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A. A four dimensional system is considered describing the competition of
three predator species for a single prey species. The predators functional response
is of a generalized Holling III type. Predators begin to grow at the same threshold
quantity as prey does. The system has a two dimensional simplex of equilibria
which is attracting at low values of the carrying capacityK but gets destabilized as
K grows and the predators that are less r-strategists lose ground.
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1. I

The phenomenon ofzip bifurcationwas introduced by Farkas [2] in 1984 in con-
junction with a system describing the competition of two predator species for a prey.
It was assumed that the threshold quantities of prey at which predator growth rate
became positive were equal. As a consequence, the system had a one dimensional
continuum of equilibria (a “zip”). One of the predators could be identified as aK-
strategist, the other one as anr-strategist. A species is called aK-strategist, roughly,
if it has a relatively low growth rate and may survive with low carrying capacityK.
A species is anr-strategist if it has a high growth rate (for more see [6]). Clearly, the
model was not a structurally stable one, however, it illustrated the intuitively evident
fact that at low values of the carrying capacityK both predators might survive but as
K grew theK-strategist lost ground and only ther-strategist survived with the prey.
Later a whole class of models were characterized that showed the phenomenon [3],
see also [4], and some applications were published, see e.g. [5]. Recently [1] the
phenomenon was generalized to a four dimensional system that arose in economy-
politology. In this case the system had a two dimensional surface of equilibria that
got destabilized as the value of a parameter was increased. We called this avelcro
bifurcation. In general, suppose that a system of autonomous differential equations
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has a two dimensional differentiable manifold of Liapunov stable equilibria and in
an interval of a bifurcation parameter this manifold is an attractor of the system. In-
creasing, say, the bifurcation parameter a curve sweeps through the manifold and the
equilibria that are left behind get destabilized, i. e., the part of the manifold that is
left behind becomes a repeller while the part yet untouched remains an attractor. In
this case we say that the system undergoes a velcro bifurcation.

In the present paper we consider three predator species that compete for a sin-
gle prey. The functional response of the predators is assumed to be of a gener-
alized Holling III type. The Holling III functional response that is of the form
S2/(S2 + a2),whereS is the prey quantity, has the property that up to a certain value
the growth ofS is increasing predator efficiency and, as a consequence, the predator
has a stabilizing effect on the population, above this value predator efficiency is de-
creasing (see May [6]). Here we replace Holling III bySn/(Sn + an) wheren > 1
is an arbitrary integer. This generalized Holling III functional response preserves the
basic properties but is somewhat finer.

In the next Section we introduce the model and establish the conditions under
which a velcro bifurcation occurs and in Section 3 we present some computer simu-
lations.

2. V B

Let us denote the quantity of prey at timet by S(t), the quantity of predatori by
xi(t), i = 1,2, 3 and consider the following system that describes the competition of
the three predator species for the prey

Ṡ = rS(1− S/K) −
3∑

i=1

mi xi
Sn

an
i + Sn ,

ẋi = mi xi
Sn

an
i + Sn − di xi , i = 1,2, 3 (2.1)

wherer,K,mi ,ai ,di > 0 are the intrinsic growth rate of prey, the carrying capacity,
the maximal birth rate, the half saturation constant and the death rate of predatori,
respectively, andn ≥ 2 is an integer. In absence of predation prey grows up to the
value ofK. If predators are present prey quantity is less. AsS tends to infinity,per
capitapredator birth rate tends tomi (the shape of the predator functional response is
a sigmoid one). For the survival of predatori it is , clearly, necessary that the maximal
birth rate be larger than the death rate:

mi > di , i = 1,2,3. (2.2)

This will be assumed in the sequel. WhenS = ai , then theper capitagrowth rate
is half of the maximal. The lower the half saturation constantai is, the less prey is
needed for the maintenance of the predator. Therefore, we shall consider a predator
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with low half saturation constant aK-strategist.We assume that

a1 < a2 < a3. (2.3)

Predatori begins to grow only if the right hand side of equation (2.1)i is positive.
This is the case ifS > Si := ai

n√di/(mi − di) = ai
n√1/(bi − 1), wherebi = mi/di > 1.

