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Abstract. In this paper, necessary statements are given for a minimum point and a maximum
point of the max-min function. Moreover estimations for the directional lower and upper de-
rivative sets of the max-min set-valued map which are used to state a characterization of the
directional derivative of the max-min functions are given. Furthermore, a sufficient condition
ensuring the existence of the directional derivative of the max-min function is obtained by using
the lower differentiability of the max-min set-valued maps.
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1. INTRODUCTION

The directional derivatives of max-min functions were studied in [7]. It is well-
known that max-min functions are considered and occur in control theory problems,
parametric optimization problems and differential game theory problems [4]. More-
over marginal functions are max-min functions (see [3—6, 10-14]).

In this paper, necessary statements are given for a minimum point and a maximum
point of the max-min function. It is well-known that the directional lower and upper
derivative sets of max-min set valued maps are used to state a characterization of
the directional derivative of max-min function [7]. In this paper, estimations for
the directional lower and upper derivative sets of max-min set valued maps are given.
Furthermore, a sufficient condition ensuring the existence of the directional derivative
of max-min function is obtained by using the lower differentiability of max-min set-
valued maps.

In this study, cl(R™) (comp (R™)) denotes the set of all nonempty closed (com-
pact) subsets in R, Let a(-) : R” — ¢l (R™) be an upper semi-continuous set-valued
map. For (x,y) € R” x R™ and vector f € R", let us consider the following sets:

Da(x,y) | (f)={d e R": lsimin(;fS_l dist(y 4+ 8d.a(x +8f)) = 0},
—+

D*a(x,y) | (f)={veR™ ;8111205—1 dist(y +8d.,a(x +8f)) = 0},
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where x € R”, D C R", dist(x, D) = infycp ||x —d]|. Da(x,y) | (f) (D*a(x,y) |
(f)) is called the upper (lower) derivative set of the set-valued map a(-) at (x,y) in
direction f. Note that the directional upper (lower) derivative set of the set-valued
map a(-) is closed and there is a connection between the upper (lower) derivative set
of a set-valued map and the upper (lower) contingent cone which is used to investigate
several problems in nonsmooth analysis [1,2,8]. It is obvious that D*a(x,y) | (f) C
Da(x,y) | (f). The symbol

A=gra()={(x,y) e R"xR":y ea(x)}

denotes the graph of the set-valued map a(-). Since a(-) is upper semicontinuous, A
is a closed set. It is possible to show that Da(x,y) | (f) = D*a(x,y) | (f) =2
if (x,y) ¢ A, Da(x,y) | (f) = D*a(x,y) | (f)=R™if (x,y) €int A, where int A
denotes the interior of A.

Let f(-) : R* — R be a function. The lower and upper derivative of f(-) at the
point x in direction v are denoted by the symbols 3_3{)()‘) and 8+5; (x)
and defined by the formulas

respectively,

TTO) _ fimminf £+ 50) — (]85,
v §—>+0
and
0"/ (x) = limsup [ f(x + 8v) — f(x)]§~".
v §—>+0
If 9
f(x) = lim [f(x+8v)—f(x)]5_l
ov §——+0

exists and is finite, then f(-) is said to be differentiable at the point x in direction v
and % denotes the derivative of f(-) at the point x in direction v.

Leta(-) : R — comp (R™), b(-) : R” — comp(R¥) be set-valued maps and o'(-, -, ) :
R” x R x RF — R be a continuous function on R” x R x R¥. The max-min function
is denoted by m(-) and is defined by

m(x) —yrenaa())(c) Z161}11(r)1c)c7(x,y,z). (1.1
In this paper, we will assume that a(-) : R* — comp (R™), b(-) : R” — comp (R¥)
are continuous set-valued maps and o(-,-,-) : R” x R™ x RF — R is a continuous
function on R” x R™ x R¥ and locally Lipschitz on R” x R, i. e., for every bounded
D C R" x R™ x R¥, there exists L(D) > 0 such that

lo(x,y1,21) =0 (x,y2,22)| = L(D) [|(y1 = y2,21 = 22) |

for any (x,y1,21), (x,y2,22) € D. Under these conditions m(-) is a continuous
function (see [1]). Let
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Ye(x) = {(y*,z*) €a(x)xb(x):

m(x) = max_ min o(x,y.2) =0(x,yx.2%)}. (1.2)
y€a(x) zeb(x)

The map x — Y« (x) is an upper semicontinuous set-valued map and it is called a
max-min set-valued map.

