
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No 2, pp. 525-535 DOI: 10.18514/MMN.2014.1173

Principal functions of matrix Sturm-Liouville

operators with boundary conditions dependent

on the spectral parameter

Deniz Katar, Murat Olgun, and Cafer Coskun



Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 15 (2014), No. 2, pp. 525–535

PRINCIPAL FUNCTIONS OF MATRIX STURM–LIOUVILLE
OPERATORS WITH BOUNDARY CONDITIONS DEPENDENT ON

THE SPECTRAL PARAMETER

DENIZ KATAR, MURAT OLGUN, AND CAFER COSKUN

Received 18 March, 2014

Abstract. Let L denote operator generated in L2.RC;E/ by the differential expression

l.y/D�y00CQ.x/y; x 2 RC WD Œ0;1/;

and the boundary condition .A0CA1�/Y 0 .0;�/�.B0CB1�/Y.0;�/D 0, whereQ is a matrix-
valued function and A0; A1; B0; B1 are non-singular matrices, with A0B1�A1B0 ¤ 0: In this
paper, we investigate the principal functions corresponding to the eigenvalues and the spectral
singularities of L:
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1. INTRODUCTION

Let us consider the boundary value problem .BVP/

�u00Cq .x/uD �2u ; x 2 RC ; (1.1)

u.0/D 0 ; (1.2)

in L2 .RC/ ; where q is a complex-valued function. The spectral theory of the BVP
(1.1)–(1.2) with continuous and point spectrum was investigated by Naimark [20]. He
showed the existence of the spectral singularities in the continuous spectrum of the
BVP .1:1/–.1:2/ : Note that the eigenfunctions and the associated functions (prin-
cipal functions) corresponding to the spectral singularities are not the elements of
L2 .RC/. Also, the spectral singularities belong to the continuous spectrum and are
the poles of the resolvent’s kernel, but are not the eigenvalues of the BVP .1:1/–.1:2/.
The spectral singularities in the spectral expansion of the BVP .1:1/–.1:2/ in terms
of the principal functions have been investigated in [19]. The spectral analysis of
the quadratic pencil of Schrödinger, Dirac and Klein-Gordon operators with spec-
tral singularities were studied in [2–18]. The spectral analysis of the non-selfadjoint
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operator, generated in L2 .RC/ by .1:1/ and the boundary condition

y0 .0/

y .0/
D
ˇ1�Cˇ0

˛1�C˛0
;

where ˛i ; ˇi 2 C, i D 0; 1 with ˛0ˇ1 � ˛1ˇ0 ¤ 0 were investigated in detail by
Bairamov et al. [9]. The all above mentioned papers related with the differential
and difference equations are scalar coefficients. Spectral analysis of the self-adjoint
differential and difference equations with matrix coefficients are studied in [3,10–13].

Let E be an n-dimensional .n <1/ Euclidian space with the norm k:k and let
us introduce the Hilbert space L2 .RC;E/ consisting of vector-valued functions with
the values in E. We will consider the BVP

�y00CQ.x/y D �2y ; x 2 RC ; (1.3)

y .0/D 0; (1.4)
in L2 .RC;E/ where Q is a non-selfadjoint matrix-valued function .i. e., Q¤Q�/.
It is clear that, the BVP .1:3/–.1:4/ is nonselfadjoint. In [14, 21] discrete spectrum
of the non-selfadjoint matrix Sturm–Liouville operator and properties of the prin-
cipal functions corresponding to the eigenvalues and the spectral singularities were
investigated.

