

TWIN ROMAN DOMINATION NUMBER OF A DIGRAPH

H. ABDOLLAHZADEH AHANGAR, J. AMJADI, S.M. SHEIKHOLESLAMI, V. SAMODIVKIN, AND L. VOLKMANN

Received 25 March, 2014

Abstract. Let *D* be a finite and simple digraph with vertex set V(D). A twin Roman dominating function (TRDF) on *D* is a labeling $f: V(D) \rightarrow \{0, 1, 2\}$ such that every vertex with label 0 has an in-neighbor and out-neighbor with label 2. The weight of a TRDF *f* is the value $\omega(f) = \sum_{v \in V(D)} f(v)$. The twin Roman domination number of a digraph *D*, denoted by $\gamma_R^*(D)$, equals the minimum weight of a TRDF on *D*. In this paper we initiate the study of the twin Roman domination number in digraphs. In particular, we present sharp bounds for $\gamma_R^*(D)$ and determine the exact value of the twin Roman domination number for some classes of digraphs.

2010 Mathematics Subject Classification: 05C69

Keywords: twin Roman dominating function, twin Roman domination number, Roman dominating function, Roman domination number, digraph

1. INTRODUCTION

Let *D* be a finite simple digraph with vertex set V(D) = V and arc set A(D) = A. A digraph without directed cycles of length 2 is an *oriented graph*. The order n = n(D) of a digraph *D* is the number of its vertices. We write $d_D^+(v)$ for the out-degree of a vertex *v* and $d_D^-(v)$ for its in-degree. The *minimum* and *maximum in-degree* and *minimum* and *maximum out-degree* of *D* are denoted by $\delta^- = \delta^-(D)$, $\Delta^- = \Delta^-(D)$, $\delta^+ = \delta^+(D)$ and $\Delta^+ = \Delta^+(D)$, respectively. The *minimum degree* $\delta(D)$ of a digraph *D* is defined as the minimum of all in-degrees and all out-degrees of vertices in *D* and the *maximum degree* $\Delta(D)$ of a digraph *D* is defined as the minimum of all in-degrees and all out-degrees of *v* trices in *D* and the *maximum degree* $\Delta(D)$ of a digraph *D* is defined as the minimum of all in-degrees and all out-degrees of vertices in *D* and the *maximum degree* $\Delta(D)$ of a digraph *D* is defined as the minimum of all in-degrees and all out-degrees of vertices in *D*. If *uv* is an arc of *D*, then we also write $u \to v$, and we say that *v* is an *out-neighbor* of *u* and *u* is an *in-neighbor* of *v*. For a vertex *v* of a digraph *D*, we denote the set of in-neighbors and out-neighbors of *v* by $N^-(v) = N_D^-(v)$ and $N^+(v) = N_D^+(v)$, respectively. If $X \subseteq V(D)$, then D[X] is the subdigraph induced by *X*. If $X \subseteq V(D)$ and $v \in V(D)$, then E(X, v) is the set of arcs from *X* to *v*. Consult [8] for the notation and terminology which are not defined here. For a real-valued function $f: V(D) \longrightarrow \mathbb{R}$ the weight of *f* is $w(f) = \sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S) = \sum_{v \in S} f(v)$, so w(f) = f(V(D)).

© 2016 Miskolc University Press

A vertex u in a digraph D out-dominates itself and all vertices v such that uv is an arc of D, similarly, u in-dominates both itself and all vertices w such that wu is an arc of D. A set S of vertices of D is a twin dominating set of D if every vertex of D is out-dominated by a vertex of S and in-dominated by a vertex of S. The twin domination number $\gamma^*(D)$ is the cardinality of a minimum twin dominating set. A $\gamma^*(D)$ -function is a twin dominating function of D with weight $\gamma^*(D)$. The twin domination, was introduced by Chartrand, Dankelmann, Schultz, and Swart [3] and has been studied by several authors (see [1, 2, 6]).

A Roman dominating function (RDF) on a digraph D is a function $f: V \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex v for which f(v) = 0 has a inneighbor u for which f(u) = 2. The weight of an RDF f is the value $\omega(f) = \sum_{v \in V} f(v)$. The Roman domination number of a digraph D, denoted by $\gamma_R(D)$, equals the minimum weight of an RDF on D. A $\gamma_R(D)$ -function is a Roman dominating function of D with weight $\gamma_R(D)$. The Roman domination for digraphs was introduced by Kamaraj and Hemalatha [5] and investigated in [7].

A twin Roman dominating function (TRDF) on D is a Roman dominating function of D such that every vertex with label 0 has an out-neighbor with label 2. The twin Roman domination number of a digraph D, denoted by $\gamma_R^*(D)$, equals the minimum weight of a TRDF on D. A $\gamma_R^*(D)$ -function is a twin Roman dominating function of D with weight $\gamma_R^*(D)$. A twin Roman dominating function $f: V \longrightarrow \{0, 1, 2\}$ can be represented by the ordered partition (V_0, V_1, V_2) (or (V_0^f, V_1^f, V_2^f)) to refer f) of V, where $V_i = \{v \in V \mid f(v) = i\}$. In this representation, its weight is $\omega(f) =$ $|V_1| + 2|V_2|$. Since $V_1^f \cup V_2^f$ is a twin dominating set when f is a TRDF, and since placing weight 2 at the vertices of a twin dominating set yields a TRDF, we have

$$\gamma^*(D) \le \gamma^*_R(D) \le 2\gamma^*(D). \tag{1.1}$$

Obviously the function $f = (\emptyset, V(D), \emptyset)$ is a TRDF of D which implies that

$$\gamma_R^*(D) \le n. \tag{1.2}$$

Our purpose in this paper is to establish some sharp bounds for the twin Roman domination number of a digraph.

