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Abstract. LetD be a finite and simple digraph with vertex set V.D/. A twin Roman dominating
function (TRDF) on D is a labeling f W V.D/! f0;1;2g such that every vertex with label 0
has an in-neighbor and out-neighbor with label 2. The weight of a TRDF f is the value !.f /DP
v2V.D/f .v/. The twin Roman domination number of a digraphD, denoted by �

R
.D/, equals

the minimum weight of a TRDF on D. In this paper we initiate the study of the twin Roman
domination number in digraphs. In particular, we present sharp bounds for �

R
.D/ and determine

the exact value of the twin Roman domination number for some classes of digraphs.
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1. INTRODUCTION

Let D be a finite simple digraph with vertex set V.D/D V and arc set A.D/D
A. A digraph without directed cycles of length 2 is an oriented graph. The order
n D n.D/ of a digraph D is the number of its vertices. We write dCD .v/ for the
out-degree of a vertex v and d�D.v/ for its in-degree. The minimum and maximum
in-degree and minimum and maximum out-degree of D are denoted by ı� D ı�.D/,
�� D��.D/, ıC D ıC.D/ and �C D�C.D/, respectively. The minimum degree
ı.D/ of a digraph D is defined as the minimum of all in-degrees and all out-degrees
of vertices in D and the maximum degree �.D/ of a digraph D is defined as the
maximum of all in-degrees and all out-degrees of vertices in D. If uv is an arc of
D, then we also write u! v, and we say that v is an out-neighbor of u and u is an
in-neighbor of v. For a vertex v of a digraphD, we denote the set of in-neighbors and
out-neighbors of v by N�.v/D N�D .v/ and NC.v/D NCD .v/, respectively. If X �
V.D/, thenDŒX� is the subdigraph induced by X . If X � V.D/ and v 2 V.D/, then
E.X;v/ is the set of arcs from X to v. Consult [8] for the notation and terminology
which are not defined here. For a real-valued function f W V.D/�! R the weight of
f is w.f /D

P
v2V.D/f .v/, and for S � V.D/, we define f .S/D

P
v2S f .v/, so

w.f /D f .V .D//.
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A vertex u in a digraph D out-dominates itself and all vertices v such that uv is
an arc of D, similarly, u in-dominates both itself and all vertices w such that wu is
an arc of D. A set S of vertices of D is a twin dominating set of D if every vertex
of D is out-dominated by a vertex of S and in-dominated by a vertex of S . The twin
domination number �.D/ is the cardinality of a minimum twin dominating set. A
�.D/-function is a twin dominating function of D with weight �.D/. The twin
domination, was introduced by Chartrand, Dankelmann, Schultz, and Swart [3] and
has been studied by several authors (see [1, 2, 6]).

A Roman dominating function (RDF) on a digraph D is a function f W V �!
f0;1;2g satisfying the condition that every vertex v for which f .v/ D 0 has a in-
neighbor u for which f .u/ D 2. The weight of an RDF f is the value !.f / DP
v2V f .v/. The Roman domination number of a digraph D, denoted by R.D/,

equals the minimum weight of an RDF on D. A R.D/-function is a Roman domin-
ating function of D with weight R.D/. The Roman domination for digraphs was
introduced by Kamaraj and Hemalatha [5] and investigated in [7].

A twin Roman dominating function (TRDF) onD is a Roman dominating function
of D such that every vertex with label 0 has an out-neighbor with label 2. The twin
Roman domination number of a digraph D, denoted by �R.D/, equals the minimum
weight of a TRDF on D. A �R.D/-function is a twin Roman dominating function
of D with weight �R.D/. A twin Roman dominating function f W V �! f0;1;2g
can be represented by the ordered partition .V0;V1;V2/ (or .V f0 ;V

f
1 ;V

f
2 / to refer

f ) of V , where Vi D fv 2 V j f .v/D ig. In this representation, its weight is !.f /D
jV1jC2jV2j. Since V f1 [V

f
2 is a twin dominating set when f is a TRDF, and since

placing weight 2 at the vertices of a twin dominating set yields a TRDF, we have

�.D/� �R.D/� 2
�.D/: (1.1)

Obviously the function f D .¿;V .D/;¿/ is a TRDF of D which implies that

�R.D/� n: (1.2)

Our purpose in this paper is to establish some sharp bounds for the twin Roman
domination number of a digraph.