Let us consider the BVP in L2.RC;E/

�y00CQ.x/y D �2y; x 2 RC; (1.5)

.A0CA1�/y
0 .0;�/� .B0CB1�/y.0;�/D 0; (1.6)

where Q is a non-singular matrix-valued function and A0; A1; B0; B1 are non-
selfadjoint matrices such A0B1 �A1B0 ¤ 0. In this paper, we aim to investigate
the properties of the principal functions corresponding to the eigenvalues and the
spectral singularities of the BVP .1:5/–.1:6/ :

2. JOST SOLUTION OF .1:5/

We will denote the solution of .1:5/ satisfying the condition

lim
x!1

y.x;�/e�i�x D I; � 2CC WD f� W � 2C; Im�� 0g (2.1)

by E.x;�/: The solution E.x;�/ is called the Jost solution of .1:5/.
Under the condition

1Z
0

x kQ.x/kdx <1 (2.2)

the Jost solution has a representation

E.x;�/D ei�xI C

1Z
x

K.x; t/ei�tdt; (2.3)
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for � 2 NCC, where the kernel matrix function K.x; t/ satisfies

K.x; t/D
1

2

1Z
xC t

2

Q.s/dsC
1

2

xC t

2Z
x

tCs�xZ
tCx�s

Q.s/K.s;v/dvds

C
1

2

1Z
xC t

2

tCs�xZ
s

Q.s/K.s;v/dvds: (2.4)

Moreover, K.x; t/ is continuously differentiable with respect to its arguments and

kK.x; t/k � c�.
xC t

2
/; (2.5)

kKx.x; t/k �
1

4

Q.xC t2 /

C c�.xC t2 /; (2.6)

kKt .x; t/k �
1

4

Q.xC t2 /

C c�.xC t2 /; (2.7)

where �.x/D
1R
x

kQ.s/kds and c > 0 is a constant. Therefore, E .x;�/ is analytic

with respect to � in CC WD f� W � 2C; Im� > 0g and continuous on the real axis [1].
Let OE˙.x;�/ denote the solutions of (1.5) subject to the conditions

lim
x!1

OE˙.x;�/e˙i�x D I; lim
x!1

OE˙x .x;�/e
˙i�x

D˙i�I; � 2 NC˙: (2.8)

Then

W
h
E.x;�/; OE˙.x;�/

i
D�2i�I; � 2C˙; (2.9)

W ŒE.x;�/;E.x;��/�D�2i�I; � 2 R; (2.10)

where W Œf1;f2� is the Wronskian of f1 and f2:
Let '.x;�/ denote the solution of (1.5) subject to the initial conditions '.0;�/D

A0CA1�; '
0.0;�/D B0CB1�: Therefore '.x;�/ is an entire function of �.

Let us define the following functions:

D˙.�/D '.0;�/Ex .0;˙�/�'
0.0;�/E.0;˙�/ � 2 NC˙; (2.11)

where NC˙ D f� W � 2C; ˙ Im�� 0g : It is obvious that the functions DC.�/ and
D�.�/ are analytic in CC and C�, respectively, and continuous on the real axis. The
functions DC and D� are called Jost functions of L:
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3. EIGENVALUES AND SPECTRAL SINGULARITIES OF L

The resolvent of L defined by

R�.L/f D

1Z
0

G.x; t I�/g.t/dt; g 2 L2.RC;E/; (3.1)

where

G.x; t I�/D

�
GC.x; t I�/; � 2CC
G�.x; t I�/; � 2C�;

(3.2)

and

G˙.x; t I�/D

(
�E.x;˙�/D�1

˙
.�/'T .t;�/; 0� t � x

�'.x;�/
�
DT
C
.˙�/

��1
ET .t;˙�/; x � t <1:

(3.3)

We will show the set of eigenvalues and the set of spectral singularities of the operator
L by �d and �ss; respectively.