We make use of the following results in this paper.

Theorem 1 ([3]). Let D be a digraph of order n and minimum degree $\delta(D) \ge 1$. Then,

$$\gamma^*(D) \le \left\lfloor \frac{2n}{3} \right\rfloor$$

The proof of the following observations are straightforward and therefore omitted.

Observation 1. Let D be a digraph on n vertices. Then

(i) If $\gamma_R^*(D) = n$ then for any γ_R^* -function $f = (V_0, V_1, V_2)$ on D, $|V_0| = |V_2|$. (ii) If $|V_0| = |V_2|$ for some γ_R^* -function $f = (V_0, V_1, V_2)$ on D, then $\gamma_R^*(D) = n$. **Observation 2.** Let D be a digraph and $f = (V_0^f, V_1^f, V_2^f)$ a TRDF on D.

- (i) If $x, y, z \in V_1$, $x \to y, y \to x, y \to z$ and $z \to y$ then $g = (V_0^f \cup \{x, z\}; V_1^f \{x, y, z\}; V_2^f \cup \{y\})$ is a TRDF on D with w(g) = w(f) 1.
- (ii) If $x \in V_2$, $y \in V_1$, $x \to y$ and $y \to x$ then $g = (V_0^f \cup \{y\}; V_1^f \{y\}; V_2^f)$ is a TRDF on D with w(g) = w(f) 1.

Observation 3. Let D be a digraph and $f = (V_0, V_1, V_2)$ a $\gamma_R^*(D)$ -function.

- (i) If $v \in V(D)$ and $d^+(v)d^-(v) = 0$ then $f(v) \neq 0$.
- (ii) If $x, y, z \in V_1$, $x \to y$ and $y \to x$ then $y \not\to z$ or $z \not\to y$ holds.
- (iii) If $x \in V_1$ then at least one of the sets $N^+(x) \cap V_2$ and $N^-(x) \cap V_2$ is empty.
- (iv) $|V_2| \le |V_0|$.

We will say that a digraph D is a *twin Roman digraph* if $\gamma_R^*(D) = 2\gamma^*(D)$.

Observation 4. A digraph *D* is a twin Roman digraph if and only if it has a $\gamma_R^*(D)$ -function $f = (V_0, V_1, V_2)$ with $V_1 = \emptyset$.

Proof. Let *D* be a twin Roman digraph, and let *S* be a $\gamma^*(D)$ -set of *D*. Then $f = (V(D) - S, \emptyset, S)$ is a TRDF on *D* such that $\omega(f) = 2|S| = 2\gamma^*(D) = \gamma^*_R(G)$, and therefore *f* is a $\gamma^*_R(D)$ -function with $V_1 = \emptyset$.

Conversely, let $f = (V_0, V_1, V_2)$ be a $\gamma_R^*(D)$ -function with $V_1 = \emptyset$ and thus $\gamma_R^*(D) = 2|V_2|$. Then V_2 is also a twin dominating set of D implying that $2\gamma^*(D) \le 2|V_2| = \gamma_R^*(D)$. Applying (1.1), we obtain the identity $\gamma_R^*(D) = 2\gamma^*(D)$, i.e. D is a twin Roman digraph.

2. BASIC PROPERTIES AND BOUNDS ON THE TWIN ROMAN DOMINATION NUMBER

First we characterize the digraphs D with the properties that $\gamma_R^*(D) = 2$, $\gamma_R^*(D) = 3$, $\gamma_R^*(D) = 4$ or $\gamma_R^*(D) = 5$.

Proposition 1. (i) For a digraph D of order $n \ge 2$, $\gamma_R^*(D) = 2$ if and only if n = 2 or there is a vertex v with $d^+(v) = d^-(v) = n - 1$.

- (ii) For a digraph D of order $n \ge 3$, $\gamma_R^*(D) = 3$ if and only if D has no vertex v with $d^+(v) = d^-(v) = n 1$. In addition (a) n = 3 or (b) D has a vertex v with $|N^+(v) \cap N^-(v)| = n 2$.
- (iii) For a digraph D of order $n \ge 4$, $\gamma_R^*(D) = 4$ if and only if $|N^+(v) \cap N^-(v)| \le n-3$ for any vertex $v \in V(D)$. In addition, (a) n = 4 or (b) there is a vertex v with $|N^+(v) \cap N^-(v)| = n-3$ or (c) there are two vertices $u, v \in V(D)$ such that $(N_D^+(u) \cup N_D^+(v)) \cap (N_D^-(u) \cap N_D^-(v)) = V(D) \{u, v\}$.
- (iv) For a digraph D of order $n \ge 5$, $\gamma_R^*(D) = 5$ if and only if $|N^+(v) \cap N^-(v)| \le n-4$ for any vertex $v \in V(D)$ and $|(N_D^+(x) \cup N_D^+(y)) \cap (N_D^-(x) \cup N_D^-(y))| \le n-3$ for all pairs of vertices $x, y \in V(D)$. In addition, (a) there are two vertices $u, v \in V(D)$ such that $|(N_D^+(u) \cup N_D^+(v)) \cap (N_D^-(u) \cup N_D^-(v))| = n-3$

or (b) n = 5 or (c) D contains a vertex w with $|N^+(w) \cap N^-(w)| = n - 4$ and the induced subdigraph $H = D[V(D) - (N^+[w] \cap N^-[w])]$ does not contain a vertex x with $|N_H^+(x) \cap N_H^-(x)| = 2$.

Proof. Since the proof of (i) is clear, we omit it.