We shall assume that thethreshold values of prey are equal for the three predators:

ST := S1 = S2 = S3. (2.4)

Conditions (2.3) and (2.4) imply that

b1 < b2 < b3. (2.5)

We shall consider a species with a high ratio of maximal birth rate to death rate as
anr-strategist. Thus, in our system, predator 1 may be considered aK-strategist and
predator 3 anr-strategist. Predator 2 is in between the two.

Applying the conditions above, we can rewrite our system in the form

Ṡ = rS(1− S/K) −
3∑

i=1

mi xi
Sn

an
i + Sn ,

ẋi = βi
(Sn − Sn

T)

an
i + Sn xi , i = 1,2,3, (2.6)

whereβi = mi−di > 0. Clearly, the positive orthant of (S, x1, x2, x3) space is invariant.
We shall consider system (2.6) restricted to�4

+.

Lemma 1. System(2.1) and, as a consequence,(2.6) is dissipative, i. e., all solu-
tions are bounded.

P. Let us add the four equations of (2.1):

(S + x1 + x2 + x3)· = rS(1− S/K) −
3∑

i=1

di xi .

If S > K or if S ≤ K but
∑3

i=1 di xi > rK then this derivative is negative. This means
that the trajectories of the system cross the hyperplanes

S + x1 + x2 + x3 = C

from outside to inside ifC is sufficiently large. �
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The equilibria of system (2.6) are (0,0,0, 0), (K,0,0, 0) and the points of the two-
dimensional plane

E :=

(S, x1, x2, x3) ∈ �4
+ : S = ST ,

3∑

i=1

miSn
T xi

an
i + Sn

T

= rST(1− ST/K),

xi ≥ 0, i = 1, 2,3



the latter having points in�4
+ only if

ST < K. (2.7)

We are to study now the stability of these equilibria. The Jacobian of the system is
(summation goes always from 1 to 3)

J =



r (1− 2S/K) − n
∑ mian

i Sn−1xi

(an
i +Sn)2 − m1Sn

an
1+Sn − m2Sn

an
2+Sn − m3Sn

an
3+Sn

nβ1
Sn−1

(an
1+Sn) x1

β1(Sn−Sn
T)

an
1+Sn 0 0

nβ2
Sn−1

(an
2+Sn) x2 0

β2(Sn−Sn
T)

an
2+Sn 0

nβ3
Sn−1

(an
3+Sn) x3 0 0

β3(Sn−Sn
T)

an
3+Sn



.

Substituting (0, 0, 0,0) we obtain easily that the origin is unstable (a hyperbolic
saddle).

Substituting (K,0, 0,0) we obtain similarly that this equilibrium is asymptotically
stable ifK < ST and it is unstable, a hyperbolic saddle ifK > ST . The result is in
accordance to what has been said before. If the carrying capacity, i. e., the lim sup
of prey abundance is less than the threshold value above which predator’s quantity
may grow, then the predators die out. If (2.7) holds, then the predators may survive.
This is precisely the case when the system has equilibria in the interior of the positive
orthant. (2.7) will be assumed in the sequel.

We turn now to the stability problem of the points inE. Substituting the coordi-
nates of an arbitrary point ofE into the Jacobian, a straightforward calculation leads
one to the following characteristic polynomial:

D(λ) = λ2
(
λ2 + λ

(
nSn−1

T

∑ mian
i xi

(an
i + Sn

T)2
− r (1− 2ST/K)

)

+nS2n−1
T

∑ miβi xi

(an
i + Sn

T)2

)
.

This means that each equilibrium point inE has zero as a double eigenvalue and
two eigenvalues with real part negative or positive depending on the fact whether the
quadratic polynomial in brackets is a stable polynomial or inversely. This polynomial
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is stable iff the coefficient ofλ is positive, i. e., the equilibrium point inE has two
eigenvalues with negative real part if and only if

∑ mian
i xi

(an
i + Sn

T)2
>

r

nSn−1
T

(1− 2ST/K) . (2.8)

Note that (2.8) holds obviously for each point inE if ST < K < 2ST . In what follows
K will be considered the bifurcation parameter.