Let us suppose that
H˙.�/D detD˙.�/: (3.4)

From (2.3) and (3.1)–(3.4), we get

�d D f� W � 2CC; HC.�/D 0g[f� W � 2C�; H�.�/D 0g

�ss D
˚
� W � 2 R�; HC.�/D 0

	
[
˚
� W � 2 R�; H�.�/D 0

	
; (3.5)

where R� D Rnf0g :
We see from that, the functions

KC.�/D
ODC.�/

2i�
E.x;�/�

DC.�/

2i�
OEC.x;�/; � 2CC; (3.6)

K�.�/D
OD�.�/

2i�
E.x;��/�

D�.�/

2i�
OE�.x;�/; � 2C�; (3.7)

K.�/D
DC.�/

2i�
E.x;��/�

D�.�/

2i�
E.x;�/; � 2 R�; (3.8)

are the solutions of the boundary problem (1.5)–(1.6), where

OD˙.�/D .A0CA1�/ OE
˙
x .0;�/� .B0CB1�/

OE˙.0;�/: (3.9)

Now let us assume that

Q 2 AC.RC/ ; lim
x!1

Q.x/D 0 ; sup
x2Œ0;1/

h
e"
p
x
Q0.x/i<1; " > 0: (3.10)

Theorem 1. Under the condition (3.10), the operator L has a finite number of
eigenvalues and spectral singularities, and each of them is of finite multiplicity.
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4. PRINCIPAL FUNCTIONS OF L

Under the condition (3.10), let �1; :::;�j and �jC1; :::;�k denote the zeros HC

in CC and H� in C� (which are the eigenvalues of L) with multiplicities m1;:::;mj
andmjC1;:::;mk; respectively. It is obvious that from the definition of the Wronskian�

dn

d�n
W
�
KC.x;�/;E.x;�/

��
�D�p

D

�
dn

d�n
DC.�/

�
�D�p

D 0 (4.1)

for nD 0;1; :::;mp�1; p D 1;2; :::;j; and�
dn

d�n
W ŒK�.x;�/;E.x;��/�

�
�D�p

D

�
dn

d�n
D�.�/

�
�D�p

D 0 (4.2)

for nD 0;1; :::;mp�1; p D j C1; :::;k:

Theorem 2. The following formulae:�
@n

@�n
KC.x;�/

�
�D�p

D

nX
mD0

Fm.�p/

�
@m

@�m
E.x;�/

�
�D�p

; (4.3)

nD 0;1; :::;mp�1; p D 1;2; :::;j; where

Fm.�p/D

 
n

m

!�
@n�m

@�n�m
ODC.�/

�
�D�p

; (4.4)

�
@n

@�n
K�.x;�/

�
�D�p

D

nX
mD0

Nm.�p/

�
@m

@�m
E.x;��/

�
�D�p

; (4.5)

nD 0;1; :::;mp�1; p D j C1; :::;k; where

Nm.�p/D

 
n

m

!�
@n�m

@�n�m
OD�.�/

�
�D�p

(4.6)

hold.

Proof. We will prove only (4.3) using the method of induction, because the case
of (4.5) is similar. Let be nD 0: Since KC.x;�/ and E.x;�/ are linearly dependent
from (4.1), we get

KC.x;�p/D f0.�p/E.x;�p/; (4.7)

where f0.�p/¤ 0: Let us assume that 1� n0 �mp�2; (4.7) holds; that is,�
@n0

@�n0
KC.x;�/

�
�D�p

D

n0X
mD0

Fm.�p/

�
@m

@�m
E.x;�/

�
�D�p

: (4.8)
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We will prove that (4.3) holds for n0C 1: If Y.x;�/ is a solution of (1.5), then
@n

@�n
Y.x;�/ satisfiesh
�
d2

dx2
CQ.x/��2

i
@n

@�n
Y.x;�/D 2�n @n�1

@�n�1
Y.x;�/Cn.n�1/ @

n�2

@�n�2
Y.x;�/:

(4.9)
Writing (4.9) for KC.x;�/ and E.x;�/, and using (4.8), we find�

�
d2

dx2
CQ.x/��2

�
gn0C1.x;�p/D 0; (4.10)

where

gn0C1.x;�p/D
n
@n0C1

@�n0C1
KC.x;�/

o
�D�p

�

n0C1X
mD0

Fm.�p/
n
@m

@�m
E.x;�/

o
�D�p

:

