Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 6 (2005), No 2, pp. 185-195 DOI: 10.18514/MMN.2005.115

Velcro bifurcation in competition models with
generalized Holling functional response

M. Farkas, E. Sdez, and 1. Szdnto



Miskolc Mathematical Notes HU ISSN 1787-2413
)@ \ol. 6 (2005), No. 2, pp. 185-195 electronic version
<

VELCRO BIFURCATION IN COMPETITION MODELS WITH
GENERALIZED HOLLING FUNCTIONAL RESPONSE

M. FARKAS, E. SAEZ, AND I. SZANTO
[Received: January 25, 2005]

Asstract. A four dimensional system is considered describing the competition of
three predator species for a single prey species. The predators functional response
is of a generalized Holling Il type. Predators begin to grow at the same threshold
quantity as prey does. The system has a two dimensional simplex of equilibria
which is attracting at low values of the carrying capaéitput gets destabilized as

K grows and the predators that are less r-strategists lose ground.
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1. INTRODUCTION

The phenomenon dip bifurcationwas introduced by Farkas [2] in 1984 in con-
junction with a system describing the competition of two predator species for a prey.
It was assumed that the threshold quantities of prey at which predator growth rate
became positive were equal. As a consequence, the system had a one dimensional
continuum of equilibria (a “zip”). One of the predators could be identified Ks a
strategist, the other one as strategist. A species is calledastrategist, roughly,
if it has a relatively low growth rate and may survive with low carrying capag€ity
A species is am-strategist if it has a high growth rate (for more see [6]). Clearly, the
model was not a structurally stable one, however, it illustrated the intuitively evident
fact that at low values of the carrying capadityboth predators might survive but as
K grew theK-strategist lost ground and only thestrategist survived with the prey.
Later a whole class of models were characterized that showed the phenomenon [3],
see also [4], and some applications were published, see e.g. [5]. Recently [1] the
phenomenon was generalized to a four dimensional system that arose in economy-
politology. In this case the system had a two dimensional surface of equilibria that
got destabilized as the value of a parameter was increased. We calledréisa
bifurcation In general, suppose that a system of autonomaftisrditial equations
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has a two dimensional fierentiable manifold of Liapunov stable equilibria and in

an interval of a bifurcation parameter this manifold is an attractor of the system. In-
creasing, say, the bifurcation parameter a curve sweeps through the manifold and the
equilibria that are left behind get destabilized, i. e., the part of the manifold that is
left behind becomes a repeller while the part yet untouched remains an attractor. In
this case we say that the system undergoes a velcro bifurcation.

In the present paper we consider three predator species that compete for a sin-
gle prey. The functional response of the predators is assumed to be of a gener-
alized Holling 1l type. The Holling Ill functional response that is of the form
S?/(S? + a®),whereS is the prey quantity, has the property that up to a certain value
the growth ofS is increasing predatoffiiciency and, as a consequence, the predator
has a stabilizing fect on the population, above this value predaftciency is de-
creasing (see May [6]). Here we replace Holling 11l 8%/(S" + a") wheren > 1
is an arbitrary integer. This generalized Holling Il functional response preserves the
basic properties but is somewhat finer.

In the next Section we introduce the model and establish the conditions under
which a velcro bifurcation occurs and in Section 3 we present some computer simu-
lations.

2. VELCRO BIFURCATION

Let us denote the quantity of prey at timhby S(t), the quantity of predatdarby
xi(t), i = 1,2,3 and consider the following system that describes the competition of
the three predator species for the prey

n

S=rS(1-S/K)- me'a]+8”’

S .

X = mx.a1 S —dixi, i=123 (2.1)
wherer, K, m, g,d; > 0 are the intrinsic growth rate of prey, the carrying capacity,
the maximal birth rate, the half saturation constant and the death rate of predator
respectively, anah > 2 is an integer. In absence of predation prey grows up to the
value ofK. If predators are present prey quantity is less.SAgnds to infinity,per
capitapredator birth rate tends to (the shape of the predator functional response is
a sigmoid one). For the survival of predatdris , clearly, necessary that the maximal
birth rate be larger than the death rate:

m>d, =123 (2.2)

This will be assumed in the sequel. Wh8n= a;, then theper capitagrowth rate
is half of the maximal. The lower the half saturation constns, the less prey is
needed for the maintenance of the predator. Therefore, we shall consider a predator
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with low half saturation constantka-strategist.We assume that

a1 < az < as. (2.3)
Predatori begins to grow only if the right hand side of equation (Ri4)positive.