2. MINIMIZATION AND MAXIMIZATION PROBLEMS OF MAX-MIN FUNCTION

Now we give necessary statements for a minimum point and a maximum point of
max-min function.

Theorem 1. Let the function m(-) : R* — R be in the form (1.1). Suppose that
X« € R" is a minimum point of max-min function m(-). Then
a+ b b
inf inf inf P oby.2)
FeR" (3.2)€Ya(xy) (dm)eDYa(xey,2I(F)  I(fid )
Proof. Let f € R". Since x4 € R” is a minimum point of max-min function m(-),

then it follows that m(x« 4+ 6f) > m(xx) for all § > 0. In that case, it follows from
here that

8_’731—;)6*) = lgig_iglofé [Mm(xs+6f)—m(xs)] > 0.

Hence, from here and of [7, Proposition 7], we have

9~ at Vs
0< I e inf 970 (xx.y.2)
af (7,2)€Y 4 (xs) (d.n)eDYs(x:,y,2)I(f) d(f.d.n)
and hence we obtain the inequality. 0

Theorem 2. Let the function m(-) : R® — R be in the form (1.1). Suppose that
X« € R" is a maximum point of max-min function m(-) and there exists a (y,2) €
Yi(xx) such that DY« (xx,v,2) | (f) # @ forall f € R". Then

070(x%,5,2)
su -

p inf inf <0.
feRn (1,2)€Yx(xx) (dm)EDYu(xx,,2)|(f)  9(f.d,n)

Proof. Let f € R". Since xx € R” is a maximum point of max-min function m(-),
then it follows that m(x« + §f) < m(x4) for all § > 0. In that case, it follows from
here that

9t 1
ﬂ =limsup = [m(xx +36f) —m(x4)] <O0.
T
Hence, from here and [7, Proposition 8], we have
+ —
0> Tme) e inf Y olxy.2)
af (7.2)€Yx(xx) (d.m)€DYi(xx,y,2)(f) d(fid.n)

and hence we obtain the inequality. O



138 ERDAL EKICI

3. DIRECTIONAL DERIVATIVE SETS OF MAX-MIN SET-VALUED MAPS

Now we give the estimations for the directional lower and upper derivative sets of
max-min set-valued map which are used to state a characterization of the directional
derivative of the max-min functions in [7].

Let us take the max-min function m(-) such as:

m(x) = min o(x,y) 3.D
y€a(x)
where a(-) : R” — comp (R™) is a continuous set-valued map and 6 (-,-) : R” x R —

R is a continuous function on R” x R™ and locally Lipschitz on R™, i. e., for every
bounded D C R” x R™, there exists L(D) > 0 such that

lo(x,y1) =0 (x,y2)| = L(D) [ y1 — y2|
for any (x, y1), (x,y2) € D. Under these conditions m(-) is a continuous function
(see [1]). Then we take
Ye(x) = {y* €a(x):m(x) = min o(x,y)= cr(x,y*)}. 3.2)
yea(x)

Theorem 3. Let the set-valued map Y« () : R — comp (R™) be in the form (3.2).
Suppose that there exists a yx € Y« (xx) such that o (-,-) is a derivable function at the
point (x«, y«) in direction ( f,d) for all d € R™. Then

* m . : 30’()6*7)’*) _ 30‘()6*,)/*)
D Ya(ray) | () Clpe®™: - inf I =l (33)

Proof. Let y4 € Yy (x4) such that o (-,-) is a derivable function at the point (x4, y«)
in direction ( f,d) for all d € R™.

Let D*Y«(xx,y«) | (f) = @. Then the statement (3.3) holds.

Let Da(x«,y«) | (f) = &. Then

inf daoey) _ o
deDa(x..y)I(f) d(f.d) '

Since D*Yi(xx,¥4) | (f) C D*a(x«,yx) | (f) C Da(xx,y«) | (f), then it follows
that statement (3.3) holds.