Theorem 1. Under the conditions(2.2)– (2.4), (2.7) if at a point ofE (2.8)holds,
then this point is stable in the Liapunov sense and a neighbourhood of this point is
attractive in the sense that it has a tubular neighbourhood from where it attracts the
solutions; if the inequality(2.8) is inverted, then the point is unstable.

P. If (2.8) holds, then the equilibrium has a two dimensional centre manifold
(clearly the simplexE) and a two dimensional stable manifold, and by continuity the
same holds for each equilibrium in a neighbourhood of the point. The stable man-
ifolds of the equilibria in this neighbourhood fill in a tubular neighbourhood in�4

+

(this can be proven analogously to how this was done in [2]), thus, from this tubular
neighbourhood every solution tends to some equilibrium in this neighbourhood. The
unstability proposition is obvious. �

Consider (2.8) with the equality sign:
∑ mian

i xi

(an
i + Sn

T)2
=

r

nSn−1
T

(1− 2ST/K) . (2.9)

This is the equation of a two dimensional plane in theS = ST section of�4
+. If

K is small (≤ 2ST), then (2.8) holds, obviously, in each point ofE, i. e., E is an
attractor of the system. However, ifK is increased, the plane (2.9) may intersectE
and, as a consequence, the stability properties of the equilibria inE may change. The
following theorem explains what happens.

Theorem 2. Suppose that conditions(2.2)– (2.4)and (2.7)hold and assume that

a1 < a2 < a3 < ST/
n√
n− 1; (2.10)

(1) if K ∈
(
ST ,

((n−2)an
1−2Sn

T)ST

(n−1)an
1−Sn

T

)
, then each equilibrium inE is stable in the Lia-

punov sense andE is an attractor of system(2.6);

(2) if K ∈
(
((n−2)an

3−2Sn
T)ST

(n−1)an
3−Sn

T
,∞

)
, then all these equilibria are unstable andE is a

repeller;
(3) if K is increased from one end to the other one of the interval



(
(n− 2) an

1 − 2Sn
T

)
ST

(n− 1) an
1 − Sn

T

,

(
(n− 2) an

3 − 2Sn
T

)
ST

(n− 1) an
3 − Sn

T

 ,
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then the line of intersection ofE and the plane(2.9) is traveling throughE
from the vertex on the axisx1 to the vertex on the axisx3 and the equilibria
left behind get destabilized; for

K ∈


(
(n− 2) an

1 − 2Sn
T

)
ST

(n− 1) an
1 − Sn

T

,

(
(n− 2) an

3 − 2Sn
T

)
ST

(n− 1) an
3 − Sn

T


this line of intersection dividesE into two parts, “the lower one” is a repeller
and “the upper one” is an attractor of the system (see Figure 1 in the next
Section), i. e., the system undergoes a velcro bifurcation.

P. Let us denote the respective coordinate intercepts ofE by (xE1,0, , 0),
(0, xE2, 0), (0, 0, xE3) and those of the plane (2.9) by(xs1,0, 0), (0, xs2, 0), (0,0, xs3).
A simple calculation yields

xEi =
an

i + Sn
T

mi

r

Sn−1
T

(1− ST/K) ;

xsi =
(an

i + Sn
T)2

mian
i

1
n

r

Sn−1
T

(1− 2ST/K) , i = 1, 2, 3.

Introduce the notation

Ki =

(
(n− 2) an

i − 2Sn
T

)
ST

(n− 1) an
i − Sn

T

, i = 1,2, 3.