(4.11)
From (4.1), we have

W
�
gn0C1.x;�p/;E.x;�p/

�
D

�
dn0C1

d�n0C1
W
�
KC.x;�/;E.x;�/

��
�D�p

D 0:

(4.12)
Hence there exists a constant f

n0C1
.�p/ such that

g
n0C1

.x;�p/D f
n0C1

.�p/E.x;�p/: (4.13)

This shows that (4.3) holds for nD n0C1: �

Using (4.3) and (4.5), define the functions

Un;p.x/D

�
@n

@�n
KC.x;�/

�
�D�p

D

nX
mD0

Fm.�p/

�
@m

@�m
E.x;�/

�
�D�p

; (4.14)

nD 0;1; :::;mp�1; p D 1;2; :::;j and

Un;p.x/D

�
@n

@�n
K�.x;�/

�
�D�p

D

nX
mD0

Nm.�p/

�
@m

@�m
E.x;��/

�
�D�p

; (4.15)

nD 0;1; :::;mp�1; p D j C1; :::;k:

Then for �D �p; p D 1;2; :::;j;j C1; :::;k;

l.U0;p/D 0;

l.U1;p/C
1

1Š

@

@�
l.U0;p/D 0; (4.16)

l.Un;p/C
1

1Š

@

@�
l.Un�1;p/C

1

2Š

@2

@�2
l.Un�2;p/D 0;
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nD 2;3; :::;mp�1;

hold, where l.u/ D �u00CQ.x/u� �2u and @m

@�m
l.u/ denote the differential ex-

pressions whose coefficients are the m-th derivatives with respect to � of the corres-
ponding coefficients of the differential expression l.u/: (4.16) shows that U0;p is the
eigenfunction corresponding to the eigenvalue � D �pI U1;p;U2;p; :::Ump�1;p are
the associated functions of U0;p [16, 17].
U0;p;U1;p; :::Ump�1;p; p D 1;2; :::;j;j C 1; :::;k are called the principal func-

tions corresponding to the eigenvalue �D �p; p D 1;2; :::;j;j C1; :::;k of L:

Theorem 3.

Un;p 2 L2.RC;E/; nD 0;1; :::mp�1; p D 1;2; :::;j;j C1; :::;k: (4.17)

Proof. Let be 0� n�mp�1 and 1� p � j: Using (2.5) and (3.10), we obtain that

kK.x; t/k � ce
�

q
xCt
2 : (4.18)

From (2.3), we get
�
@n

@�n
E.x;�/

�
�D�p

� xne�x Im�p C c

1Z
x

tne
�

q
xCt
2 e�t Im�pdt; (4.19)

where c > 0 is a constant. Since Im�p > 0 for the eigenvalues �p; p D 1;2; :::;j; of
L; implies that�

@n

@�n
E.x;�/

�
�D�p

2 L2.RC;E/; nD 0;1; :::mp�1; p D 1;2; :::;j: (4.20)

So we get Un;p 2 L2.RC;E/ from (4.14) and (4.20) Similarly we prove the results
for 0� n�mp�1; j C1� p � k: This completes the proof. �

Let �1; :::;�v and �vC1; :::;�l be the zeros ofDC andD� in R� with multiplicit-
ies n1; :::;nv and nvC1; :::;nl; respectively. We can show�

@n

@�n
K.x;�/

�
�D�p

D

nX
mD0

Cm.�p/

�
@m

@�m
E.x;�/

�
�D�p

; (4.21)

nD 0;1; :::;np�1; p D 1;2; :::;v; where

Cm.�p/D�

 
n

m

!�
@n�m

@�n�m
D�.�/

�
�D�p

; (4.22)

�
@n

@�n
K.x;�/

�
�D�p

D

nX
mD0

Rm.�p/

�
@m

@�m
E.x;��/

�
�D�p

;
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nD 0;1; :::;np�1; p D vC1; :::; l;

where

Rm.�p/D

 
n

m

!�
@n�m

@�n�m
DC.�/

�
�D�p

: (4.23)