We make use of the following results in this paper.

Theorem 1 ([3]). Let D be a digraph of order n and minimum degree ı.D/ � 1.
Then,

�.D/�

�
2n

3

�
:

The proof of the following observations are straightforward and therefore omitted.

Observation 1. Let D be a digraph on n vertices. Then
(i) If �R.D/D n then for any �R-function f D .V0;V1;V2/ on D, jV0j D jV2j.

(ii) If jV0j D jV2j for some �R-function f D .V0;V1;V2/ onD, then �R.D/D n.
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Observation 2. Let D be a digraph and f D .V f0 ;V
f
1 ;V

f
2 / a TRDF on D.

(i) If x;y;´2V1, x! y, y! x, y! ´ and ´! y then gD .V f0 [fx;´gIV
f
1 �

fx;y;´gIV
f
2 [fyg/ is a TRDF on D with w.g/D w.f /�1.

(ii) If x 2 V2, y 2 V1, x! y and y! x then g D .V f0 [fygIV
f
1 �fygIV

f
2 / is

a TRDF on D with w.g/D w.f /�1.

Observation 3. Let D be a digraph and f D .V0;V1;V2/ a �R.D/-function.

(i) If v 2 V.D/ and dC.v/d�.v/D 0 then f .v/ 6D 0.
(ii) If x;y;´ 2 V1, x! y and y! x then y 6! ´ or ´ 6! y holds.

(iii) If x 2 V1 then at least one of the sets NC.x/\V2 and N�.x/\V2 is empty.
(iv) jV2j � jV0j.

We will say that a digraph D is a twin Roman digraph if �R.D/D 2
�.D/.

Observation 4. A digraph D is a twin Roman digraph if and only if it has a
�R.D/-function f D .V0;V1;V2/ with V1 D¿.

Proof. Let D be a twin Roman digraph, and let S be a �.D/-set of D. Then
f D .V .D/�S;¿;S/ is a TRDF onD such that !.f /D 2jS j D 2�.D/D �R.G/,
and therefore f is a �R.D/-function with V1 D¿.

Conversely, let f D .V0;V1;V2/ be a �R.D/-function with V1 D ¿ and thus
�R.D/D 2jV2j. Then V2 is also a twin dominating set ofD implying that 2�.D/�
2jV2j D 

�
R.D/. Applying (1.1), we obtain the identity �R.D/D 2

�.D/, i.e. D is
a twin Roman digraph. �

2. BASIC PROPERTIES AND BOUNDS ON THE TWIN ROMAN DOMINATION
NUMBER

First we characterize the digraphsD with the properties that �R.D/D 2, �R.D/D
3, �R.D/D 4 or �R.D/D 5.

Proposition 1. (i) For a digraph D of order n� 2, �R.D/D 2 if and only if
nD 2 or there is a vertex v with dC.v/D d�.v/D n�1.

(ii) For a digraph D of order n� 3, �R.D/D 3 if and only if D has no vertex v
with dC.v/D d�.v/D n�1. In addition (a) nD 3 or (b) D has a vertex v
with jNC.v/\N�.v/j D n�2.

(iii) For a digraphD of order n� 4, �R.D/D 4 if and only if jNC.v/\N�.v/j �
n�3 for any vertex v 2 V.D/. In addition, (a) nD 4 or (b) there is a vertex
v with jNC.v/\N�.v/j D n� 3 or (c) there are two vertices u;v 2 V.D/
such that .NCD .u/[N

C

D .v//\ .N
�
D .u/\N

�
D .v//D V.D/�fu;vg.