Now D*Yu(xx,yx) | (f) # @. Take p € D*Yi(xx,y%) | (f). Then from the
definition of D* Yy (x«, y«) | (f), there exists a §« > 0 such that for all § € [0, 5],

Y#(8) = y« +8p +01(8) € Yu (s + /)
where |01 (8)|| 67! — 0 as § — +0. Since
Yi(x) ={ysx €a(x):0(x,y) = 0(x,yx),Vy €a(x)j,
then it follows that for any y € a(x« +4f),
0(xx+38f,y) > 0 (xx + 81, y« +8p +01(5)). (3.4)
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Choose any d € Da(x«,yx) | (f). Then from the definition of Da(x«,y«) | (f),
there exists a sequence yi € a(x« + 8¢ f) where §; > 0 and §; — +0 as k — oo,
such that

Vi = Y+ + 8kd + 02(5k)
where [|02 () || 8;1 — 0 as k — oo. In that case from (3.4) since §x — +0, then it
follows that there exists a kg € N such that §; € [0,84] for all k > ko and

0 (X + 8k fo Vi +6xd +02(8k)) — 0 (X, y)
>0 (Xx+ 8k foyx + 8 p+01(8k)) — 0 (Xx, yx).

Since the function o (-,-) is locally Lipschitzian on R, then it follows that for k =1,
2,..., there exists L1 > 0 and L, > 0 such that

| 0 (xx + 8k f. ¥ + 8 p 4 01(8k)) — 0 (x4 + 8k f. yx + 8k p) |< L o1 (Gl
| 0 (s + 8k f. yxe +pd 4+ 02(8k)) — 0 (xx + 8k f. yx 4+ 81d) | < Lo [lo2(8r) || -
Consequently, we obtain

doloeye) _ )
a(f,p) §—>+0
= 1im [0(xx + 8t f, ys + 6k p) — 0 (xu, )| 8

k—o00

= Mm [0(Xx + 8 f.yx + 6k p) =0 (X + 01 f. yu + 0 p + 01(5))
—>00

[0 (s + 81, ys +8p) —0 (X, y£)] 8

+ 0 (s + 8 . Yo+ 81 p +01(8k)) — 0 (X, y2) 181!
= klin;o[Llllol(Sk)ll + 0 (s + 8k f2 Y 4 8k p 4+ 01(8)) — 0 (s Y218
= lim [0(xx + 8 . yx + 8k p 4 01(6k)) — 0 (x yi)] 6!
—00
= klim [0/ (xXx + 8k fo v + 8ked 4 02(8k)) — 0 (xa yi)| 8
—00
= Jim [0(xx + 8k fo v + 8k d +02(8k)) — 0 (X + 8k £, yx + Sxd)
—>00
+0 (0 + 8k f v+ 8pd) =0 (v, )18
< lim Lo o218 + lim [o(xs + 8k fo s + 8kd) — 0 (xs, y)18)
k—o00 k—o00
= klim [0 (s + 8 fo v+ 8xed) — 0 (e, y4)187
—>00

[0(xx +8f. ys +8d) — 0 (xx, y4)] 5

= lim
§—+0
_ 90 (X%, yx)

afid)
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Thus 8‘3(62:;;*) < BCB(&;;;*) forany d € Da(xx,y«) | (f). It follows from here that

) 00 (x4, yx) _ 00 (X4, Y4)
inf >
deDa(x«,y)I(f) d(f.d) a(f,p)
Since
D*Yi (x4, y%) | (f) C DYu(xx,y4) | (f) C Da(xx,y4) | (f),

then for any p € D*Yx(xx,yx) | (f), p € Da(xx,yx) | (f) and it follows that the
relation
00 (X, Vx) - 00 (X, Vx)

inf =
deDa(xs,y)I(f) 9(f.d) (/. p)
is satisfied. In that case, it follows from the above two inequalities that the statement
holds. -

Theorem 4. Let the set-valued map Y« (-) : R — comp (R™) be in the form (3.2).
Suppose that there exists a yx € Y« (xx) such that o (-,-) is a derivable function at the
point (x«, y«) in the direction ( f,d) for all d € R™. Then