(ii) Let D have no vertex v with $d^+(v) = d^-(v) = n-1$, then it follows from (i) that $\gamma_R^*(D) \ge 3$. The other two assumptions show that $\gamma_R^*(D) \le 3$, and so we obtain $\gamma_R^*(D) = 3$.

Conversely, assume that $\gamma_R^*(D) = 3$. It follows from (i) that D has no vertex v with $d^+(v) = d^-(v) = n-1$. Let $f = (V_0, V_1, V_2)$ be a $\gamma_R^*(D)$ -function. If $V_2 = \emptyset$, then $|V_1| = 3 = n$ and thus (a) holds. If $V_2 \neq \emptyset$, then $|V_1| = |V_2| = 1$. Suppose $V_2 = \{v\}$. Then $(u, v), (v, u) \in A(D)$ for each $u \in V_0$ and hence $|N^+(v) \cap N^-(v)| = n-2$. Thus condition (b) is proved.

(iii) Since $|N^+(v) \cap N^-(v)| \le n-3$ for any vertex $v \in V(D)$, we deduce from (i) and (ii) that $\gamma_R^*(D) \ge 4$. The other three assumptions show that $\gamma_R^*(D) \le 4$, and so we obtain $\gamma_R^*(D) = 4$.

Conversely, assume that $\gamma_R^*(D) = 4$. It follows from (i) and (ii) that $|N^+(v) \cap N^-(v)| \le n-3$ for any vertex $v \in V(D)$. Let $f = (V_0, V_1, V_2)$ be a $\gamma_R^*(D)$ -function. If $V_2 = \emptyset$, then $n = |V_1| = 4$ and so (a) holds. We distinguish two cases.

Case 1. Assume that $|V_2| = 1$ and $|V_1| = 2$. If $V_2 = \{v\}$, then we deduce that $|N^+(v) \cap N^-(v)| = n - 3$ and the condition (b) holds.

Case 2. Assume that $|V_2| = 2$. If $V_2 = \{u, v\}$, then we conclude that $(N_D^+(u) \cup N_D^+(v)) \cap (N_D^+(u) \cup N_D^+(v)) = V(D) - \{u, v\}$, and we obtain condition (c).

(iv) By (i), (ii), (iii), the conditions $|N^+(v) \cap N^-(v)| \le n-4$ for any vertex $v \in V(D)$ and $|(N_D^+(x) \cup N_D^+(y)) \cap (N_D^-(x) \cup N_D^-(y))| \le n-3$ for all pairs of vertices $x, y \in V(D)$ imply that $\gamma_R^*(D) \ge 5$. The other three assumptions show that $\gamma_R^*(D) \le 5$, and so we obtain $\gamma_R^*(D) = 5$.

Conversely, assume that $\gamma_R^*(D) = 5$. Using (i), (ii) and (iii), we can see that $|N^+(v) \cap N^-(v)| \le n-4$ for any vertex $v \in V(D)$ and $|(N_D^+(x) \cup N_D^+(y)) \cap (N_D^-(x) \cup N_D^-(y))| \le n-3$ for all pairs of vertices $x, y \in V(D)$. Let $f = (V_0, V_1, V_2)$ a $\gamma_R^*(D)$ -function. If $V_2 = \emptyset$, then $|V_1| = 5$ and thus n = 5. Again, we distinguish two cases.

Case 1. Assume that $|V_2| = 1$ and $|V_1| = 3$. If $V_2 = \{w\}$, then we deduce that $|N^+(w) \cap N^-(w)| = n - 4$. Let $\{a, b, c\} = V(D) - (N^+[w] \cap N^-(w))$. If $H = D[\{a, b, c\}]$ contains a vertex x with $|N_H^+(x) \cap N_H^-(x)| = 2$, then we have condition (a). If $D[\{a, b, c\}]$ does not contain a vertex x with $|N_H^+(x) \cap N_H^-(x)| = 2$, then we have condition (c).

Case 2. Assume that $|V_2| = 2$ and $|V_1| = 1$. If $V_2 = \{u, v\}$, then it follows that $|(N_D^+(u) \cup N_D^+(v)) \cap (N_D^-(u) \cup N_D^-(v))| = n - 3$ and condition (a) is proved.

Corollary 1. For any oriented graph D of order $n \ge 4$, $\gamma_R^*(D) \ge 4$.

Theorem 2. Let D be a digraph of order n, maximum outdegree $\Delta^+ \ge 1$ and maximum indegree Δ^- . Then

$$\gamma_R^*(D) \ge \max\left\{\left\lceil \frac{2n}{\Delta^+ + 1} \right\rceil, \left\lceil \frac{2n}{\Delta^- + 1} \right\rceil\right\}.$$

Proof. We only prove $\gamma_R^*(D) \ge \lceil (2n)/(\Delta^+ + 1) \rceil$, as $\gamma_R^*(D) \ge \lceil (2n)/(\Delta^- + 1) \rceil$ can be proved similarly. Let $f = (V_0, V_1, V_2)$ be a $\gamma_R^*(D)$ -function. Then $\gamma_R^*(D) = |V_1| + 2|V_2|$ and $n = |V_0| + |V_1| + |V_2|$. Since each vertex of V_0 has at least one in-neighbor in V_2 , we observe that $|V_0| \le \Delta^+ |V_2|$. Since $\Delta^+ \ge 1$, we deduce that

$$(\Delta^+ + 1)\gamma_R^*(D) = (\Delta^+ + 1)(|V_1| + 2|V_2|) = (\Delta^+ + 1)|V_1| + 2|V_2| + 2\Delta^+|V_2|$$

$$\ge (\Delta^+ + 1)|V_1| + 2|V_2| + 2|V_0| = 2n + (\Delta^+ - 1)|V_1| \ge 2n.$$

This inequality chain leads to $\gamma_R^*(D) \ge \lceil (2n)/(\Delta^+ + 1) \rceil$.