By condition (2.10) the denominator anda fortiori the numerator are negative, hence

Ki is positive, further, as the functionf (a) =
((n−2)an−2Sn

T)ST

(n−1)an−Sn
T

is increasing in the

intervala ∈ [0,ST/
n√
n− 1) we have

2ST < K1 < K2 < K3. (2.11)

Now, a simple calculation shows that for 2ST < K < Ki we havexEi < xsi, and
xEi = xsi when K = Ki . This implies that for 2ST < K < K1 the plane (2.9) is
“below” E and reachesE at xE1 = xs1 when K = K1. (As K is increased both
planes are displaced parallelly). This implies that for 2ST < K < K1 (2.8) holds for
every equilibrium inE. As K is increased further the plane (2.9) cuts intoE, reaches
xE2 = xs2 at K = K2, reachesxE3 = xs3 at K = K3 and after that cuts the plane of
E outside the positive orthant so that nowE will be “below” the plane (2.9). In the
process, condition (2.8) holds with an inverted inequality sign in the part ofE which
is already below the plane (2.9). This means that the equilibria on this part of the
plane have a two dimensional unstable manifold which fill a neighbourhood of this
part ofE. This proves the Theorem. �

Note thatKi is positive also ifST
n√2/(n− 2) < a1 < a2 < a3, n > 2, however, in

this case the plane (2.9) never reachesE.
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Note also that in case of the classical Holling III functional response, i. e.,n = 2
condition (2.10) is justa1 < a2 < a3 < ST , the half saturation constants must be less
than the threshold value of prey abundance. This means that predator birth rate half
the maximal is not sufficient for predator survival. In case of the generalized Holling
III functional response the half saturation constants must be even less in order to
experience velcro bifurcation.

3. C I

In this Section a numerical example will be presented. The classical Holling III
functional response will be considered, i. e.,n = 2. The following parameter values
are chosen:

r = 1, m1 = 5, m2 = 6, m3 = 7, a1 = 0.5 < a2 =
√

0.5 < a3 =
√

0.75

d1 = d2 = d3 = 4.

As a consequence

β1 = 1, β2 = 2, β3 = 3, b1 = 5/4 < b2 = 6/4 < b3 = 7/4, ST = 1.

Conditions (2.2)–(2.4) and (2.10) hold and the system is

Ṡ = S(1− S/K) − 5x1S2/(0.25+ S2) − 6x2S2/(0.5 + S2)

− 7x3S2/(0.75+ S2), (3.1)

ẋ1 =
S2 − 1

0.25+ S2
x1, ẋ2 = 2

S2 − 1
0.5 + S2

x2, ẋ3 = 3
S2 − 1

0.75+ S2
x3.

E = {(S, x1, x2, x3) ∈ �4
+ : S = 1, x1 + x2 + x3 = 0.25(1− 1/K), xi ≥ 0}.

The equation of the plane (2.9) is now

x1/0.375+ x2/0.225+ x3/0.175= 1. (3.2)

The critical values ofK are: K1 = 2.667, K2 = 4, K3 = 8. Condition (2.11) is
satisfied. We chooseK = 5. By this, clearly, the points of the plane ofE on the axes
x1 andx2 have already been destabilized, but the vertex on the axisx3 is still stable.

Figure 1 shows the plane ofE cut by the plane (3.2). (The figures were produced
by Maple V. The coordinatesS, x1, x2, x3 are denoted on the figures byx, y, z, w,
respectively).

We choose now two sets of initial values. The first (denoted by A) is near the
destabilized part ofE (with x3 coordinate small). The second (denoted by B) is near
the still attractive part ofE (with x3 coordinate relatively large). The coordinates of
(A) are given by (S(0), x1(0), x2(0), x3(0)) = (1,0.08,0.08, 0.06), and the coordinates
of (B) are given by (S(0), x1(0), x2(0), x3(0)) = (1,0.01, 0.05,0.16). Figures 2, 3, and
4 show, respectively, thex1, x2, andx3 coordinates of the solution. As can be seen, the
solution initiating at (A) tends to an equilibrium on the still attractive portion ofE far



192 M. FARKAS, E. ŚAEZ, AND I. SZÁNTÓ

F 1. Plane of equilibria partly destabilized
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t

F 2. x1 coordinates of solutions (A) and (B)

from (A) after exhibiting strong oscillations. In contrast, the solution corresponding
to (B) tends to an equilibrium on the still attractive portion ofE near (B).

Figure 3 shows thex2 = z coordinate of these solutions. The behaviour is similar
to the previous one.