(iv) For a digraphD of order n� 5, �R.D/D 5 if and only if jNC.v/\N�.v/j �
n�4 for any vertex v 2V.D/ and j.NCD .x/[N

C

D .y//\.N
�
D .x/[N

�
D .y//j �

n�3 for all pairs of vertices x;y 2 V.D/. In addition, (a) there are two ver-
tices u;v 2 V.D/ such that j.NCD .u/[N

C

D .v//\.N
�
D .u/[N

�
D .v//j D n�3
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or (b) nD 5 or (c) D contains a vertex w with jNC.w/\N�.w/j D n� 4
and the induced subdigraph H D DŒV.D/� .NCŒw�\N�Œw�/� does not
contain a vertex x with jNCH .x/\N

�
H .x/j D 2.

Proof. Since the proof of (i) is clear, we omit it.
(ii) Let D have no vertex v with dC.v/D d�.v/D n�1, then it follows from (i)

that �R.D/� 3. The other two assumptions show that �R.D/� 3, and so we obtain
�R.D/D 3.

Conversely, assume that �R.D/D 3. It follows from (i) thatD has no vertex v with
dC.v/D d�.v/D n�1. Let f D .V0;V1;V2/ be a �R.D/-function. If V2D¿, then
jV1j D 3D n and thus (a) holds. If V2¤¿, then jV1j D jV2j D 1. Suppose V2D fvg.
Then .u;v/; .v;u/ 2 A.D/ for each u 2 V0 and hence jNC.v/\N�.v/j D n� 2.
Thus condition (b) is proved.

(iii) Since jNC.v/\N�.v/j � n�3 for any vertex v 2 V.D/, we deduce from (i)
and (ii) that �R.D/ � 4. The other three assumptions show that �R.D/ � 4, and so
we obtain �R.D/D 4.

Conversely, assume that �R.D/ D 4. It follows from (i) and (ii) that jNC.v/\
N�.v/j � n�3 for any vertex v 2 V.D/. Let f D .V0;V1;V2/ be a �R.D/-function.
If V2 D¿, then nD jV1j D 4 and so (a) holds. We distinguish two cases.

Case 1. Assume that jV2j D 1 and jV1j D 2. If V2 D fvg, then we deduce that
jNC.v/\N�.v/j D n�3 and the condition (b) holds.

Case 2. Assume that jV2j D 2. If V2 D fu;vg, then we conclude that .NCD .u/[
NCD .v//\ .N

C

D .u/[N
C

D .v//D V.D/�fu;vg, and we obtain condition (c).
(iv) By (i), (ii), (iii), the conditions jNC.v/\N�.v/j � n� 4 for any vertex v 2

V.D/ and j.NCD .x/[N
C

D .y//\ .N
�
D .x/[N

�
D .y//j � n�3 for all pairs of vertices

x;y 2 V.D/ imply that �R.D/� 5. The other three assumptions show that �R.D/�
5, and so we obtain �R.D/D 5.

Conversely, assume that �R.D/ D 5. Using (i), (ii) and (iii), we can see that
jNC.v/\N�.v/j �n�4 for any vertex v 2V.D/ and j.NCD .x/[N

C

D .y//\.N
�
D .x/

[N�D .y//j � n� 3 for all pairs of vertices x;y 2 V.D/. Let f D .V0;V1;V2/ a
�R.D/-function. If V2 D ¿, then jV1j D 5 and thus n D 5. Again, we distinguish
two cases.

Case 1. Assume that jV2j D 1 and jV1j D 3. If V2 D fwg, then we deduce that
jNC.w/\N�.w/j D n� 4. Let fa;b;cg D V.D/� .NCŒw�\N�.w//. If H D
DŒfa;b;cg� contains a vertex x with jNCH .x/\N

�
H .x/j D 2, then we have condition

(a). If DŒfa;b;cg� does not contain a vertex x with jNCH .x/\N
�
H .x/j D 2, then we

have condition (c).
Case 2. Assume that jV2j D 2 and jV1j D 1. If V2 D fu;vg, then it follows that

j.NCD .u/[N
C

D .v//\ .N
�
D .u/[N

�
D .v//j D n�3 and condition (a) is proved. �

Corollary 1. For any oriented graph D of order n� 4, �R.D/� 4.
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Theorem 2. Let D be a digraph of order n, maximum outdegree �C � 1 and
maximum indegree ��. Then