DYy (xe. cl{perm: inf lolsege) > Dol (35
(0, yi) | () p deD*alrey)(f) A fd) = a(f.p) (3.5)
Proof. Let y« € Yy (xx) suchthat o (-,-) is a derivable function at the point (x«, y«)
in direction ( f,d) for all d € R™.
Let DY« (x«, V) | (f) = &. Then statement (3.5) holds.
Let D*a(x«,y%) | (f) = @. Then

- 00 (X, Vx) - 00 (Xx, Vx)
deD*a(x.,y)|(f) 9(f.d) a(f.p)
and it follows that the statement (3.5) holds.
Now let DYy (xx,y%) | (f) # @ and D*a(x«,ys«) | (f) # @. Let us take p €

DYi(xx,y%) | (f). Then from the definition of D Y. (x«, y«) | (f), there exists a se-
quence Vi € Y (xx + 8 f), where §; > 0 and §; — +0 as k — oo such that

+oo =

Vi = Vs + 8 p+01(8)
where ||o1(8¢)|| /8 — 0 as k — oo. Since
Yi(x) ={ysx €a(x): o(x,y) Z0(x,y«).Vy €a(x)},
then it follows that for any y € a(x« + 8¢ f),
0(xx+ 0k f,y) > 0(xs+ 8k fo s+ 0 p +01(3k)). (3.6)

Choose any d € D*a(xx, y«) | (f). Then from the definition of D*a(x«, yx) | (f),
there exists a §« > 0 such that for all § € [0, §«],

Y(8) = ys +8d +02(8) € a(x« +8f)
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where [02(8)||6~! — 0 as § — +0. In that case from (3.6) since §; — 40, then it
follows that there exists a kg € N such that §; € [0, 8] for all k > k¢ and

0 (Xs + 0 f,ys +8xd +02(8k)) — 0 (X%, yx)
>0 (Xx + 8k fo Y+ 8 p+01(8k)) — 0 (Xx, yx).

Since the function o (-,-) is locally Lipschitz on R™, then it follows that for k = 1,
2,...,there exist L1 > 0 and L, > 0 such that

| 0 (xx + 8 .y + 8 p +01(8k) — 0 (X + 8k [, yx + 8k p) | < Lalo1(Bp)
| 0 (s + 8k /.y + 8 d 4+ 02(8k)) =0 (xx +8p fyx +8kd) | < L2 [l02(8k) || -
Consequently, we have

aa(x*ay*) . »
o s * ) » Vx Sp) — %5 Vi §
A(f. p) 5_1310[0(’6 +8f, yx +8p) — 0 (xx, yx)]

= lim [o(xx + 8 /.y« +5kp)_0(x*’yx<)]51:1
k—o00
= lim [0(xx + 8k fo s + 8k p) — 0 (X + 8 fo v + 8k p +01(81))
—00
+0(Xu + 85 f x4 8k p +01(8k) — 0 (e, y2) 18
= lim [L1 01 (S1) || + 0 (Xu + 8k fo yx 4 8 p +01(8k)) — 0 (e, )18
—00
= lim [U(X*+8kﬂ)’*+8kP+01(8k))—0(x*sy*)]51:1
k—o00
= lim [0 (s + 8k f, v+ S1d 4 02(81)) — 0 (xx, y)] 6!
—00
= Jim [0(xx + 3k fo s + 8kd +02(8k)) — 0 (X + 8k /. yx + Sk d)
—00
+ 0 (xx + 8k 1oy« +5kd)—0(x*’y*)]8/:1
< lim Lo o)l St 4 lim [o/Gra + 8 foye +8ed) — 0 (xe. ya)l87 "
k—o00 k—o00
= lim [o(xx + 8 f, v« +5kd)—0(x*,yx<)]51:1
k—o00
[0 (s + 81, yx +8d) — 0 (xa, y2)] 57"

lim
§—>+0
_ 00 (X, Vx)

A fid)

Thus, 3‘3(();2:}3;*) < a%((’;;:};*) forany d € D*a(x«,y+) | (f). It follows from here that

) 00 (X%, Yx) _ 00 (X%, Yx)
inf >
deD*a(xs,y)I(f)  0(f.d) a(f,p)

and hence the statement holds. O
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Corollary 1. Let the set-valued map Y«(-) : R* — comp (R™) be in the form (3.2).
Suppose that there exists a yx € Yy (xx) such that o (-,-) is a differentiable function at
the point (x«, y«). Then

D*Ya(xa, clpe®m: inf o (fobre) g) = (fobere) )l
(e, y2) | (f) C P depac™yn\ gy P
where the symbol {-,-) denotes the inner product.