This is the case i > S := g {/di/(m — d)) = a; V/1/(b — 1), whereb; = my/d; > 1.
We shall assume that thiereshold values of prey are equal for the three predators:

S1:=51=5,= S3. (2.4)
Conditions (2.3) and (2.4) imply that
bl < b2 < b3. (2-5)

We shall consider a species with a high ratio of maximal birth rate to death rate as
anr-strategist Thus, in our system, predator 1 may be considerkdstrategist and
predator 3 am-strategist. Predator 2 is in between the two.

Applying the conditions above, we can rewrite our system in the form

n

3
S =rS(1-S/K) - —
S =188/ = ), Mg

(s"-Sp)_

Xi =,3imx|, =123, (2.6)

wheres; = m—d; > 0. Clearly, the positive orthant 0B( X1, X», X3) space is invariant.
We shall consider system (2.6) restrictedRtb.

Lemma 1. System2.1) and, as a consequend®,6) is dissipative, i. e., all solu-
tions are bounded.

Proor. Let us add the four equations of (2.1):
3
(S+x1+ X +X%X3) =rS(1-S/K) - Zdixi.
i=1

If S>Korif S <Kbuty?, dix > rK then this derivative is negative. This means
that the trajectories of the system cross the hyperplanes

S+X+X+x3=C

from outside to inside i€ is suficiently large. O
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The equilibria of system (2.6) are,@ 0, 0), (K, 0, 0, 0) and the points of the two-
dimensional plane

3
m St
{(s X1, %, Xa) € R 1 S = S, Z +Tsn rSt(1 - St/K),

X >0, i :1,2,3}

the latter having points ilR% only if
St <K. (2.7)

We are to study now the stability of these equilibria. The Jacobian of the system is
(summation goes always from 1 to 3)

ma]S gn gn sn ]
r(1-25/K)-ny @+ sn) I o
pi(S"-S})
3= iy e
gn-1 2

N2 ( a2+8”j X2 0 a+S" 0

gn-1 B3(S"-sh)

nBs a+s" X3 0 0 A

Substituting (00, 0, 0) we obtain easily that the origin is unstable (a hyperbolic
saddle).

Substituting K, 0, 0, 0) we obtain similarly that this equilibrium is asymptotically
stable ifK < Sy and it is unstable, a hyperbolic saddlKif> St. The resultis in
accordance to what has been said before. If the carrying capacity, i. e., the lim sup
of prey abundance is less than the threshold value above which predator’s quantity
may grow, then the predators die out. If (2.7) holds, then the predators may survive.
This is precisely the case when the system has equilibria in the interior of the positive
orthant. (2.7) will be assumed in the sequel.

We turn now to the stability problem of the pointsin Substituting the coordi-
nates of an arbitrary point & into the Jacobian, a straightforward calculation leads
one to the following characteristic polynomial:

_22(y2 n-1 ma'x;
D(1) = A (a +/1(nST P @Sy r(l—ZST/K))
2n-1 m;BiX;
RN, +S“)2)
This means that each equilibrium point ihhas zero as a double eigenvalue and

two eigenvalues with real part negative or positive depending on the fact whether the
quadratic polynomial in brackets is a stable polynomial or inversely. This polynomial
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is stable ff the codficient of A is positive, i. e., the equilibrium point i& has two
eigenvalues with negative real part if and only if

ma’; r
1-2S7/K). 2.8
Note that (2.8) holds obviously for each pointinf St < K < 2St. In what follows
K will be considered the bifurcation parameter.

Theorem 1. Under the condition$2.2)—(2.4), (2.7)if at a point ofE (2.8) holds,
then this point is stable in the Liapunov sense and a neighbourhood of this point is
attractive in the sense that it has a tubular neighbourhood from where it attracts the
solutions; if the inequality2.8)is inverted, then the point is unstable.

Proor. If (2.8) holds, then the equilibrium has a two dimensional centre manifold
(clearly the simplexE) and a two dimensional stable manifold, and by continuity the
same holds for each equilibrium in a neighbourhood of the point. The stable man-
ifolds of the equilibria in this neighbourhood fill in a tubular neighbourhoo®fn
(this can be proven analogously to how this was done in [2]), thus, from this tubular
neighbourhood every solution tends to some equilibrium in this neighbourhood. The
unstability proposition is obvious. O

Consider (2.8) with the equality sign:

ma'x; r
> @Sy " na (1-2S7/K). (2.9)
This is the equation of a two dimensional plane in $ie= St section ofR?. If
K is small € 2St), then (2.8) holds, obviously, in each point Bf i. e., E is an
attractor of the system. However,Kf is increased, the plane (2.9) may interséct
and, as a consequence, the stability properties of the equilibEariny change. The
following theorem explains what happens.

