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Abstract. In this paper, we study Baskakov type positive operators in polynomial weighted
spaces of functions of two variables. We obtain some well known operators by using our op-
erators which are special cases of them. We give theorems on approximation, on the degrees of
approximations of functions and the Vornovskaya type theorem for these operators. Finally, we
present an open problem concerning the g analogue of these operators.
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1. INTRODUCTION

Let p € No. We define w, (1) = (1+u?)~, u € Rg = [0, 00) and for fixed p,q €
Ny, we define the weighted function

Wpq(x,y) = Wp(X)0q(y), (x,y) € R§ =1[0,00)x [0,00).

We denote by the weighted space Cy),, the space of all real-valued functions f
continuous on IR% for which wp 4 f is uniformly continuous and bounded on IR% with
the norm

”f“a)p’q: Sup a)p,q(x,Y)|f(an)|-
(x,y)€RG

The modulus of continuity of f € C, , defined by
Q(f;t,s)= sup sup ”Ah,gf” ,t,5>0,

0<h<t 0<8<s “p-a
where Ay 5 f(x,y) = f(x+h,y+38)— f(x,y). Also we denote by Ca'z)q is the
set of all functions f € C, , with the partial derivatives fx(f ’)y iy k=1,2,...m,
belonging to Cy,, , -
Let {¢,} (n =1,2,...) is a sequence of functions ¢, : C — C satisfying the fol-
lowing properties:
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(i) ¢n (n=1,2,...) is analytic on a domain D containing the disk

={z€C: |z—b[<b}CD;

(1) gn(0) =1 (n =1,2,...);

(iii) forany x >0, (pn(x)>0and<p )(O)>Of0ranyn—1 2,...,andk=1,2,....
(iv) foreveryn =1,2,...

%(zv) (anx)

1
Pn X)) v=0,1,2,3,4 1.1
nVop (anx) o (bn) v (b

by
where a, = — — 0 and b,, — co as n — 0.

n
For a real valued function f defined on the interval [0,00), generalized Balazs
type operator defined by (see [8])

)<0>
Ln(fix)= nx)Zf( ) @x)  m=12,.). 12

In (1.2), choosing a,, = 1 we obtain following operators

n()zf( ) S

which are known as the Baskakov type operator. It can be easily verified that in case
on(x) = (14 x)", the operators L, (f;x) reduce to the well known Bernstein type
rational function introduced by K. Balazs[3] as

iy 1 ~(n k(K
o7 = i ()@ 7 (5)

In the present work, inspired by operator (1.2), for f € Cy, , and p,q € No we
introduce the following operators

Ln(f;x)=

Lym(fian,bn.cm,dm;x,y) =Lym(f:x,y)
defined by

Lym(fix,y)

1 1 ox” (0) j <pm (0) J ok
@n (anx) om (cmy) ;Z J! an )" =y (emd) f(b_ E)’
(1.3)

(x,y)€R3, n.meN
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where (ay),(by),(cm),(dm) are given increasing and unbounded sequences of
positive numbers such that

(v) (v)
¢n” (anx) —1+0(l), M_Ho(dl) . a9

nvon (anx) B bn mv om (Cmx) B
From (1.3) and (1.4) we decide that L, , (f) are well-defined in every space
f €Cy,, and p,q € Ng. Moreover, for (x, y) € [R%, n,m € N, we have

Ln,m(l’an»bn’cmadm,X,y)= 1 (15)
If f€Cy,,and f(x,y)= f1(x) f2(y) :forall (x,y) € IR% and n,m € N then
Ln,m (f§an,bnacm»dm;an) =Ly (fl;anabn;x)Lm (fZQCm,dml)’)- (1.6)

This paper is devoted to a study aimed at obtaining approximation results by us-
ing the modulus of continuity and obtaining a Voronovskaya type theorem for the
Baskakov type operators defined by (1.3) in polynomial weighted spaces. Approx-
imation results for some different operators in the weighted spaces have been invest-
igated in some papers (e.g. [21.[0], [5], [71L[4], [8], [9LI1OT, [12], [11D).

2. AUXILIARY RESULTS

In this section, we give some lemmas, which are essential to prove our main the-
orems.