If K_n^* is the complete digraph of order $n \ge 2$, then Proposition 1 (i) implies that $\gamma_R^*(K_n^*) = 2$. If $K_{n,n}^*$ is the complete bipartite digraph with $n \ge 4$, then it follows from Theorem 2 that $\gamma_R^*(K_{n,n}^*) \ge 4$. Now it is easy to see that $\gamma_R^*(K_{n,n}^*) = 4$. These examples show that Theorem 2 is sharp.

If D is the empty digraph of order n, then clearly $\gamma_R^*(D) = n$. Therefore Theorem 2 yields to the next result immediately.

Corollary 2. Let D be a digraph of order n. If $\gamma_R^*(D) < n$, then $\Delta^+(D) \ge 2$ and $\Delta^-(D) \ge 2$.

Let C_n^* be the digraph of order $n \ge 3$ with vertex set $\{v_1, v_2, \ldots, v_n\}$ such that $v_i \rightarrow v_{i+1}, v_{i+1} \rightarrow v_i$ for $1 \le i \le n-1, v_n \rightarrow v_1$ and $v_1 \rightarrow v_n$. Now it is straightforward to verify that $\gamma_R^*(C_n^*) = \lceil (2n)/3 \rceil < n$ for $n \ge 3$. The digraph C_n^* demonstrates that $\Delta^+(D) = 2$ and $\Delta^-(D) = 2$ in Corollary 2 is possible. In addition, this is a further example showing the sharpness of Theorem 2.

Proposition 2. Let D be a digraph of order n, maximum out-degree Δ^+ and maximum in-degree Δ^- . If $\Delta^+ + \Delta^- \ge n + 3$, then $\gamma_R^*(D) < n$.

Proof. Let $d^+(v) = \Delta^+$.

First we assume that $d^-(v) = \Delta^-$. In this case the condition $\Delta^+ + \Delta^- \ge n+3$ leads to $|N^+(v) \cap N^-(v)| \ge 4$. Then the function $f = (N^+(v) \cap N^-(v), V(D) - ((N^+(v) \cap N^-(v)) \cup \{v\}), \{v\})$ is a TRDF on D of weight $\omega(f) \le n-3$ and thus $\gamma_R^*(D) \le n-3$.

Second we assume that $d^-(u) = \Delta^-$ for a vertex $u \neq v$. The condition $\Delta^+ + \Delta^- \geq n+3$ implies that $|N^+(v) \cap N^-(u)| \geq 3$. Therefore the function $f = (N^+(v) \cap N^-(u), V(D) - ((N^+(v) \cap N^-(u)) \cup \{u, v\}), \{u, v\})$ is a TRDF on D of weight $\omega(f) \leq n-1$ and thus $\gamma_R^*(D) \leq n-1$. This completes the proof. \Box

Let *H* be the digraph with vertex set $\{v, u_1, u_2, ..., u_{n-1}\}$ with $n \ge 5$ such that $v \to u_i$ for $i = 1, 2, ..., n-1, u_2 \to u_1$ and $u_3 \to u_1$. Then $\Delta^+(H) + \Delta^-(H) = n-2$ and $\gamma_R^*(H) = n$. This example demonstrates that the condition $\Delta^+ + \Delta^- \ge n+3$ in Proposition 2 is best possible in some sense.

Proposition 3. Let D be a digraph. The following statements are equivalent.

- (i) $\gamma^*(D) = \gamma^*_R(D)$.
- (ii) $\gamma^*(D) = |\hat{V}(D)|.$

(iii) There is no a directed path of length 2 in D.

Proof. (i) \Rightarrow (ii): Let $\gamma^*(D) = \gamma^*_R(D)$. Then for any $\gamma^*_R(D)$ -function $f = (V_0, V_1, V_2)$ on D we have $\gamma^*(D) \le |V_1| + |V_2| \le |V_1| + 2|V_2| = \gamma^*_R(D)$. Hence $V_2 = \emptyset$ implying that $V_0 = \emptyset$. Therefore $\gamma^*(D) = \gamma^*_R(D) = |V_1| = |V(D)|$.

(ii) \Rightarrow (i): The result follows immediately by (1.1) and (1.2). (ii) \Leftrightarrow (iii): Obvious.

Proposition 4. If *D* is a digraph on *n* vertices, then $\gamma_R^*(D) \ge \min\{n, \gamma^*(D) + 1\}$.

Proof. If $\gamma_R^*(D) = n$, then the result is immediate. Assume now that $\gamma_R^*(D) < n$, and suppose to the contrary that $\gamma_R^*(D) \le \gamma^*(D)$. By (1.1) we have $\gamma_R^*(D) = \gamma^*(D)$. Now Proposition 3 implies $\gamma_R^*(D) = n$, a contradiction.

Proposition 5. Let D be a digraph of order $n \neq 3$ with $\delta(D) \geq 1$. Then $\gamma_R^*(D) = \gamma^*(D) + 1$ if and only if there is a vertex $v \in V(D)$ with $|N^+(v) \cap N^-(v)| = n - \gamma^*(D)$.

Proof. Let *D* have a vertex *v* with $|N^+(v) \cap N^-(v)| = n - \gamma^*(D)$. Then clearly $f = (N^+(v) \cap N^-(v), V(D) - (N^+[v] \cap N^-[v]), \{v\})$ is a TRDF on *D* of weight $\gamma^*(D) + 1$. Hence $\gamma^*_R(D) \leq \gamma^*(D) + 1$, and the result follows by Proposition 4.