�R.D/�max
��

2n

�CC1

�
;

�
2n

��C1

��
:

Proof. We only prove �R.D/� d.2n/=.�
CC1/e, as �R.D/� d.2n/=.�

�C1/e

can be proved similarly. Let f D .V0;V1;V2/ be a �R.D/-function. Then �R.D/D
jV1j C 2jV2j and n D jV0j C jV1j C jV2j. Since each vertex of V0 has at least one
in-neighbor in V2, we observe that jV0j ��CjV2j. Since �C � 1, we deduce that

.�CC1/�R.D/D.�
C
C1/.jV1jC2jV2j/D .�

C
C1/jV1jC2jV2jC2�

C
jV2j

�.�CC1/jV1jC2jV2jC2jV0j D 2nC .�
C
�1/jV1j � 2n:

This inequality chain leads to �R.D/� d.2n/=.�
CC1/e. �

If K�n is the complete digraph of order n � 2, then Proposition 1 (i) implies that
�R.K

�
n / D 2. If K�n;n is the complete bipartite digraph with n � 4, then it follows

from Theorem 2 that �R.K
�
n;n/� 4. Now it is easy to see that �R.K

�
n;n/D 4. These

examples show that Theorem 2 is sharp.
IfD is the empty digraph of order n, then clearly �R.D/D n. Therefore Theorem

2 yields to the next result immediately.

Corollary 2. Let D be a digraph of order n. If �R.D/ < n, then �C.D/� 2 and
��.D/� 2.

LetC �n be the digraph of order n� 3with vertex set fv1;v2; : : : ;vng such that vi!
viC1, viC1! vi for 1� i � n�1, vn! v1 and v1! vn. Now it is straightforward
to verify that �R.C

�
n /D d.2n/=3e < n for n � 3. The digraph C �n demonstrates that

�C.D/D 2 and ��.D/D 2 in Corollary 2 is possible. In addition, this is a further
example showing the sharpness of Theorem 2.

Proposition 2. Let D be a digraph of order n, maximum out-degree �C and
maximum in-degree ��. If �CC�� � nC3, then �R.D/ < n.

Proof. Let dC.v/D�C.
First we assume that d�.v/D ��. In this case the condition �CC�� � nC 3

leads to jNC.v/\N�.v/j � 4. Then the function f D .NC.v/\N�.v/;V .D/�
..NC.v/\N�.v//[fvg/;fvg/ is a TRDF on D of weight !.f / � n� 3 and thus
�R.D/� n�3.

Second we assume that d�.u/ D �� for a vertex u ¤ v. The condition �CC
���nC3 implies that jNC.v/\N�.u/j � 3. Therefore the function f D .NC.v/\
N�.u/;V .D/� ..NC.v/\N�.u//[ fu;vg/;fu;vg/ is a TRDF on D of weight
!.f /� n�1 and thus �R.D/� n�1. This completes the proof. �
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LetH be the digraph with vertex set fv;u1;u2; : : : ;un�1gwith n� 5 such that v!
ui for i D 1;2; : : : ;n� 1, u2! u1 and u3! u1. Then �C.H/C��.H/D n� 2
and �R.H/D n. This example demonstrates that the condition �CC�� � nC3 in
Proposition 2 is best possible in some sense.

Proposition 3. Let D be a digraph. The following statements are equivalent.
(i) �.D/D �R.D/.

(ii) �.D/D jV.D/j.
(iii) There is no a directed path of length 2 in D.

Proof. (i) ) (ii): Let �.D/ D �R.D/. Then for any �R.D/-function f D
.V0;V1;V2/ on D we have �.D/ � jV1j C jV2j � jV1j C 2jV2j D �R.D/. Hence
V2 D¿ implying that V0 D¿. Therefore �.D/D �R.D/D jV1j D jV.D/j.