Lemma 1. Let L, (f;x) be defined by (1.2). For x € Ry and n € N, we have

Ln(L;x,y) =1, 2.1
Lo (t—x: )= an‘P;;(anx)_l 2.2)

2 1" / ,
Ly ((t—x)%:x) = (a—”M—zal—(p"(a”x)+1)x2+@—“’n(a”x) 2.3
n (( ) ) b% On (anx) bn ©n (anx) b% @n (anx) ( )

(v)

b 1

where ay, =2 0, b,,—>ooandM :1+0(—).
n nVep (anx) by

Lemma 2. For every fixed p € Ny, for all x € Rg and n € N, we have

L (——:x) <M 2.4
a)px n(m,x)_ 1, )

_ 2 2 I /
a)p(x)Ln<(t x)”, )st[(a—”M—za—”Mﬂ)xz 2.5)

—X
wp(t) brzz ¢n (anx) by ¢n (anx)
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apX ‘P;/1 (anx):|
b;% ¢n (anx)

where M1, M> are positive constants.

Lemma 3. For every x € Ry, one has

) k.. _ |0 ifk=1
Jim bl (¢ =) ’x)_{ X, ifk=2

. 2 k. . X, lfk:3
oim by Lon ((t_x) ’x)_{ 32, ifk=4

Lemma 4. For every p,q € No, m,n € N and every f € Cy, ,, we have
< My, (2.6)

1
o (5r75)
H e wpaq(t’z) pr,q

1Lwm (Dllc,, , < Mallfle,,, @7

where My is a positive constant.

Lemma 5. Let f € Cy, , and p,q € No.For allm,n € N, we get

| (Lam ),

< M5\ flc,, , an 28)

wp.q

C

[(Lam 1),

where M5 is a positive constant.

. =Mslflc,,, cm (29)
wp.q ’

3. MAIN RESULTS

Now, we give firstly following two theorems on the degree of approximation of
functions by L s, defined by (1.3).

Theorem 1. Let f € Cal)p.q and fixed p,q € Ng. Forall (x,y) € IRg andm,n € N,
we have

0pa () L (5.0~ f o = Mo | o+ 152

(3.1)

where Mg is a positive constant.

Proof of Theorem 1. Let (x,y) € [R% be a fixed point. Then f € Cal)M we have
the formula

rea-rwn = [ faad [ fewd woerd
x y
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Thus, by (1.5), we obtain
Ln,m(f(Z,Z)UC:J’)_f(x,J’) (32)

t 4
=Lnm (/ fu (M,Z)du:x,y) + Lu,m (/ fv/(x,v)dv;x,y)
X y

On the other hand, we have

f (u,z)du| =

t
/a)pq(uz)f (u,z) ————du

pq(u Z)

t 1
/—du
X a)pq(u Z)

= VA

= VA PP b

which implies (1.2) and (1.5) that

1
q(f 2) a)p,q(xvz))|t_X|’

a)pq(x y)|L

<a)pq(x )’)Ln

/ fo(u,z)dul;

( £l . 2)dux, y)]
( )

, |t —x| [t —x]

= fo”p,qu,q(x’)’){lfn,m( wpq (. ), ,y)-l—an(m,x,y)}

1 [t — x|
<% Lin | ——: Lo (=) o L (= xi0)
_foHp,qwq(Y) m(wq(z) J’){wp(x) n(a)p(t) x)+ n ([t —x| x)%
Applying the Holder inequality and (2.1), (2.2), (2.3), we get the inequalities

Ln (Jr =x[3x) < {L" <(’—X)2;x) Ln(l;x)}l/2

{ (a_ (pn (anx) _2a_” (p;l (a_”x) —+ 1) x2 =+ dnX (pill (anx)} 12
byzl ¢n (anx) by @n (anx) b% @n (anx)

() o) ) (o)

for a sufficiently large n, we have

L (|t —x|:x) < M7 [ -,
b

=)
@p () L”( () )

and so
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- (t_x)Z. 1/2 1 ' 1/2
< {wp(xm( o x)% {wp(xm (mx)}

<M. |
= 8 bn
¢
wP,Q(xvY)‘Ln,m(/ fu/(u,z)du;x,y)
X

Lo ( fy 1 (x,v)dv;x,y)