Conversely, let $\gamma_R^*(D) = \gamma^*(D) + 1$ and let $f = (V_0, V_1, V_2)$ be a $\gamma_R^*(D)$ -function. Then either (1) $|V_1| = \gamma^*(D) + 1$ and $|V_2| = 0$ or (2) $|V_1| = \gamma^*(D) - 1$ and $|V_2| = 1$.

In case (1), since $|V_2| = 0$, we have $|V_0| = 0$. Hence $n = \gamma^*(D) + 1$. It follows from Theorem 1 that $n = \gamma^*(D) + 1 \le \frac{2n}{3} + 1$, a contradiction when $n \ge 4$. If n = 2, then the hypothesis $\delta(D) \ge 1$ implies that D consists of two vertices x and y such that $x \to y \to x$ and thus $|N^+(x) \cap N^-(x)| = 1 = 2 - 1 = n - \gamma^*(D)$.

In case (2), let $V_2 = \{v\}$. Then $(v, u), (u, v) \in A(D)$ for each $u \in V_0$. Since $N^+(v) \cap N^-(v) \cap V_1 = \emptyset$, we obtain $|N^+(v) \cap N^-(v)| = |V_0| = n - |V_1| - |V_2| = n - \gamma^*(D)$.

Proposition 6. Let D be a digraph on $n \ge 7$ vertices with $\delta(D) \ge 1$. Then $\gamma_R^*(D) = \gamma^*(D) + 2$ if and only if:

- (i) D does not have a vertex v with with $|N^+(v) \cap N^-(v)| = n \gamma^*(D)$.
- (ii) either D has a vertex v with with $|N^+(v) \cap N^-(v)| = n \gamma^*(D) 1$ or D contains two vertices v, w such that

$$|(N^+[v] \cup N^+[w]) \cap (N^-[v] \cup N^-[w])| = n - \gamma^*(D) + 2.$$

Proof. Let $\gamma_R^*(D) = \gamma^*(D) + 2$. It follows from Proposition 5 that D does not have a vertex v with $|N^+(v) \cap N^-(v)| = n - \gamma^*(D)$. Let $f = (V_0, V_1, V_2)$ be a $\gamma_R^*(D)$ -function. Then either (1) $|V_1| = \gamma^*(D) + 2$ and $|V_2| = 0$, (2) $|V_1| = \gamma^*(D)$ and $|V_2| = 1$, or (3) $|V_1| = \gamma^*(D) - 2$ and $|V_2| = 2$.

In case (1), we have $|V_0| = 0$. Then $V(D) = V_1$. By Theorem 1, we have $n = \gamma^*(D) + 2 \le \frac{2n}{3} + 2$ which leads to a contradiction because $n \ge 7$.

In case (2), let $V_2 = \{v\}$. Obviously $(v, u) \in A(D)$ and $(u, v) \in A(D)$ for each $u \in V_0$. Since for each $x \in V_1$, $(v, u) \notin A(D)$ or $(u, v) \notin A(D)$, we obtain $|N^+(v) \cap N^-(v)| = n - \gamma^*(D) - 1$.

In case (3), let $V_2 = \{v, w\}$. Since $(v, u) \in A(D)$ or $(w, u) \in A(D)$ and $(u, v) \in A(D)$ or $(u, w) \in A(D)$ for each $u \in V_0$ and since $x \notin (N^+[v] \cup N^+[w]) \cap (N^-[v] \cup N^-[w])$ for each $x \in V_0$, we deduce that $|(N^+[v] \cup N^+[w]) \cap (N^-[v] \cup N^-[w])| = n - |V_1| = n - (\gamma^*(D) - 2) = n - \gamma^*(D) + 2.$

Conversely, let *D* satisfy (i) and (ii). It follows from Proposition 5 and (i) that $\gamma_R^*(D) \ge \gamma^*(D) + 2$. If *D* has a vertex *v* with $|N^+(v) \cap N^-(v)| = n - \gamma^*(D) - 1$, then obviously $f = (N^+(v) \cap N^-(v), V(D) - (N^+[v] \cap N^-[v]), \{v\})$ is a TRDF on *D* of weight $\gamma^*(D) + 2$ implying that $\gamma_R^*(D) \le \gamma^*(D) + 2$. If *D* has two vertices *v*, *w* such that $|(N^+[v] \cup N^+[w]) \cap (N^-[v] \cup N^-[w])| = n - \gamma^*(D) + 2$, then $f = ((N^+[v] \cup N^+[w]) \cap (N^-[v] \cup N^-[w]), V(D) - (N^+[v] \cup N^+[w]) \cap (N^-[v] \cup N^-[v]) \cup N^-[w]), \{v, w\})$ is a TRDF on *D* of weight $\gamma^*(D) + 2$ and the result follows again. This completes the proof.

3. TWIN ROMAN DOMINATION IN ORIENTED GRAPHS

An orientation of a graph G is a digraph D obtained from G by choosing an orientation $(x \to y \text{ or } y \to x)$ for every edge $xy \in E(G)$. Clearly, two distinct orientations of a graph can have distinct twin domination numbers. Motivated by this observation Chartrand et al. [3] introduced the concept of the lower orientable twin domination number dom^{*}(G) and the upper orientable twin domination number DOM^{*}(G) of a graph G, as

dom^{*}(G) = min{
$$\gamma^*(D) \mid D$$
 is an orientation of G},

and

$$DOM^*(G) = \max\{\gamma^*(D) \mid D \text{ is an orientation of } G\}.$$

This concepts have been studied in [2].

