (A) CY;
() Ef (f (A)NY) <aEf(A), forall ACY with f (A)NY # @.

Proof. The proof follows from the definition of E¢. Let, for example, to prove
(b). We have

Ef(f(ANY)=sup{d(x,f(x) | x€ f(ANY}=
=sup{d (f (), f>)) | ued, fuyeY} <
<asup{d (u,f () | ueA}=
=akEy (A)

2.4. Matrices convergent to 0

Definition 4. A matrix S € R is called a matrix convergent to zero iff S k0
as k — 4o0.

Theorem 2 (see [12], [16], [23], [10]). Let S € IRﬂxm. The following statements
are equivalent:

(1) S is a matrix convergent to zero;
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(i) S¥x — 0ask — 400, Vx € R™;
(iii) I, — S is non-singular and

Un—8) '=I,+S+85%+--
(iv) I, — S is non-singular and (I, — S )_1 has nonnegative elements;

(v) L eC, det(S—Aly) =0imply |A| < 1;
(vi) there exists at least one subordinate matrix norm such that || S| < 1.

The matrices convergent to zero were used by A. I. Perov [11] (see also [10] pp.
432-434) to generalize the contraction principle in the case of generalized metric
spaces with the metric taking values in the positive cone of R™.

3. A NEW PROOF OF THEOREM |

Now we present a new proof of Theorem 1. Let A € Pp, ; (Y') be such that x,, € A4,
for all n € N*. We consider the following standard construction in the fixed point
theory for the nonself operators (see for example [8] and [7]).

Let Ay := f(A), Az := f(A1NA), ..., Ap+1:= f (AN A), n € N*. We re-
mark that:

(@) Ap+1 C Ap,Vn e N*;
(b) f"(xn) € Ap, Vn € N*, 50 A, # @, Vn € N*.

Since f is a ¢-contraction, i.e., ¢ : Ry — R4 is a comparison function such that

d(f (). f () =ed(x.y). Vx.y €Y,
it follows that
§(f(B) =¢(8(B)). VB e Py(Y).
From the properties of ¢ and § we have

§(Anr1) = 8(F(AaN D) =8(f (AnNA) =8(f (An)) =
@ 8(An) <+ <¢"t1(§(4)) >0
as n — +o00. From Cantor intersection lemma we have
Ao = () An # . 8(Aco) = 0 and f (Aoo N A) C Ace.
neN

From A # @ and § (Axo) = 0, we have that Aoo = {x*}. On the other hand
f™(xn) € Ay and " 1(x,) € Ay—1 NY. This implies that {f” (x,)},cn and
{ frl (x,,)}n cn are fundamental sequences. Since A, n € IN*, are closed, it fol-
lows that

A

F7 1 (xp) = x* and f" (x,) = x* as n — +o0.
Since f is continuous then f” (x,) — f (x*),s0 f (x*) = x*.
With respect to the data dependence of the fixed point, in Theorem 1, we have the
following result:
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Theorem 3. Let f : Y — X be as in Theorem 1, where ¢ is a strict comparison
function. Then:
@ d (f"(xn).x*) <@ (d (xp,x¥)), Vn € N*;
(b) d(x,x*) <0,(d(x, f(x)), Vxe¥;
(c) Let g: Y — X be such that:
(1) there exists n > 0 suchthatd (f (x),g(x)) <n, VxeY;

(2) Fg # 2.
Then
d(x*,y%) <0, (n),Vy* € Fy.
Proof. Let us prove (b) and (¢).
(b). The conclusion (b) follows from the following estimation

d(x.x*)<d(x, f(x)+d(f(x).x*)<d(x,f(x)+¢(d(x,x*)), VxeY.
So,
d(x,x*)—¢(d (x.x*)) <d (x. f(x)), Vx €Y.
(c). Let y* € Fg then from (b) it follows

d (x*,y%) =0 (d (y*. £ (")) = Op (d (g (v*). S (¥7))) < 0p (m).
0

For more considerations on data dependence of the fixed points for nonself ¢-
contractions see [3], [18] and [22].