Finally, the last two inequalities, for all m,n € N, we derive from (3),

0 (60) L (F5,9) = £ (1, 9)] = M { 150, \/bz AL, \/%}

Thus the proof of the theorem is completed. g

Consequently

X
VAN

Y
SMIO ny/”p’q s

Wp.q (x,y) dn

Theorem 2. Let f € Cy,, and p,q € No. For all (x,y) € R3 and m.n € N, we
have

Opog (5 ) | L (f3%.3) = f (x.9)] < M13Q2 ( 7 \/bz \/%) (33)

where M3 is a positive constant and §2 is the modulus of continuity of f.

Proof of Theorem 2. For f € Cy, ,, applying the Stieklov function f} s

1 rh 8
Jns = %/ du/ f(x+u,y+v)dv, (x,y)eR2, h§>0. (3.4
0 0

From (3.4), we can write

1 h S
s )= f ) = 35 [ [ p ey,
and therefore
, 1 h $ 8f
(fns), (x.y) = %fo du/o E(x—i—u,y—l—v)dv (3.5)
8
=hl—8/0 (Gt by +0)— f )= (f oy +v)— f ey} du

1 8
=5 [ (haf (o) =201 o),
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Similarly, we can obtain

h
(), ) = 35 [ (Bus £ eop)=duof o). G0

Thus we have
| /5.5 —fHpr.q = supwp.q (x,¥)| fns (x,y)— [ (x.)| (3.7)

1 h ]
s | [ s yan

= Supwp, 4 (x,y)

<2(f:h,8),
and from (3.5) and (3.6), we get
’ 2
H (fn8), Con < Z-Q(f;hﬁ), (3.8)
: 2
|y, =52, (3.9)

Now, for Ly ;, defined by (1.3), we can write

Wp,q (X, Y) [ Lnm (f3%,5)— f(x,9)]
<wpg X V) {|Lum (f t.2)— f5(1.2):x,)|
+ | Lngn (fr.s ¢.2):%, ) = fus . 0|+ | fas (x.9) = f (x, )]
= A1+ A2+ A3,

Firstly, we consider A1 = wp.g (x, ) |Lnm (f (t.2) — fns (t.2);x,y)|. By (2.6) and
(3.7) we have

M= Lo (= fus)le,,,

< M| f— fns]|
< MyS2(f;h.,9),

CwIJ,CI

and for A3, we get
A3 = wpq (X, )| fn5 (x.9) = f (x, )|
=l fs-rle,,,
< 82(f:h.9).
Finally, for A,, Applying Theorem 1 and (3.8) and (3.9), we obtain
A2 =wpq (X.¥) | Lngm (fns (t.2):%,5) = fns (x. )]

S TAR] [ S (S

o
Copg \ dm
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sMu{%9(f;h,5)\/bz+§rz(f;h,8>\/dz}
N N e N
A R At

Consequently, for (x,y) € R2, m,n € N and &, § > 0, there exists M3 we get

1 1
Opag () L (f1.3) = f (x.)] < Mis @ (f:h.5) %%Ew&} .

(3.10)
For fixed x,y > 0, taking h = /bi and § = ,dl in (3.10), we obtain desired
n m
result. g

From Theorem 2, we obtain following approximation theorem for L, ;; operators
defined by (1.3):

Theorem 3. Let f € Cy, , and p,q € No. Then
lim Lpm(f:x.9)=f(x.y) forall (x.y)e R3. (3.11)

n,m—

Moreover (3.11) holds uniformly on every rectangle 0 < x < xg9, 0 <y < yo (see
Example 1).

Remark 1. Some particular cases of the operators (1.3) are defined as follows:
If g, (x) = e, om (y) = e“"”, then the operators Ly , (f;x,y) reduce to the
Szasz type operators of two variables defined by

Ln,m(f§x’)’) = Sn m(fx »)

—(anx+cmy) ZZ (anx) (Cmy) f(_ _) (x,y) € |R2

k=0,j=0

If o (x) = (1 +x)", m (y) = (1 + y)™, then the operators Ly, (f;x,y) reduce to
Bernstein Balazs type operators of two variables defined by

Lym(f:x,y)=Rym(f:x,y)

1 " ik
= T T ZZ( ) Yt can’s (55):

k=0j=0
(x,y)e[R%.