(ii)) (i): The result follows immediately by (1.1) and (1.2).
(ii), (iii): Obvious. �

Proposition 4. IfD is a digraph on n vertices, then �R.D/�minfn;�.D/C1g.

Proof. If �R.D/D n, then the result is immediate. Assume now that �R.D/ < n,
and suppose to the contrary that �R.D/� 

�.D/. By (1.1) we have �R.D/D 
�.D/.

Now Proposition 3 implies �R.D/D n, a contradiction. �

Proposition 5. LetD be a digraph of order n¤ 3 with ı.D/� 1. Then �R.D/D
�.D/C 1 if and only if there is a vertex v 2 V.D/ with jNC.v/\N�.v/j D n�
�.D/.

Proof. Let D have a vertex v with jNC.v/\N�.v/j D n��.D/. Then clearly
f D .NC.v/\N�.v/;V .D/� .NCŒv�\N�Œv�/;fvg/ is a TRDF on D of weight
�.D/C1. Hence �R.D/� 

�.D/C1, and the result follows by Proposition 4.
Conversely, let �R.D/D 

�.D/C1 and let f D .V0;V1;V2/ be a �R.D/-function.
Then either (1) jV1j D �.D/C1 and jV2j D 0 or (2) jV1j D �.D/�1 and jV2j D 1.

In case (1), since jV2j D 0, we have jV0j D 0. Hence nD �.D/C 1. It follows
from Theorem 1 that nD �.D/C1� 2n

3
C1, a contradiction when n� 4. If nD 2,

then the hypothesis ı.D/ � 1 implies that D consists of two vertices x and y such
that x! y! x and thus jNC.x/\N�.x/j D 1D 2�1D n��.D/.

In case (2), let V2 D fvg. Then .v;u/; .u;v/ 2 A.D/ for each u 2 V0. Since
NC.v/\N�.v/\V1 D¿, we obtain jNC.v/\N�.v/j D jV0j D n�jV1j� jV2j D
n��.D/. �

Proposition 6. Let D be a digraph on n � 7 vertices with ı.D/ � 1. Then
�R.D/D 

�.D/C2 if and only if:

(i) D does not have a vertex v with with jNC.v/\N�.v/j D n��.D/.
(ii) either D has a vertex v with with jNC.v/\N�.v/j D n��.D/�1 or D

contains two vertices v;w such that

j.NCŒv�[NCŒw�/\ .N�Œv�[N�Œw�/j D n��.D/C2:
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Proof. Let �R.D/ D 
�.D/C 2. It follows from Proposition 5 that D does not

have a vertex v with jNC.v/\N�.v/j D n� �.D/. Let f D .V0;V1;V2/ be a
�R.D/-function. Then either (1) jV1j D �.D/C2 and jV2j D 0, (2) jV1j D �.D/
and jV2j D 1, or (3) jV1j D �.D/�2 and jV2j D 2.

In case (1), we have jV0j D 0. Then V.D/ D V1. By Theorem 1, we have n D
�.D/C2� 2n

3
C2 which leads to a contradiction because n� 7.

In case (2), let V2 D fvg. Obviously .v;u/ 2 A.D/ and .u;v/ 2 A.D/ for each
u 2 V0. Since for each x 2 V1, .v;u/ 62A.D/ or .u;v/ 62A.D/, we obtain jNC.v/\
N�.v/j D n��.D/�1.

In case (3), let V2 D fv;wg. Since .v;u/ 2 A.D/ or .w;u/ 2 A.D/ and .u;v/ 2
A.D/ or .u;w/ 2A.D/ for each u 2 V0 and since x 62 .NCŒv�[NCŒw�/\.N�Œv�[
N�Œw�/ for each x 2 V0, we deduce that j.NCŒv�[NCŒw�/\ .N�Œv�[N�Œw�/j D
n�jV1j D n� .

�.D/�2/D n��.D/C2.