4. A FIXED POINT THEOREM FOR NONSELF KANNAN OPERATORS
‘We have:

Theorem 4. Let (X,d) be a complete metric space, Y C X a nonempty bounded
closed subset and f 1Y — X a continuous operator. We suppose that:
(1) f is a-Kannan operator;
(ii) there exists a sequence (Xp),en+ in Y such that f" (xy,) is defined for all
n e N*;
(i) Ey (Y) < +o00.
Then:
(@) Fr={x*};
(b) "V (xp) = x* and f (xn) = x* asn — +o00;
© dx,x*)<(14+a)d(x,f(x)),VxeY;
@) d ("1 (en)x*) <o (1 —a)' T (A +a)d (xn. f (xn)), Yo € N*;
(e) Let g:Y — X be such that:
(1) there exists n > 0 such thatd (f (x),g(x)) <n, VxeY;
(2) Fg #@.
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Then
d(x*,y*) <(1+a)n,Vy* € Fg.

Proof. (a)+ (b). Let Yy := f(Y), Yo:= f(Y1NY),..., Ypt1:= f(¥,NY),
n € N*. We remark that Y,,4+1 C Y, and " (x,) € Yy, s0 Yy, # &, n € N*. Since f
is ¢-Kannan operator, from Example 2 and Lemma 1, we have that:

§(Yne1) =8 (7 (HaNY)) =8(f (YaNY)) <20 Ef (Y, NY) =

=20 Ey (f(Yn_lﬂY)ﬂY> =20 Ef (f (Ya_1 NY)NY) <
20[2 2C(n+1

Now the proof is similar with the proof of Theorem 1.
(¢). Let x € Y. From the definition of the Kannan operator we have:

d (x,x*) <d(x, f(x)+d (f (x),x*) <d(x,f(x)+ad(x, f(x)), VxeVt.
(d) and (e) follow from (c). O

5. OTHER NONSELF GENERALIZED CONTRACTIONS
5.1. Ciri¢-Reich-Rus operators

Let (X,d) be a metric space, Y € P,;(X) and f : Y — X be a nonself operator.
An operator f : Y — X is a Ciri¢-Reich-Rus operator (see [4], [20], [22], ...) if
there exist a, b € R4 with a +2b < 1 such that

d(fx).f ) =ad(x.y)+bld(x. f(x)+d(y.f ()] Vx.y €Y.

Lemma 2. Let (X,d) be a metric space, Y € P,j(X) and f :Y — X a nonself

Cirié-Reich-Rus operator then f is a nonself a-graphic contraction with o = %.

Proof. Let x € Y such that f (x) € Y then
d(f2(x),f () <ad (f(x),x)+b[d(f (x), f?(x))+d (x, f (x))],

SO
a+b

1-b

d(f?(x), f )= d(x, f (x)).

0

Lemma 3. Let (X,d) be a metric space, Y € P,j(X) and f :Y — X a nonself
Cirié-Reich-Rus operator then:
(@ 8(f(A)NY)<ad(A)+2bEs(A), forall ACY;

(b) Ef (f (A)NY) <aEf(A), forall ACY, where o = ‘;jb.

S
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Proof. (a). Let A C Y then

§(fA)NY)=sup{d(x,y) | x,ye f(ANY}=
=sup{d (f(w),f () | uved, fu),f)eY}=
<asup{d (u,v) | u,ve Ay+2bsup{d (u, f (u)) | ue A} =
=ad(A)+2bEs (A)

(b). The proof follows from Lemma 2 and Lemma 1. O

Also, for the next result we need the following lemma

Lemma 4 (Cauchy Lemma, [21]). Let a,, b, € Ry, n € N. We suppose that:

o0

i) X ax < +oo;
k=0

(i) by, = 0asn — oo.

Then

n
Zan—kbk —0asn— oo.
k=0
Theorem 5. Let (X,d) be a complete metric space, Y C X a nonempty bounded
closed subset and f 1Y — X a continuous operator. We suppose that:
() f is Ciri¢-Reich-Rus operator;
(ii) there exists a sequence (Xp),en+ in Y such that f" (xy) is defined for all
n e N*;

(iii) Ef (Y) < 4o0.
Then:

(@) Fr={x*};

b)) "V (xn) = x*and f (xn) — x* asn — +o0;

© d@x,x*)<(1+b)(1—a) Yd (x, f(x)), Vx € Y;

d) d (f”_1 (x,,),x*) <(A+b)(A—a) Yo" 1d (x,, f (xn)), Yn € N*, where

o= a-l-b.
1-b
(e) Let g : Y — X be such that:
(1) there exists n > 0 suchthatd (f (x),g(x)) <n, VxeY;
(2) Fg # 2.
Then

d(x*,y*)<(1+b)(1—a) ' n,Vy* € Fy.