Example 1. For ¢, (x) = €9, ¢, (v) = emY and ap, = /n+1,by, = /n;cm =
Vm+1,dy, = /m; the convergence of Ly m (f;x,¥) = Spm(fix,¥)to f(x,y) =
xye~*+¥) will be illustrated following Fig.(1).
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B )

B 21000, 1000(Fx )
. Lico,100(fxy)
[ ] Lioao(Fxy)

LA

15k ';:lrf.
T ,',':*
ﬁj&aﬂ.\

FIGURE 1. Convergenge of the Ly, ;; = Sy, operators for n,m = 10,100, 1000.

Example 2. For ay = /n+1,by, = /n ; ey = Vm+1, dyy = /m; the conver-
X

gence of S, m(f5%,7) 10 f(x, ) = 15z~ and the convergence of Rym (. )
to f(x,y)= . J:‘xz e~ will be illustrated following Fig.(2).

Now, we give the Voronovskaya type theorem for the following operators given by
(1.3) forn = m:

Lyn(f(.2):x,y) (3.12)

— ! R ) DR 2l () I B
= On (anx) on(cny) ; Z IT (anx)’ ST (eny)" f (E’ E) ,

o0 (anx) _

=1+
nY gy (apx)

b
(x,y)e[Rz, n €N, Whereanz—n—>0andbn—>ooand
n

Theorem 4. Let f € C; and p,q € No. Then for every (x,y) € R%. = (0,00) x
(0,00),

Jim by {Lnn (f:x.3) = f (x.3)} =§ x (x,y)+§fy”y (x.y). (I3
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0.5

I B =y
0.4+

: . S10,10(fxy)
03] [] Rio10(fix.y)
0.2
0.1

FIGURE 2. Convergenge comparation of the Szasz operators and
Bernstein Balazs operators of two varibles for n,m = 10.

Proof of Theorem 4. Choosing (x, y) € R2 , by the Taylor formula for f € Caz)p o
we have

f@2) =)+ fi(xy)E=x)+ f (x,9) (=)

e 0 4210 () 1) =)+ i )

o1 (6,2) (1= x)* + (2 — )

where &1 (f,z) = €1 (t,2;x,y) is a function belong to Cp 4 and &1 (x, y) = 0. From
this and by (1.1), (1.3), (1.5)-(2.1) and (3.12), we can write the following equality

Lyn(f(@.2);x,y)
= f (. y)+ fx . y) Lo ((t=x):x) 4+ fy (x.y) Ln (2= ¥) 1 ¥)

o A e L (=207 %) + 210 (60) L (=20 5) L (2 =) )

+fyyLn ((z - y)z;y)} +Lnn (81 (t.2) \/(z —0)*+(z _y)“;x,y)
by using (2.2), (2.3) and Lemma 2, for n € N we have

Jim by L (Fix.0) = f G = S A )+ 3 A5 () Gd)
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+nli)ngoann,n (51 (t,2) \/(t_x)4+(z_y)4;x,y)-

in view of (1.1), (1.5)- (2.1) and using the Holder inequality, we get

’Ln,n (81(t,z) \/(t—X)4+(z—y)4:x,y)‘ (3.15)

< {Lua (. 2):x.7)} {Ln,n ((I—X)4 + (z—y)“:x,y)}l/2

1/2
<ALna (2 (t.2)x. )} {Ln ((t —X)4;x) + Ly ((z —y)4;y)}
From Theorem 3, we obtain
lim Ly (¢7 (1.2):x,7) = €] (x.7) =0, (3.16)

and considering (3.15), (3.16) and Lemma 3 , we get

1/2

lim by Ly, (81 (t.2) \/(z —-0)*+(z —y)4;x,y) =0. (3.17)
n—>oo
Using the equality (3.17) in (3.14), the proof is completed. O

Remark 2. Recently many generalizations of well-known positive linear operators,
based on g—integers were introduced and studied widely by several authors (we refer
the reader to [1]). One can define and study g—analogue of the operators (1.3) .
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