Conversely, let D satisfy (i) and (ii). It follows from Proposition 5 and (i) that
�R.D/ � 

�.D/C2. If D has a vertex v with jNC.v/\N�.v/j D n��.D/�1,
then obviously f D .NC.v/\N�.v/;V .D/� .NCŒv�\N�Œv�/;fvg/ is a TRDF
on D of weight �.D/C 2 implying that �R.D/ � 

�.D/C 2. If D has two ver-
tices v;w such that j.NCŒv�[NCŒw�/\ .N�Œv�[N�Œw�/j D n��.D/C2, then
f D ..NCŒv�[NCŒw�/\.N�Œv�[N�Œw�/;V .D/�.NCŒv�[NCŒw�/\.N�Œv�[

N�Œw�/;fv;wg/ is a TRDF on D of weight �.D/C2 and the result follows again.
This completes the proof. �

3. TWIN ROMAN DOMINATION IN ORIENTED GRAPHS

An orientation of a graph G is a digraph D obtained from G by choosing an
orientation (x ! y or y ! x) for every edge xy 2 E.G/. Clearly, two distinct
orientations of a graph can have distinct twin domination numbers. Motivated by
this observation Chartrand et al. [3] introduced the concept of the lower orientable
twin domination number dom�.G/ and the upper orientable twin domination number
DOM�.G/ of a graph G, as

dom�.G/Dminf�.D/ j D is an orientation of Gg;

and
DOM�.G/Dmaxf�.D/ j D is an orientation of Gg:

This concepts have been studied in [2].
Here, we propose similar concepts the lower orientable twin Roman domina-

tion number dom�R.G/ and the upper orientable twin Roman domination number
DOM�R.G/ as follows.

dom�R.G/Dminf�R.D/ j D is an orientation of Gg;
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and
DOM�R.G/Dmaxf�R.D/ j D is an orientation of Gg:

Clearly dom�R.G/� DOM�R.G/� n for every graph G of order n.

Proposition 7. Let G be a graph of order n with at most one cycle. Then
dom�R.G/D n.

Proof. By (1.2), it is enough to prove �R.
�!
G/ � n. First let G be not a cycle. We

proceed by induction on n. The result can be easily verified for all graphs with at most
3 vertices. Hence, suppose that n� 4 and the result is true for all graphs of order less
than n. Let G be a graph of order n. By assumption G has an end vertex, say x. Let
�!
G be an orientation ofG. Then obviously for any �R.

�!
G/-function f D .V0;V1;V2/,

f .x/ 6D 0. If f .x/ D 1 then g D .V0;V1 � fxg;V2/ is a TRDF on
�!
G � fxg and it

follows from the induction hypothesis that �R.
�!
G/D !.g/C1� �R.

�!
G �fxg/C1�

n, as desired. Now let f .x/D 2. Then f .y/D 0, where y is the support vertex of x
in G. This implies that the function hD .V0�fygIV1[fygIV2�fxg/ is a TRDF on
�!
G �fxg with !.h/D �R.D/�1. Now the result follows by the induction hypothesis
as above.

Now let G D Cn and let
�!
G be an orientation of G. Assume to the contrary that

�R.D/ < n. Suppose f D .V f0 ;V
f
1 ;V

f
2 / is a �R.

�!
G/-function. Then both of V f0

and V f2 are nonempty. Hence (a) each vertex in V f0 has exactly 2 neighbors and they
both are in V f2 , and (b) each vertex in V f2 has at most 1 neighbor not in V f0 . From (a)

and (b) it immediately follows that jV f0 j � jV
f
2 j. Hence �R.

�!
G/D jV

f
1 jC2jV

f
2 j D

jV
f
0 jC jV

f
1 jC jV

f
2 j D n and the proof is completed. �

The next results are immediate consequences of Proposition 7.

Corollary 3. For n� 1, dom�R.K1;n/D n.

Corollary 4. dom�R.Cn/D dom�R.Pn/D Dom�R.Cn/D Dom�R.Pn/D n.

Proposition 8. For any graph G of order n� 4 with clique number c � 4,
dom�R.G/� n� cC4.