Now define the generalized eigenfunctions and generalized associated functions
corresponding to the spectral singularities of L by the following :

Vn;p.x/D

�
@n

@�n
K.x;�/

�
�D�p

D

nX
mD0

Cm.�p/

�
@m

@�m
E.x;�/

�
�D�p

; (4.24)

nD 0;1; :::;np�1; p D 1;2; :::;v;

Vn;p.x/D

�
@n

@�n
K.x;�/

�
�D�p

D

nX
mD0

Rm.�p/

�
@m

@�m
E.x;��/

�
�D�p

; (4.25)

nD 0;1; :::;np�1; p D vC1; :::; l:

Then Vn;p; nD 0;1; :::;np�1; pD 1;2; :::;v;vC1; :::; l; also satisfy the equations
analogous to (4.16).
V0;p;V1;p; :::;Vnp�1;p; pD 1;2; :::;v;vC1; :::; l are called the principal functions

corresponding to the spectral singularities �D �p;p D 1;2; :::;v;vC1; :::; l of L:

Theorem 4.

Vn;p … L2.RC;E/; nD 0;1; :::np�1; p D 1;2; :::;v;vC1; :::; l:

Proof. For 0� n� np�1 and 1� p � v using (2.3), we obtain
�
@n

@�n
E.x;�/

�
�D�p

�
.ix/n ei�pxI C

1Z
x

.i t/nK.x; t/ei�ptdt


since Im�p D 0; p D 1;2; :::;v; we find that

1Z
0

.ix/n ei�pxI2dx D 1Z
0

x2n D1:

So we obtain Vn;p …L2.RC;E/; nD 0;1; :::np�1; p D 1;2; :::;v: Using the similar
way, we may also prove the results for 0� n� np�1; vC1� p � l: �

Now define the Hilbert spaces of vector-valued functions with values in E by

Hn WD

8<:f W
1Z
0

.1Cjxj/2n kf .x/k2dx <1

9=; ; nD 1;2; :::; (4.26)



MATRIX STURM–LIOUVILLE OPERATORS 533

H�n WD

8<:g W
1Z
0

.1Cjxj/�2n kg.x/k2dx <1

9=; ; nD 1;2; :::; (4.27)

with the norms

kf k2n WD

1Z
0

.1Cjxj/2n kf .x/k2dx;

and

kgk2�n WD

1Z
0

.1Cjxj/�2n kg.x/k2dx;

respectively. Then

HnC1 ¤Hn ¤ L2.RC;E/¤H�n ¤H�.nC1/; nD 1;2; :::; (4.28)

and H�n is isomorphic to the dual of Hn:

Theorem 5.
Vn;p 2H�.nC1/; nD 0;1; :::np�1; p D 1;2; :::;v;vC1; :::; l:

Proof. For 0� n� np�1 and 1� p � v using (2.3) and (4.24), we get
1Z
0

.1Cjxj/�2.nC1/
Vn;p2dx

�M

1Z
0

.1Cjxj/�2.nC1/

8̂<̂
:
fE.x;�/g

�D�p

2C :::C

�
@n

@�n
E.x;�/

�
�D�p


2
9>=>;

where M > 0 is a constant. Using (2.3), we have
1Z
0

.1Cjxj/�2.nC1/
.ix/n ei�pxI2dx <1;

and
1Z
0

.1Cjxj/�2.nC1/


1Z
x

.i t/nK.x; t/ei�ptdt


2

dx <1:

Consequently Vn;p 2H�.nC1/ for 0� n� np�1 and 1� p � v: Similarly, we obtain
Vn;p 2H�.nC1/ for 0� n� np�1 and vC1� p � l . �

Let us choose
n0 Dmaxfn1;n2; :::;nv;nvC1; :::;nlg :

By (4.28), we get the following
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Theorem 6.
Vn;p 2H�n0 ; nD 0;1; :::np�1;p D 1;2; :::;v;vC1; :::; l:
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