Theorem 2. Suppose that conditiorf2.2)— (2.4)and (2.7) hold and assume that
a<a<az<St/Vn-1; (2.10)

(1) if K e (ST, %) then each equilibrium ifE is stable in the Lia-
punov sense and is an attractor of syster(R.6),
() ifK e (% oo), then all these equilibria are unstable afdis a
repeller;
(3) if K is increased from one end to the other one of the interval
((n-2af-2st)Sr ((n-2)ag-2Sh)Sr
(n-nal-sy ° (n-1aj-S§ ’
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then the line of intersection @& and the plang2.9) is traveling throught
from the vertex on the axig to the vertex on the axig and the equilibria
left behind get destabilized; for

((n-2a]-2s7)sr ((n-2)a}-2Sh)Sy
(n-nal-syt ° (n-1aj-Sh
this line of intersection divides into two parts, “the lower one” is a repeller

and “the upper one” is an attractor of the system (see Figure 1 in the next
Section), i. e., the system undergoes a velcro bifurcation.

Proor. Let us denote the respective coordinate interceptg dify (xg1,0,,0),
(0, Xe2, 0), (0,0, xg3) and those of the plane (2.9) s, 0, 0), (0, Xg, 0), (0, 0, Xs3).
A simple calculation yields

T+«
Xgi = —(1-S7/K);
Ei m S-rll-_l( T/ )
N4 SN2
ma’ NSy

Introduce the notation
((n-2)ar-2s) sy
(n-na'-st

By condition (2.10) the denominator aadortiori the numerator are negative, hence
((h-2a"-2s1)sr

Ki =

i=123.

Ki is positive, further, as the functioh(a) = DAt is increasing in the
intervala e [0, St/ Vn— 1) we have
ZST < Kl < Kz < K3. (2.11)

Now, a simple calculation shows that foB2 < K < K; we havexg < Xs, and

Xei = Xsi whenK = Kj. This implies that for 31 < K < K; the plane (2.9) is
“below” E and reache& at xg1 = Xg whenK = Kj. (As K is increased both
planes are displaced parallelly). This implies that f8F % K < K1 (2.8) holds for
every equilibrium inE. As K is increased further the plane (2.9) cuts iBtaeaches

X2 = Xg atK = Ky, reachesgs = xg at K = Kz and after that cuts the plane of

E outside the positive orthant so that n@&wvill be “below” the plane (2.9). In the
process, condition (2.8) holds with an inverted inequality sign in the pdtwaliiich

is already below the plane (2.9). This means that the equilibria on this part of the
plane have a two dimensional unstable manifold which fill a neighbourhood of this
part of E. This proves the Theorem. O

Note thatK; is positive also ifSt{2/(n-2) < a; < a2 < ag, n > 2, however, in
this case the plane (2.9) never reackes
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Note also that in case of the classical Holling Il functional response, m €.2
condition (2.10) is jusiy < a» < az < Sr, the half saturation constants must be less
than the threshold value of prey abundance. This means that predator birth rate half
the maximal is not dticient for predator survival. In case of the generalized Holling
Il functional response the half saturation constants must be even less in order to
experience velcro bifurcation.

3. COMPUTER | MAGES

In this Section a numerical example will be presented. The classical Holling IlI
functional response will be considered, i.®~5 2. The following parameter values
are chosen:

r=1,m=>5m=6 nmg=7 a =05<a = V05<az= V0.75
d=d=d3=4
As a consequence
Br1=1B2=2 p3=3 b1 =5/4<by=6/4<bz=7/4, Sr=1
Conditions (2.2)—(2.4) and (2.10) hold and the system is
S = S(1 - S/K) — 5%5%/(0.25+ S?) — 6x,5%/(0.5 + S?)