Figure 4 shows thex3 = w coordinate of these solutions. For solution (A) it is
increasing considerably, for solution (B) it remains near the initial value.

It is an interesting question what the solutions do whenK > K3, i. e., when already
all the equilibria in�4

+ have been destabilized. It is easy to see that the equilibrium
point (ST ,0, 0, xEi) which is the “last stable one” undergoes a degenerate Andronov–
Hopf bifurcation asK is increased throughK3. The fundamental Andronov–Hopf
bifurcation theorem (see, e. g., [4]) does not apply since at the critical valueK3 of
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F 3. x2 coordinates of solutions (A) and (B)
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F 4. x3 coordinates of solutions (A) and (B)

the bifurcation parameter this equilibrium has a double zero eigenvalue and a pair
of imaginary eigenvalues. Computer simulations show that the closed orbit of the
bifurcating periodic solution attracts solutions initiating in�4

+\E.

4. C

Three predator species compete for a single prey species. The prey species fol-
lows logistic dynamics with carrying capacityK in the absence of predation. The
functional responses of the predators are of generalized Holling III type, i. e., in-
crease of prey increases predator efficiency for relatively low prey abundance. All
the three predators begin to grow at the same threshold quantity of prey denotedST .
Predator 2 is more anr-strategist and less aK-strategist than predator 1, predator 3
is more anr-strategist and less aK-strategist than predator 2. We distinguish three
values ofK, denoted herein asST < K1 < K2 < K3. For K < ST , there are no
equilibria corresponding to the survival of the predators. ForK > ST the system has



194 M. FARKAS, E. ŚAEZ, AND I. SZÁNTÓ
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F 5. K = 11, trajectories tending to limit cycle in the (x, w) plane

an attracting simplex of equilibria in the positive orthant of the 4-dimensional space.
This means that solutions tend to a point on this simplex determined by the initial
conditions, i. e., the three predator species may coexist with the prey in the long run.
Naturally, if neglected and stochastic effects are taken into consideration the limit
point may drift on the simplex and this may lead to the extinction of one or two of
the predators. AsK is increased beyondK1, the equilibria on the simplex begin to
lose their stability starting with those that represent dominance of predator 1, theK-
strategist, and then proceeding on with those that represent dominance of predator 2.
This part of the simplex becomes a repeller of the system and all solutions tend to an
equilibrium that represents dominance of predator 3, ther-strategist. For values ofK
larger thanK3 the first two predators disappear and only predator 3, ther-strategist
survives with the prey. This is the phenomenon that we call avelcro bifurcation.The
results support the intuitively expected fact that abundance of food is advantageous
for r-strategists, and under such conditions aK-strategist loses because its positive
properties are of no use. However, if the parameters of the system can be estimated
with some exactness, the model tells us at what value of the carrying capacity theK-
strategist and also the second predator begins to lose ground and at what value they
disappear.

A

The first author wishes to thank for the hospitality during his stay at the De-
partment for Mathematics of the University Santa Maria of Chile and also thanks
Fondecyt-Chile, Grant No. 7030005, for their financial support.

R

[1] B, A.,  F, M.: Political and economic rationality leads to velcro bifurcation, Applied
Mathematics and Computation,140(2003), 381–389.

[2] F, M.: Zip bifurcation in a competition model, Nonlin. Analysis TMA,8 (1984), 1295–1309.



VELCRO BIFURCATION IN COMPETITION MODELS 195

[3] F, M.: Competitive exclusion by zip bifurcation, In: Dynamical Systems, IIASA Work-
shop 1985 Sopron, Lecture Notes in Economics and Mathematical Systems 287, Springer, 1987,
pp. 165–178.

[4] F, M.: Periodic Motions, Springer-Verlag, New York, 1994.
[5] G, A., H, J., S, I.: On the dynamics of asymmetric games, Theo-

ret. Population Biology,39 (1991), 345–357.
[6] M, R. M. (.): Theoretical Ecology, 2nd ed., Blackwell, Oxford, 1981.

Authors’ addresses

M. Farkas:
I  M, B U  T, B, H, H-1521
E-mail address: fm@math.bme.hu

E. Sáez:
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