Proof. Let S Dfv1;v2; : : : ;vcg be a clique inG. Let
�!
G be an orientation ofG such

that the edges are oriented from v1 to v2;v3; : : : ;vc and from v3;v4; : : : ;vc to v2 and
the other edges oriented arbitrary. Then f D .fv3;v4; : : : ;vcg;V .G/�S;fv1;v2g/ is
a twin Roman dominating function of

�!
G which yields dom�R.G/� n� cC4. �

An independent set is a set of vertices that no two of which are adjacent. A max-
imum independent set is an independent set of largest possible size. This size is called
the independence number of G, and denoted by ˛.G/.
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Proposition 9. For any graphG of order n� 4 with ı.G/� 2, dom�R.G/� 2.n�
˛.G//.

Proof. Let S D fv1;v2; : : : ;v˛.G/g be an independent set of G. Since S is inde-

pendent and ı.G/� 2, each vi has two neighbors ui ;wi in V �S . Let
�!
G be an orient-

ation of G such that .vi ;ui /; .wi ;vi / 2 A.
�!
G/. Then the function f D .S;¿;V �S/

is a twin Roman dominating function of
�!
G that implies that dom�R.G/ � 2.n�

˛.G//. �

The next results are immediate consequences of Corollary 1 and Propositions 8
and 9.

Corollary 5. For n� 4, dom�R.Kn/D 4.

Corollary 6. For n� 2, dom�R.K2;n/D 4.

Theorem 3. ([2]) For r � s � 3,

dom�.Kr;s/D
�
3 if s D 3

4 if s � 4:

Proposition 10. For every two integers r � s � 3,

dom�R.Kr;s/D

8̂̂<̂
:̂
5 if s D 3

6 if s D 4

7 if s D 5

8 if s � 6:

Proof. Let G DKr;s and let X D fx1;x2; : : : ;xsg and Y D fy1;y2; : : : ;yrg be the
partite sets of G. Consider the following cases.
Case 1. s D 3.
It follows from Propositions 4, 5 and Theorem 3 that �R.G/ � 

�.G/C 2D 5. Let
�!
G be an orientation of G such that .x1;yi /; .yi ;x2/ 2 A.

�!
G/ for each i . Clearly,

g D .Y;fx3g;fx1;x2g/ is a TRDF of
�!
G that implies �R.G/� 5. Hence �R.G/D 5.

Case 2. s D 4.
Using an argument similar to that described in Case 1, we obtain �R.G/D 6.
Case 3. s D 5.
Suppose

�!
G is an orientation of G such that .x1;yi /; .yi ;x2/ 2 A.

�!
G/ for each i .

Obviously, g D .Y;fx3;x4;x5g;fx1;x2g/ is a TRDF of
�!
G implying that �R.G/ �

7. Let D be an arbitrary orientation of G. Since G has no cycle of length 2 and
for any two vertices u;v 2 V.G/, j.NCŒv�[NCŒu�/\ .N�Œv�j [N�Œu�/j � n�
3 D jV.G/j � �.G/C 1, we deduce from Propositions 4, 5, 6 and Theorem 3 that
�R.G/� 

�.G/C3D 7. Thus �R.G/D 7.
Case 4. s � 6.
It follows from Theorem 3 and (1.1) that �R.G/� 8. LetD be an arbitrary orientation
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of G and f D .V0;V1;V2/ a �R.D/-function. Since �R.G/ � 8, we deduce that
V0 ¤ ¿. If V0 \X ¤ ¿ and V0 \ Y ¤ ¿, then we must have jV2 \ Y j � 2 and
jV2\X j � 2 that implies �R.G/ � 8 as desired. Now let, without loss of generality,
V0 \X D ¿. Then V0 \ Y ¤ ¿ that implies jV2 \X j � 2 and hence �R.D/ �
4CjX j�2D sC2� 8. Thus �R.G/D 8 and the proof is completed. �

Proposition 11. Let G D Km1;m2;:::;mr
.r � 3/ be the complete r-partite graph

with 1�m1 �m2 � : : :�mr . Then

dom�R.Km1;m2;:::;mr
/D

8̂̂<̂
:̂
4 if m1 D �� � Dmr D 1;