— 7%3S%/(0.75+ S?), (3.1)
X1 = 82_1x )_(_282—1)( X3 = 82_lx
17025+ T 05+5277 BT U075+ 527

E ={(S, X1, X2, X3) € R : S =1, X1 + X + X3 = 0.25(1- 1/K), X > O}.
The equation of the plane (2.9) is now
X1/0.375+ %2/0.225+ x3/0.175= 1. (3.2)

The critical values oK are: K; = 2.667,K, = 4, K3 = 8. Condition (2.11) is
satisfied. We choos€ = 5. By this, clearly, the points of the plane Bfon the axes
X1 andx, have already been destabilized, but the vertex on thexgxssstill stable.

Figure 1 shows the plane & cut by the plane (3.2). (The figures were produced
by Maple V. The coordinateS, x;, X2, X3 are denoted on the figures byy, z, w,
respectively).

We choose now two sets of initial values. The first (denoted by A) is near the
destabilized part oE (with x3 coordinate small). The second (denoted by B) is near
the still attractive part oE (with X3 coordinate relatively large). The coordinates of
(A) are given by §(0), x1(0), x2(0), x3(0)) = (1, 0.08,0.08, 0.06), and the coordinates
of (B) are given by $(0), x1(0), x2(0), X3(0)) = (1,0.01, Q05,0.16). Figures 2, 3, and
4 show, respectively, the, X2, andxz coordinates of the solution. As can be seen, the
solution initiating at (A) tends to an equilibrium on the still attractive portioi ¢ér
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Ficure 1. Plane of equilibria partly destabilized
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FiGure 2. x; coordinates of solutions (A) and (B)

from (A) after exhibiting strong oscillations. In contrast, the solution corresponding
to (B) tends to an equilibrium on the still attractive portiorEohear (B).

Figure 3 shows the, = z coordinate of these solutions. The behaviour is similar
to the previous one.

Figure 4 shows the;s = w coordinate of these solutions. For solution (A) it is
increasing considerably, for solution (B) it remains near the initial value.

Itis an interesting question what the solutions do wen K3, i. e., when already
all the equilibria inR% have been destabilized. It is easy to see that the equilibrium
point (St, 0, 0, xg;) which is the “last stable one” undergoes a degenerate Andronov—
Hopf bifurcation asK is increased througKs. The fundamental Andronov—Hopf
bifurcation theorem (see, e. g., [4]) does not apply since at the critical ¥
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Ficure 3. Xy coordinates of solutions (A) and (B)
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Ficure 4. x3 coordinates of solutions (A) and (B)

the bifurcation parameter this equilibrium has a double zero eigenvalue and a pair
of imaginary eigenvalues. Computer simulations show that the closed orbit of the
bifurcating periodic solution attracts solutions initiatingRfi\ E.

4. CONCLUSIONS

Three predator species compete for a single prey species. The prey species fol-
lows logistic dynamics with carrying capacity in the absence of predation. The
functional responses of the predators are of generalized Holling Il type, i. e., in-
crease of prey increases predatfiiceency for relatively low prey abundance. All
the three predators begin to grow at the same threshold quantity of prey d&goted
Predator 2 is more anstrategist and less ld-strategist than predator 1, predator 3
is more arr-strategist and less la-strategist than predator 2. We distinguish three
values ofK, denoted herein aSt < K; < Ky < Ks. ForK < S, there are no
equilibria corresponding to the survival of the predators. kcor St the system has
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Ficure 5. K = 11, trajectories tending to limit cycle in thg, {v) plane

an attracting simplex of equilibria in the positive orthant of the 4-dimensional space.
This means that solutions tend to a point on this simplex determined by the initial
conditions, i. e., the three predator species may coexist with the prey in the long run.
Naturally, if neglected and stochastiffexts are taken into consideration the limit
point may drift on the simplex and this may lead to the extinction of one or two of
the predators. AKX is increased beyonH;, the equilibria on the simplex begin to

lose their stability starting with those that represent dominance of predatorK; the
strategist, and then proceeding on with those that represent dominance of predator 2.
This part of the simplex becomes a repeller of the system and all solutions tend to an
equilibrium that represents dominance of predator 3ribieategist. For values &€

larger thanKz the first two predators disappear and only predator 3r-tteategist
survives with the prey. This is the phenomenon that we cadliero bifurcation.The

results support the intuitively expected fact that abundance of food is advantageous
for r-strategists, and under such conditionk-atrategist loses because its positive
properties are of no use. However, if the parameters of the system can be estimated
with some exactness, the model tells us at what value of the carrying capadiy the
strategist and also the second predator begins to lose ground and at what value they
disappear.
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