Proof. Since o (-,-) is a differentiable function at the point (xx, y«), then it is a
derivable function at the point (x«, yx) in any direction ( f,d) € R” x R” and

90 (xx, yx)  [00 (X, yx) _ [90(xx, yx)
S =) = ()

Then from Theorem 3, we obtain the corollary. (]

Corollary 2. Let the set-valued map Y«(-) : R* — comp (R™) be in the form (3.2).
Suppose that there exists a y« € Yy (xx) such that o (-,) is a differentiable function at
the point (x«, y«). Then

DY*(x*,y*)|(f)C{p€[Rm: M,d>z(m’p>}’

deD*a(x*,y*)l(f)< oy oy

where the symbol (-,-) denotes the inner product.
Proof. 1t is similar to that of Theorem 4. O

Now, we give an example for the above theorems.
Example 1. Take a constant vector [ € R™. g(-,-) : R™ x R™ — R is defined by

(x.y) > o(x.y)=(l.y)
and a(-) is defined by
x—a(x)={yeR":b(x,y)>0}

where b(-,-) : R x R — R is continuous differentiable such that a(x) is bounded
for all x € R™ and %);y) # 0 for any y € L(x) where

L(x)={yeR":b(x,y)=0}.
Then a(x) : R — comp (R™) and
Yi(x) C da(x) C L(x)
where da(x) is a boundary of a(x). It is shown that
Yi(x) C K(x) (3.7)

where
K(x)={yo€a(x):{l,d)>0forall d € T,x)(y0)}. (3.9)
and
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Tax)(vo) = {d € R™ : 36k > 0 (6 — +0as k — 00),

—00 k

Ay €a(x)> d =k1im yk_yo} ,

where T}, (x)(yo) is an upper contingent cone of a(x) at yo.

Let yx € Y« (x). Then y, € da(x) and b(x, y«) = 0. Since %y)’*) # 0, we get
ob(x,
Ta(x)(yo) = %d eR™: <(g—y*),d> > 0} 3.9)
y

and from [7, Corollary 2],
Da(x,y+) | (f) = D*a(x,y+) | (f)

:{dGRmZ<M,f>+<M,d>EO}_ (3.10)
ox dy

Since y« € Y« (x), then it follows from (3.7) that y,. € K(x) and since y« € K(x),
then from (3.8), (I,d) > 0 for all d € T (x)(y«). Then from (3.9) we get

ay [

This yields [ = a(x)%)’}y*) with a(x) > 0, and follows that

db(x, yx)
dy

Therefore, Theorems 3 and 4 and statements (3.10), (3.11) yield

(l,d) > 0forall d € R™ such that <

Yi(x) C {y* €da(x):l =a(x) , a(x) > 0} . (3.11)

D*Y,(x. C { e R™: min
(xx.ya) [ (f)Cip deDalx,y0)|(f)

(I.d) = <l,p>}

0b(x, yx
_ {p ER™: (I.p) = —a(x><%,f>} |

DY (x,yx CipeR™: min l,d)>(l, }
ol lpeR™: | min ()= ()

ab *
AL EREICE N

4. DIRECTIONAL DIFFERENTIABILITY OF MAX-MIN FUNCTION

In [7], the directional lower and upper derivatives of max-min function are investi-
gated by using the directional lower and upper derivative sets of max-min set-valued
map.
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Now, in this paper, a sufficient condition ensuring the existence of the directional
derivative of the max-min function is obtained by using the lower differentiabil-
ity of max-min set-valued maps. Hence by using the lower different, a character-
ization of the upper and lower directional derivatives of max-min functions is ob-
tained. For A C R” and C C R”, we put B(A4,C) = sup,c4d(a,.C), du(A,C) =
max {B(A4,C),B(C, A)}. It is known that (comp (R"), dg (-,-)) is a metric space.

