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Abstract. Let G be an undirected simple and connected graph with n vertices .n � 3/ and m
edges. Denote by �1 � �2 � � � � � �n�1 > �n D 0, 1 � 2 � � � � � n , and �1 � �2 � � � � �
�n�1 > �n D 0 , respectively, the Laplacian, signless Laplacian, and normalized Laplacian ei-
genvalues of G. The Laplacian energy, signless Laplacian energy, and normalized Laplacian
energy of G are defined as LE D

Pn
iD1

ˇ̌̌
�i �

2m
n

ˇ̌̌
, SLE D

Pn
iD1

ˇ̌̌
i �

2m
n

ˇ̌̌
, and NLE DPn

iD1 j�i �1j, respectively. Lower bounds for LE, SLE, and NLE are obtained.
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1. INTRODUCTION

Let G be an undirected simple and connected graph with n vertices .n� 2/ andm
edges, and let d1;d2; : : : ;dn be its vertex degrees.

If the i -th and j -th vertex of the graph G are adjacent, we write i � j . Then the
adjacency matrix AD .aij / of G is defined as

aij D

8<:
1 if i 6D j and i � j

0 otherwise:

The eigenvalues �1 � �2 � � � � � �n of A form the (ordinary) spectrum of G; for
details on the respective spectral theory see [9].

Denote by D the diagonal matrix of the vertex degrees ofG. The Laplacian matrix
of G is L D D�A and its eigenvalues are �1 � �2 � � � � � �n�1 > �n D 0 (see
[3, 16, 25]). In addition, Q D DCA is the signless Laplacian matrix of G and its
eigenvalues will be denoted by 1 � 2 � � � � � n � 0 [10, 11].

Because the graph G is assumed to be connected, it has no isolated vertices (i.e.,
di > 0 for all 1 � i � n) and therefore the matrix D�1=2 is well–defined. Then
L� D D�1=2LD�1=2 is called the normalized Laplacian matrix of the graph G. Its
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eigenvalues are �1 � �2 � � � � � �n�1 > �n D 0. For details of the spectral theory of
the normalized Laplacian matrix see [8].

It is convenient to write the normalized Laplacian matrix as I�R, where R is the
so-called Randić matrix [4, 29, 30], whose .i;j /-entry is

rij D

(
1=
p
di dj if i 6D j and i � j

0 otherwise:

The (ordinary) energy of the graph G is defined as [23]

E DE.G/D

nX
iD1

j�i j : (1.1)

Its theory is nowadays well elaborated [23]. Energy–like spectral invariants have
been introduced also for other graph matrices [18]. In this paper we are concerned
with the Laplacian [21, 23], signless Laplacian [1], and normalized Laplacian (or
Randić) energies [5, 20], defined as

LE D LE.G/D

nX
iD1

ˇ̌̌̌
�i �

2m

n

ˇ̌̌̌

SLE D SLE.G/D

nX
iD1

ˇ̌̌̌
i �

2m

n

ˇ̌̌̌

NLE DNLE.G/D

nX
iD1

j�i �1j

respectively. In what follows lower bounds for LE, SLE and NLE are obtained.

Remark 1. In analogy to (1.1), the “Randić energy” is defined as the sum of the
absolute values of the eigenvalues of the Randić matrix. It has been shown in [20],
that the Randić energy coincides with the normalized signless Laplacian energy.

Remark 2. One could also consider the normalized signless Laplacian matrix,
D�1=2QD�1=2 and its “energy” (sum of absolute values of eigenvalues). However,
the energy of this matrix is exactly the same as the normalized Laplacian energy,
NLE [20]. For the general definition of the energy of a matrix see [28].

The Laplacian, signless Laplacian, and normalized (or Randić) Laplacian spreads
of a graph G are defined as LS.G/ D �1 � �n�1 , SLS.G/ D 1 � n , and
NLS.G/D �1��n�1 , respectively (see [5, 13, 15, 24]).

2. PRELIMINARIES

In this section we recall some results from spectral graph theory, and state a few
analytical inequalities needed for our work.
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Lemma 1 ([3]). LetG be an undirected simple and connected graph with n; n� 2,
vertices and m edges. Then

n�1X
iD1

�i D

nX
iD1

di D 2m and
n�1X
iD1

�2i D

nX
iD1

d2i C

nX
iD1

di DM1C2m

where M1 is the sum of squares of the vertex degrees, usually referred to as the first
Zagreb index (see [2, 7, 19]).

Lemma 2 ([12]). LetG be an undirected simple and connected graph with n; n�
2, vertices and m edges. Then

M1

m
� 2

r
M1

n
�
4m

n
: (2.1)

Lemma 3 ([31]). Let G an .n;m/-graph, such that n� 3 and m� 1. Then

LE.G/� �1��n�1C
2m

n
(2.2)

with equality if and only if nD 3 or for n� 4 if �2 D �� � D �n�2 D 2m
n

.

Lemma 4 ([26]). LetG be an undirected simple and connected graph with n; n�
3, vertices and m edges. Then

LS.G/D �1��n�1 �

r
2

n�1

q
.n�1/.M1C2m/�4m2 : (2.3)

Equality holds if and only if G ŠKn .