Here, we propose similar concepts the lower orientable twin Roman domination number dom^{*}_R(G) and the upper orientable twin Roman domination number $\text{DOM}^*_R(G)$ as follows.

$$\operatorname{dom}_{R}^{*}(G) = \min\{\gamma_{R}^{*}(D) \mid D \text{ is an orientation of } G\},\$$

and

 $\text{DOM}^*_R(G) = \max\{\gamma^*_R(D) \mid D \text{ is an orientation of } G\}.$

Clearly dom^{*}_R(G) \leq DOM^{*}_R(G) \leq n for every graph G of order n.

Proposition 7. Let G be a graph of order n with at most one cycle. Then $\operatorname{dom}_{R}^{*}(G) = n$.

Proof. By (1.2), it is enough to prove $\gamma_R^*(\vec{G}) \ge n$. First let G be not a cycle. We proceed by induction on n. The result can be easily verified for all graphs with at most 3 vertices. Hence, suppose that $n \ge 4$ and the result is true for all graphs of order less than n. Let G be a graph of order n. By assumption G has an end vertex, say x. Let \vec{G} be an orientation of G. Then obviously for any $\gamma_R^*(\vec{G})$ -function $f = (V_0, V_1, V_2)$, $f(x) \ne 0$. If f(x) = 1 then $g = (V_0, V_1 - \{x\}, V_2)$ is a TRDF on $\vec{G} - \{x\}$ and it follows from the induction hypothesis that $\gamma_R^*(\vec{G}) = \omega(g) + 1 \ge \gamma_R^*(\vec{G} - \{x\}) + 1 \ge n$, as desired. Now let f(x) = 2. Then f(y) = 0, where y is the support vertex of x in G. This implies that the function $h = (V_0 - \{y\}; V_1 \cup \{y\}; V_2 - \{x\})$ is a TRDF on $\vec{G} - \{x\}$ with $\omega(h) = \gamma_R^*(D) - 1$. Now the result follows by the induction hypothesis as above.

Now let $G = C_n$ and let \overrightarrow{G} be an orientation of G. Assume to the contrary that $\gamma_R^*(D) < n$. Suppose $f = (V_0^f, V_1^f, V_2^f)$ is a $\gamma_R^*(\overrightarrow{G})$ -function. Then both of V_0^f and V_2^f are nonempty. Hence (a) each vertex in V_0^f has exactly 2 neighbors and they both are in V_2^f , and (b) each vertex in V_2^f has at most 1 neighbor not in V_0^f . From (a) and (b) it immediately follows that $|V_0^f| \le |V_2^f|$. Hence $\gamma_R^*(\overrightarrow{G}) = |V_1^f| + 2|V_2^f| = |V_0^f| + |V_1^f| + |V_2^f| = n$ and the proof is completed.

The next results are immediate consequences of Proposition 7.

Corollary 3. *For* $n \ge 1$, dom^{*}_{*R*}($K_{1,n}$) = n.

Corollary 4. dom^{*}_R(C_n) = dom^{*}_R(P_n) = Dom^{*}_R(C_n) = Dom^{*}_R(P_n) = n.

Proposition 8. For any graph G of order $n \ge 4$ with clique number $c \ge 4$, $\operatorname{dom}_{R}^{*}(G) \le n - c + 4$.

Proof. Let $S = \{v_1, v_2, ..., v_c\}$ be a clique in G. Let \overrightarrow{G} be an orientation of G such that the edges are oriented from v_1 to $v_2, v_3, ..., v_c$ and from $v_3, v_4, ..., v_c$ to v_2 and the other edges oriented arbitrary. Then $f = (\{v_3, v_4, ..., v_c\}, V(G) - S, \{v_1, v_2\})$ is a twin Roman dominating function of \overrightarrow{G} which yields dom_R^{*}(G) $\leq n - c + 4$. \Box

An independent set is a set of vertices that no two of which are adjacent. A maximum independent set is an independent set of largest possible size. This size is called the independence number of G, and denoted by $\alpha(G)$.

10

Proposition 9. For any graph G of order $n \ge 4$ with $\delta(G) \ge 2$, dom^{*}_R(G) $\le 2(n - \alpha(G))$.

Proof. Let $S = \{v_1, v_2, \dots, v_{\alpha(G)}\}$ be an independent set of G. Since S is independent and $\delta(G) \ge 2$, each v_i has two neighbors u_i, w_i in V - S. Let \overrightarrow{G} be an orientation of G such that $(v_i, u_i), (w_i, v_i) \in A(\overrightarrow{G})$. Then the function $f = (S, \emptyset, V - S)$ is a twin Roman dominating function of \overrightarrow{G} that implies that dom^{*}_R(G) $\le 2(n - \alpha(G))$.

The next results are immediate consequences of Corollary 1 and Propositions 8 and 9.

Corollary 5. For $n \ge 4$, dom^{*}_R(K_n) = 4.

Corollary 6. For $n \ge 2$, dom^{*}_{*R*}($K_{2,n}$) = 4.

Theorem 3. ([2]) *For* $r \ge s \ge 3$,

$$\operatorname{dom}^*(K_{r,s}) = \begin{cases} 3 & \text{if } s = 3\\ 4 & \text{if } s \ge 4 \end{cases}$$

Proposition 10. For every two integers $r \ge s \ge 3$,

$$\operatorname{dom}_{R}^{*}(K_{r,s}) = \begin{cases} 5 & \text{if } s = 3\\ 6 & \text{if } s = 4\\ 7 & \text{if } s = 5\\ 8 & \text{if } s \ge 6. \end{cases}$$

Proof. Let $G = K_{r,s}$ and let $X = \{x_1, x_2, \dots, x_s\}$ and $Y = \{y_1, y_2, \dots, y_r\}$ be the partite sets of G. Consider the following cases.

Case 1. s = 3.