Definition 1. The set-valued map a(-) : R” — comp (R™) is said to be lower differ-
entiable at the point x € R” in direction f € R”, if there exist G~ (x, f) € comp (R™),
Gt (x, f) € comp (R™) such that

1
lim ~B(a(x)+8GT(x, f).a(x +8f)+8G (x, f)) =0.
§—>+00
In that case the pair (G~ (x, f),G 1 (x, f)) is said to be lower differential of the set-
valued map a () : R* — comp (R™) at the point x € R” in the direction f € R” [9].
In [9], the following two propositions are given.

Proposition 1. Let the set-valued map a(-) : R* — comp (R™) be lower differen-
tiable at the point x € R" in direction f € R". Then Da(x,y) | (f) # @ for every
y € a(x).

Proposition 2. Let the set-valued map a(-) : R — comp (R™) be lower differen-

tiable at the point x € R" in direction f € R" and the pair (0,G™ (x, f)) be its lower
differential. Then D*a(x,y) | (f) # @ for every y € a(x).

In [7], the following two propositions characterizing upper and lower directional
derivatives of max-min function m(-) are proved.

Proposition 3. Forall x e R" and f € R"

0~ m(x) . . 3to(x,y,2)
< inf inf _—
af (7,2)€Yx(x) (d,n)eDYs(x,y,2)|(f) d(f.d,n)
atm(x) - dto(x,y,2)

< inf inf
af (7,2)€Yx(x) (d,n)eD*Y(x,,2)I(f) 0(f.d,n)

Proposition 4. Let x € R, f € R" and there exists (y«,2x) € Y« (x) such that
DYi(x,y%,2+) | (f) # @. Then

0tm(x) , _ 0 0(x,y,2)
> inf inf _
af (7,2)€Yx(x) (d,n)e€DYx(x,3.2)I(f) 9(f.d,n)
Moreover if there exists (y*,2*) € Yy (x) such that D*Y«(x,y*,2*) | (f) # @ then

0~ m(x) -

. . 0" 0(x,y,2)
> inf inf _ .
af (7,2)€Yx(x) (d,n)eD*Ys(x,y,2)I(f) (fod,n)
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Now, by using the lower differentiability of max-min set-valued maps, we give a
characterization of the upper and lower directional derivatives of m(-) which follows
from Propositions 1 — 4.

Theorem 5. Suppose that the set-valued map Y«(-) : R* — comp (R x R¥) is
lower differentiable at the point x € R" in the direction f € R"™. Then

8+m(x) ) ) 8+o(x,y,z)

— < inf inf _
af (7,2)€Yx(x) (d,n)eD*Y(x,y,2)I(f) d(f.d.,n)

ot "o (x. 9.2
m(x) - inf inf o(x,y,z2)

Af T (.2)eYu(x) (dn)eDYu(x,y,)I(f) I(fid,n)

Theorem 6. Suppose that the set-valued map Y«(-) : R* — comp (R” x R¥) is
lower differentiable at the point x € R" in direction f € R" and (0,GT(x, f)) is
its lower differential. Let the function o (-,-,-) : R" x R™ x Rk — R be directional
differentiable at the point (x,y.z) in direction (f,d,n) € R" x R" x R* for any
(y,2) € Yi(x) and (d,n) € R™ x R, Then

am(x) _ . ao(x,y,z)

inf inf _
af (7,2)€Y+(x) (d,n)eDYs(x,y,2)I(f) I(f.d,n)

5. CONCLUSIONS

Necessary statements are given for a minimum point and a maximum point of the
max-min function. The estimations for the directional lower and upper derivative
sets of max-min set-valued map which are used to state a characterization of the di-
rectional derivative of max-min function are given. Moreover, by using the lower
differentiability of max-min set-valued maps, sufficient condition ensuring the exis-
tence of the directional derivative of the max-min function is obtained.
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