Lemma 5 ([27]). Let a1;a2; : : : ;an be real numbers and p1;p2; : : : ;pn non-negative
real numbers with the property p1Cp2C�� �Cpn D 1. Then, for each ˛ ,˛ � 0 and
˛ � 1,

nX
iD1

pi a
˛
i �

 
nX
iD1

pi ai

!˛
: (2.4)

For the case 0� ˛ � 1, the opposite inequality is valid. Equality in (2.4) holds if and
only if ˛ D 0 or ˛ D 1 or a1 D a2 D �� � D an .

Lemma 6 ([6]). Let a1;a2; : : : ;an be real numbers, and assume that there are
r;R 2 R such that �1 < r � ai � R <C1, for each i D 1;2; : : : ;n. Then for any
non-negative p1;p2; : : : ;pn with the property p1Cp2C�� �Cpn D 1,

0�

nX
iD1

pi a
2
i �

 
nX
iD1

pi ai

!2
�
1

2
.R� r/

nX
iD1

pi

ˇ̌̌̌
ˇai �

nX
iD1

pi ai

ˇ̌̌̌
ˇ : (2.5)

The constant 1
2

is sharp.
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Lemma 7 ([32]). LetG be an undirected simple and connected graph with n; n�
2, vertices and m edges. Then

n�1X
iD1

�i D n and
nX
iD1

�2i D nC2R�1 (2.6)

where R�1 D
P
i�j

1
di dj

; for details on the graph invariant R�1 see [4, 22].

Lemma 8 ([17]). LetG be an undirected simple and connected graph with n; n�
2, vertices and m edges. Then

nX
iD1

i D

nX
iD1

di D 2m and
nX
iD1

2i D

nX
iD1

d2i C

nX
iD1

di DM1C2m

where M1 is the first Zagreb index.

Lemma 9 ([17]). The signless Laplacian spread has an upper bound

SLS.G/�

s
2Œn.M1C2m/�4m2�

n
:

Lemma 10 ([14]). Suppose that G is a graph without isolated vertices. Then

�1��n�1 �
2

n�1

q
.n�1/.2mCM1/�4m2 : (2.7)

3. MAIN RESULTS

3.1. Lower bound for Laplacian energy

Theorem 1. Let G be an undirected connected graph with n, n � 3, vertices and
m edges. Then

LE.G/�
2m

n
C

2

n�1

q
.n�1/.2mCM1/�4m2 : (3.1)

Proof. Inequality (3.1) directly follows from inequalities (2.2) and (2.7). �

Corollary 1. Let G be an undirected graph with n, n � 3, vertices and m edges.
Then

LE.G/�
2m

n
C

2

n�1

r
2m.n.n�1/�2m/

n
:

Corollary 2. Let G be an undirected simple and connected k-regular graph with
n, n� 3, vertices and m edges, 1 < k � n�1. Then

LE.G/� kC
2

n�1

p
nk.n�k�1/ :
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Theorem 2. Let G be an undirected simple and connected graph with n; n � 3
vertices and m edges. Then

LE.G/�

r
2

n�1

q
.n�1/.M1C2m/�4m2 : (3.2)

Proof. For n� 1 and pi WD 1
n�1

, ai WD �i , i D 1;2; : : :n� 1, r WD �n�1 and
R WD �1, the inequality (2.5) transforms into

1

n�1

n�1X
iD1

�2i �
1

.n�1/2

 
n�1X
iD1

�i

!2
�
�1��n�1

2.n�1/

n�1X
iD1

ˇ̌̌̌
ˇ�i � 1

n�1

n�1X
iD1

�i

ˇ̌̌̌
ˇ

i.e., based on Lemma 1,

.n�1/.M1C2m/�4m
2
�
n�1

2
.�1��n�1/

n�1X
iD1

ˇ̌̌̌
�i �

2m

n�1

ˇ̌̌̌
:

Since
n�1X
iD1

ˇ̌̌̌
�i �

2m

n�1

ˇ̌̌̌
�

nX
iD1

ˇ̌̌̌
�i �

2m

n

ˇ̌̌̌
D LE.G/

using inequality (2.3), from the above inequality we obtain (3.2). �

Using Lemma 2, we arrive at the following .n;m/-type lower bound for the Lapla-
cian energy:

Corollary 3. Let G be an undirected simple and connected graph with n; n � 3,
vertices and m edges. Then

LE.G/�

s
4m.n.n�1/�2m/

n.n�1/
: (3.3)

Corollary 4. Let G be an undirected simple and connected k-regular graph with
n;n� 3, vertices and m edges, 1 < k � n�1. Then

LE.G/ >

r
2nk.n�k�1/

n�1
:

Remark 3. Since for undirected k-regular graphs, LE D E, the inequality in Co-
rollary 4 provides a lower bound also for the ordinary energy.