It follows from Propositions 4, 5 and Theorem 3 that $\gamma_R^*(G) \ge \gamma^*(G) + 2 = 5$. Let \overrightarrow{G} be an orientation of G such that $(x_1, y_i), (y_i, x_2) \in A(\overrightarrow{G})$ for each *i*. Clearly, $g = (Y, \{x_3\}, \{x_1, x_2\})$ is a TRDF of \overrightarrow{G} that implies $\gamma_R^*(G) \le 5$. Hence $\gamma_R^*(G) = 5$. **Case 2.** s = 4.

Using an argument similar to that described in Case 1, we obtain $\gamma_R^*(G) = 6$. Case 3. s = 5.

Suppose \overrightarrow{G} is an orientation of G such that $(x_1, y_i), (y_i, x_2) \in A(\overrightarrow{G})$ for each i. Obviously, $g = (Y, \{x_3, x_4, x_5\}, \{x_1, x_2\})$ is a TRDF of \overrightarrow{G} implying that $\gamma_R^*(G) \leq 7$. Let D be an arbitrary orientation of G. Since G has no cycle of length 2 and for any two vertices $u, v \in V(G), |(N^+[v] \cup N^+[u]) \cap (N^-[v]| \cup N^-[u])| \leq n - 3 = |V(G)| - \gamma^*(G) + 1$, we deduce from Propositions 4, 5, 6 and Theorem 3 that $\gamma_R^*(G) \geq \gamma^*(G) + 3 = 7$. Thus $\gamma_R^*(G) = 7$.

Case 4. $s \ge 6$.

It follows from Theorem 3 and (1.1) that $\gamma_R^*(G) \leq 8$. Let D be an arbitrary orientation

of G and $f = (V_0, V_1, V_2)$ a $\gamma_R^*(D)$ -function. Since $\gamma_R^*(G) \le 8$, we deduce that $V_0 \ne \emptyset$. If $V_0 \cap X \ne \emptyset$ and $V_0 \cap Y \ne \emptyset$, then we must have $|V_2 \cap Y| \ge 2$ and $|V_2 \cap X| \ge 2$ that implies $\gamma_R^*(G) \ge 8$ as desired. Now let, without loss of generality, $V_0 \cap X = \emptyset$. Then $V_0 \cap Y \ne \emptyset$ that implies $|V_2 \cap X| \ge 2$ and hence $\gamma_R^*(D) \ge 4 + |X| - 2 = s + 2 \ge 8$. Thus $\gamma_R^*(G) = 8$ and the proof is completed.

Proposition 11. Let $G = K_{m_1,m_2,...,m_r}$ $(r \ge 3)$ be the complete *r*-partite graph with $1 \le m_1 \le m_2 \le ... \le m_r$. Then

$$\operatorname{dom}_{R}^{*}(K_{m_{1},m_{2},...,m_{r}}) = \begin{cases} 4 & \text{if } m_{1} = \dots = m_{r} = 1, \\ 4 & \text{if } m_{1} = m_{2} = 1 \text{ or } m_{i} = 2 \text{ for some } i, \\ 5 & \text{if } m_{1} = 3 \text{ or } m_{1} = 1 \text{ and } m_{2} = 3, \\ 6 & \text{if } m_{1} \geq 4. \end{cases}$$

Proof. Let $G = K_{m_1,m_2,...,m_r}$ and let $X_1 = \{x_1, x_2, ..., x_{m_1}\}, X_2 = \{y_1, y_2, ..., y_{m_2}\}, X_3 = \{z_1, z_2, ..., z_{m_3}\}, X_4, X_5, ..., X_r$ be the partite sets of G.

If $m_1 = \cdots = m_r = 1$ then $G = K_n$ and by Corollary 5, we have $\gamma_R^*(G) = 4$. If $m_1 = m_2 = 1$, then let \overrightarrow{G} be an orientation of G such that $(x_1, x), (x, y_1) \in A(\overrightarrow{G})$ for each $x \in V(G) - \{x_1, y_1\}$. Obviously, $g = (V(D) - \{x_1, y_1\}, \emptyset, \{x_1, y_1\})$ is a TRDF of \overrightarrow{G} implying that $\gamma_R^*(G) = 4$ by Corollary 1. If $m_i = 2$ for some i, say i = 2, then assume \overrightarrow{G} is an orientation of G such that $(y_1, x), (x, y_2) \in A(\overrightarrow{G})$ for each $x \in V(G) - \{y_1, y_2\}$. Clearly, $g = (V(D) - \{y_1, y_2\}, \emptyset, \{y_1, y_2\})$ is a TRDF of \overrightarrow{G} that implies $\gamma_R^*(G) = 4$ again. If $m_1 = 3$ or $m_1 = 1$ and $m_2 = 3$ then as Case 1. in Proposition 10, we deduce that $\gamma_R^*(G) = 5$.

Finally, let $m_1 \ge 4$. It follows from Proposition 1 that $\gamma_R^*(G) \ge 6$. Let \overrightarrow{G} be an orientation of G such that $(x_1, x), (x, y_1) \in A(\overrightarrow{G})$ for each $x \in V(G) - \{x_1, y_1\},$ $(z_1, x_i) \in A(\overrightarrow{G})$ for $2 \le i \le m_1$ and $(y_i, z_1) \in A(\overrightarrow{G})$ for $2 \le i \le m_2$. It is easy to see that $g = (V(D) - \{x_1, y_1, z_1\}, \emptyset, \{x_1, y_1, z_1\})$ is a TRDF of \overrightarrow{G} which implies $\gamma_R^*(G) \le 6$. Thus $\gamma_R^*(G) = 6$ and the proof is completed. \Box

Theorem 4. For $n \ge 9$, $\dim_R^*(W_{n+1}) = \lceil \frac{2n}{3} \rceil + 2$.