4 if m1 Dm2 D 1 ormi D 2 for some i;
5 if m1 D 3 orm1 D 1 andm2 D 3;
6 if m1 � 4:

Proof. Let G D Km1;m2;:::;mr
and let X1 D fx1;x2; : : : ;xm1

g;X2 D fy1;y2; : : : ;

ym2
g;X3 D f´1;´2; : : : ;´m3

g, X4;X5; : : : ;Xr be the partite sets of G.
If m1 D �� � D mr D 1 then G D Kn and by Corollary 5, we have �R.G/D 4. If

m1 D m2 D 1, then let
�!
G be an orientation of G such that .x1;x/; .x;y1/ 2 A.

�!
G/

for each x 2 V.G/� fx1;y1g. Obviously, g D .V .D/� fx1;y1g;¿;fx1;y1g/ is a
TRDF of

�!
G implying that �R.G/ D 4 by Corollary 1. If mi D 2 for some i , say

i D 2, then assume
�!
G is an orientation of G such that .y1;x/; .x;y2/ 2 A.

�!
G/ for

each x 2 V.G/�fy1;y2g. Clearly, g D .V .D/�fy1;y2g;¿;fy1;y2g/ is a TRDF of
�!
G that implies �R.G/D 4 again. If m1 D 3 or m1 D 1 and m2 D 3 then as Case 1.
in Proposition 10, we deduce that �R.G/D 5.

Finally, let m1 � 4. It follows from Proposition 1 that �R.G/ � 6. Let
�!
G be

an orientation of G such that .x1;x/; .x;y1/ 2 A.
�!
G/ for each x 2 V.G/�fx1;y1g,

.´1;xi / 2 A.
�!
G/ for 2 � i � m1 and .yi ;´1/ 2 A.

�!
G/ for 2 � i � m2. It is easy to

see that g D .V .D/� fx1;y1;´1g;¿;fx1;y1;´1g/ is a TRDF of
�!
G which implies

�R.G/� 6. Thus �R.G/D 6 and the proof is completed. �

Theorem 4. For n� 9, dom�R.WnC1/D d
2n
3
eC2.

Proof. LetWnC1D xCCn and CnD .v1;v2; : : : ;vn/. Let
���!
WnC1 be an orientation

ofWnC1 such that .vi ;x/2A.
���!
WnC1/ for each i and .vi ;vi�1/; .vi ;viC1/2A.

���!
WnC1/

for each i � 1 .mod 3/. It is easy to see that the function f that assigns 2 to x and vi
for i � 1 .mod 3/, ¿ to vi�1 and viC1 for i � 1 .mod 3/ and 1 to the other vertices,
is an TRDF of

���!
WnC1 that yields dom�R.WnC1/� 

�
R.
���!
WnC1/� d

2n
3
eC2.

Now let D be any orientation of WnC1 and let f be an �R.D/-function. If
f .v/ � 1, then f is a TRDF of Cn and hence �R.D/ D !.f / � n � d

2n
3
eC 2 by

Corollary 4. Assume f .v/D 2. Then the function f , restricted to Cn is an RDF of
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Cn and we deduce from Proposition 7 in [4] that �R.D/D !.f / � d
2n
3
eC2. Thus

dom�R.WnC1/� d
2n
3
eC2 and the proof is completed. �

Theorem 5 ([2]). For n� 3, DOM�.WnC1/� n�1.

Theorem 6. For n� 4, DOM�R.WnC1/D nC1.

Proof. LetD be an orientation ofWnC1 for which DOM�.WnC1/D �.WnC1/�
n� 1. Assume that f D .V0;V1;V2/ is a �R.D/-function. If V0 D ¿, then V2 D ¿
and we have �R.D/D jV1j D nC1. Let V0 ¤¿. To in-dominate and out-dominate
of each vertex u 2 V0, we must have jV2j � 2. Then �R.D/ D jV1jC 2jV2j � 2C
jV1jC jV2j � 2C

�.D/� nC1. It follows that DOM�R.WnC1/D nC1. �
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