Inequalities (3.1) and (3.2) are incomparable. Thus, for example, if G ŠKn, then
inequality (3.1) is stronger than (3.2), but if G ŠK1;n�1, n� 8, then the opposite is
valid.
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3.2. Lower bound for signless Laplacian energy

Theorem 3. Let G be an undirected simple and connected graph with n ,n � 3,
vertices and m edges. Then

SLE.G/�

s
2.n.M1C2m/�4m2/

n
: (3.4)

Proof. For pi WD 1
n

, ai D i , i D 1;2; : : : ;n, r D n and R D 1 , the inequality
(2.5) becomes

1

n

nX
iD1

2i �
1

n2

 
nX
iD1

i

!2
�
1�n

2n

nX
iD1

ˇ̌̌̌
i �

2m

n

ˇ̌̌̌
:

Bearing in mind Lemma 8, the above inequality becomes

n.M1C2m/�4m
2
�
n

2
SLS.G/�SLE.G/ :

By Lemma 9 and the above inequality, we obtain (3.4). �

Bearing in mind Lemma 2 and inequality (3.4), we arrive at a lower bound for
SLE.G/ depending only on the parameter m.

Corollary 5. Let G be an undirected simple and connected graph with n; n � 3,
vertices and m edges. Then

SLE.G/� 2
p
m :

Corollary 6. Let G be an undirected simple and connected graph with n; n � 3,
vertices and m edges, which is k-regular, 1 < k � n. Then

SLE.G/�
p
2nk :

3.3. Lower bound for normalized Laplacian energy

Theorem 4. Let G be an undirected simple and connected graph with n; n � 3,
vertices and m edges. Let, as before, R�1 D

P
i�j

1
di dj

. Then

NLS.G/�

r
2

n�1

p
2.n�1/R�1�n : (3.5)

Equality holds if and only if G ŠKn .

Proof. According to (2.6) we have that

.n�1/.nC2R�1/�n
2
D .n�1/

n�1X
iD1

�2i �

 
n�1X
iD1

�i

!2
D

X
1�i<j�n�1

.�i ��j /
2 : (3.6)
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By Lemma 5, i.e., by inequality (2.4), for nD 2 and ˛ D 2, we get

.�1��i /
2
C .�i ��n�1/

2
�
1

2
.�1��n�1/

2 (3.7)

for each i D 2;3; : : : ;n�2. Then,X
1�i<j�n�1

.�i ��j /
2
�

n�2X
iD2

Œ.�1��i /
2
C .�i ��n�1/

2�C .�1��n�1/
2

�
n�3

2
.�1��n�1/

2
C .�1��n�1/

2

D
n�1

2
.�1��n�1/

2

which combined with (3.6) yields

.n�1/.nC2R�1/�n
2
D 2.n�1/R�1�n�

n�1

2
.�1��n�1/

2

from which the inequality (3.5) follows.
Equality in (3.7) holds if and only if �1 D �2 D �� � D �n�1 . Therefore, equality in

(3.5) holds if and only if G ŠKn . This completes the proof of Theorem 4. �

Corollary 7. Let G be an undirected simple nad connected k-regular graph, 1 <
k � n�1, with n; n� 3, vertices and m edges. Then

NLS.G/�

s
2n.n�k�1/

.n�1/k
:

Equality holds if and only if k D n�1, i.e., G ŠKn .

We now state a theorem, analogous to Theorem 2, which provides a lower bound
for NLE in terms of parameters n and R�1 .

Theorem 5. Let G be an undirected simple and connected graph with n; n � 3,
vertices and m edges. Then

NLE.G/�

r
2

n�1

p
2.n�1/R�1�n : (3.8)

Proof. For n WD n� 1, pi WD 1
n�1

, ai WD �i , i D 1;2; : : : ;n� 1, r D �n�1 and
RD �1, inequality (2.5) becomes

1

n�1

n�1X
iD1

�2i �
1

.n�1/2

 
n�1X
iD1

�i

!2
�
�1��n�1

2.n�1/

n�1X
iD1

ˇ̌̌̌
ˇ�i � 1

n�1

n�1X
iD1

�i

ˇ̌̌̌
ˇ :

Having in mind Lemma 7, the above inequality transforms into

.n�1/.nC2R�1/�n
2
�
n�1

2
NLS.G/

n�1X
iD1

ˇ̌̌
�i �

n

n�1

ˇ̌̌
: (3.9)
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Since
n�1X
iD1

ˇ̌̌
�i �

n

n�1

ˇ̌̌
�

nX
iD1

j�i �1j

according to (3.9) we obtain

.n�1/.nC2R�1/�n
2
�
n�1

2
NLS.G/NLE.G/ : (3.10)

Combining (3.5) and (3.10) we arrive at (3.8). �

Remark 4. For a k-regular graph, R�1 D m=k2 D n=.2k/ . Since for k-regular
graphs, NLE D 1

k
E D 1

k
LE, inequality (3.8) is equivalent to the result proven in

Corollary 4.
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MATCH Commun. Math. Comput. Chem., vol. 64, pp. 239–250, 2010.
[5] M. Cavers, S. Fallat, and S. Kirkland, “On the normalized Laplacian and general Randić index of
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