Proof. Let $W_{n+1} = x + C_n$ and $C_n = (v_1, v_2, ..., v_n)$. Let $\overrightarrow{W_{n+1}}$ be an orientation of W_{n+1} such that $(v_i, x) \in A(\overrightarrow{W_{n+1}})$ for each *i* and $(v_i, v_{i-1}), (v_i, v_{i+1}) \in A(\overrightarrow{W_{n+1}})$ for each $i \equiv 1 \pmod{3}$. It is easy to see that the function *f* that assigns 2 to *x* and v_i for $i \equiv 1 \pmod{3}$, \emptyset to v_{i-1} and v_{i+1} for $i \equiv 1 \pmod{3}$ and 1 to the other vertices, is an TRDF of $\overrightarrow{W_{n+1}}$ that yields dom^{*}_n($W_{n+1}) \leq \gamma_n^*(\overrightarrow{W_{n+1}}) \leq \lceil \frac{2n}{2} \rceil + 2$.

is an TRDF of $\overrightarrow{W_{n+1}}$ that yields $\operatorname{dom}_R^*(W_{n+1}) \leq \gamma_R^*(\overrightarrow{W_{n+1}}) \leq \lceil \frac{2n}{3} \rceil + 2$. Now let *D* be any orientation of W_{n+1} and let *f* be an $\gamma_R^*(D)$ -function. If $f(v) \leq 1$, then *f* is a TRDF of C_n and hence $\gamma_R^*(D) = \omega(f) \geq n \geq \lceil \frac{2n}{3} \rceil + 2$ by Corollary 4. Assume f(v) = 2. Then the function *f*, restricted to C_n is an RDF of C_n and we deduce from Proposition 7 in [4] that $\gamma_R^*(D) = \omega(f) \ge \lceil \frac{2n}{3} \rceil + 2$. Thus dom $_R^*(W_{n+1}) \ge \lceil \frac{2n}{3} \rceil + 2$ and the proof is completed.

Theorem 5 ([2]). For $n \ge 3$, DOM^{*}($W_{n+1} \ge n-1$.

Theorem 6. For $n \ge 4$, $\text{DOM}^*_{R}(W_{n+1}) = n + 1$.

Proof. Let *D* be an orientation of W_{n+1} for which $\text{DOM}^*(W_{n+1}) = \gamma^*(W_{n+1}) \ge n-1$. Assume that $f = (V_0, V_1, V_2)$ is a $\gamma^*_R(D)$ -function. If $V_0 = \emptyset$, then $V_2 = \emptyset$ and we have $\gamma^*_R(D) = |V_1| = n+1$. Let $V_0 \neq \emptyset$. To in-dominate and out-dominate of each vertex $u \in V_0$, we must have $|V_2| \ge 2$. Then $\gamma^*_R(D) = |V_1| + 2|V_2| \ge 2 + |V_1| + |V_2| \ge 2 + \gamma^*(D) \ge n+1$. It follows that $\text{DOM}^*_R(W_{n+1}) = n+1$.

REFERENCES

- T. Araki, "The k-tuple twin domination in de Bruijn and Kautz digraphs," *Discrete Math.*, vol. 308, pp. 6406–6413, 2008, doi: 10.1016/j.disc.2007.12.020.
- [2] S. Arumugam, K. Ebadi, and L. Sathikala, "Twin domination and twin irredudance in digraphs," *Appl. Anal. Discrete Math.*, vol. 7, pp. 275–284, 2013, doi: 10.2298/AADM130429007A.
- [3] G. Chartrand, P. Dankelmann, M. Schultz, and H. C. Swart, "Twin domination in digraphs," Ars Combin., vol. 67, pp. 105–114, 2003.
- [4] E. J. Cockayne, P. M. Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi, "Roman domination in graphs," *Discrete Math.*, vol. 278, pp. 11–22, 2004, doi: 10.1016/j.disc.2003.06.004.
- [5] M. Kamaraj and V. Hemalatha, "Directed Roman domination in digraphs," *International Journal of Combinatorial Graph Theory and Applications*, vol. 4, pp. 103–116, 2011.
- [6] K. Muthu Pandian and M. Kamaraj, "Fractional twin domination number in digraphs," *Interna*tional Journal of Mathematical Archive, vol. 3, pp. 2375–2379, 2012.
- [7] S. M. Sheikholeslami and L. Volkmann, "The Roman domination number of a digraph," Acta Univ. Apulensis Math. Inform., vol. 27, pp. 77–86, 2011.
- [8] D. B. West, "Introduction to graph theory," Prentice-Hall, Inc, 2000.

Authors' addresses

H. Abdollahzadeh Ahangar

Department of Basic Science, Babol University of Technology, Babol, I.R. Iran *E-mail address:* ha.ahangar@nit.ac.ir

J. Amjadi

Azarbaijan Shahid Madani University, Department of Mathematics, Tabriz, I.R. Iran *E-mail address:* j-amjadi@azaruniv.edu

S.M. Sheikholeslami

Azarbaijan Shahid Madani University, Department of Mathematics, Tabriz, I.R. Iran *E-mail address:* s.m.sheikholeslami@azaruniv.edu

V. Samodivkin

Department of Mathematics, University of Architecture Civil Engineering and Geodesy, Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria

E-mail address: vlsam_fte@uacg.bg

H. ABDOLLAHZADEH AHANGAR ET AL.

L. Volkmann

RWTH Aachen University, Lehrstuhl II für Mathematik, 52056, Aachen, Germany *E-mail address:* volkm@math2.rwth-aachen.de

14