Proof. (a)+ (D). Let Y1 := f(Y), Ya:= f(Y1NY), ..., Yyt1:= f (¥nNY),
n € N*. We remark that Y,,+1 C Y, and f" (x,) € Yy, s0 Y, # &, n € N*. Since f
is Ciri¢-Reich-Rus operator, from Lemma 3 (a), we have that:

§(Van) =8 (FaNY)) =8(f (a1 Y)) <
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<a§(YaNY)+2bEs (Y,NY) <
<ad(Yy)+2bEf (Y,NY) <--- <
<a"t8(Y)+a"2b-Ef (Y)+
+a"2b-Ef (Y1NY)+--+2b-Ef (Y, NY).
On the other hand, from Lemma 3 (b) we get
Ef (% 0Y) = Ef (F (T NV)NY ) = Ef (f (i NY)NY) <
<aEf(Yp NY)<--<a¥Ef(Y), ke N*,

’f_rll)’ Applying Lemma 4 for a, = a” and b, =2b-Ey (Y, NY) and we

where o =
get that
8(Yy) > 0asn — +o0

and the proof is similar with the proof of Theorem 1.
(c). Let x € Y. From the definition of the Ciri¢-Reich-Rus operator we have:

d(x.x*)<d(x,f(x)+d(f(x).x*) <
<d(x, f(x)+ad (x,x*) +bd (x, f(x)), Vx €7,
SO
d(x,x*) < %d (x, f(x)), Vxev.
(d) and (e) follow from (c). O
5.2. Perov operators

Let (X, d) be a generalized metric space withd : X x X — R, Y € P¢; (X) and
f Y — X be a nonself operator. By definition (see [17], [20]) f:Y —> X is a
nonself Perov operator if there exists a matrix convergent to zero S € R such
that
d(f(x), f()=<S-d(x,y), x,y €Y.

We have the following fixed point results in the case of nonself Perov operators:

Theorem 6. Let (X,d) be a complete generalized metric space withd : X x X —
R, Y C X a nonempty bounded closed subset and f :Y — X an operator. We
suppose that:

(1) f is a Perov operator;
(ii) there exists a sequence (Xp),en+ in Y such that f" (xy,) is defined for all
n e N*.
Then:
(@) Fr={x"}
b)) "V (xp) = x*and f" (xn) = x* asn — +o0.
(©) d (x.x*) < (Im—8)""d (x. f (x)), Vx € Y;



SOME FIXED POINT THEOREMS FOR NONSELF GENERALIZED CONTRACTION 1029

@ d(f"(xp).x*) < 8"d (xp,x*), Yn € N*;
(e) Let g : Y — X be such that:
(1) there exists n € (IR*+)m suchthatd (f (x),g(x))<n VxeY;
(2) Fg #@.
Then
d (x*,y*) <Un—8)"1nvy*e Fg.

Proof. (a)+ (b). LetYy = f(Y), Yo:= f(Y1NY), ..., Yu41:= f(Yn,NY),
n € N*. We remark that Y,,+1 C Y, and f" (x,) € Yy, s0 Y, # &, n € N*. Since f
is a Perov we have:

§(Yas1) = 8(F(NT)) =8(f (aNY) < S-8(FNY) =<
<S8, <--<S"1.§5(Y)—>0asn — +oo.

Now the proof is similar with the proof of Theorem 1.
(c). Let x € Y then we have:

d(x,x*) <d(x,f(x)+d(f(x).x*) <d(x, f(x))+Sd (x,x*), Vx €Y,

SO
d(x,x*) < (Um—5)""d (x, f (x)), Vx €Y.

(d) follows from the definition of the Perov operator and (e) is obtained from (c)
for x 1= y* € Fg. a

6. AN OPEN PROBLEM
The above considerations give rise to the following problem:

Problem 1. Let (X,d) be a complete metric space, Y a nonempty bounded and
closed subset of X and [ : Y — X a nonself operator. We suppose that there exists a
sequence (xn),cn+ such that f" (x,) is defined for all n € N*. In which additional
conditions on f we have that:

(a) Fr #@ ?
(b) Fy = {x*}?
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