Remarks on quasi-metric spaces

N. V. Dung
REMARKS ON QUASI-METRIC SPACES

N. V. DUNG

Received 22 February, 2014

Abstract. In this paper, we prove some properties of quasi-metric spaces and state some fixed point theorems in this setting. As applications, we show that most of recent results on G-metric spaces in [3, 10] may be also implied from certain fixed point theorems on metric spaces and quasi-metric spaces.

2010 Mathematics Subject Classification: 47H10; 54H25; 54D99; 54E99
Keywords: fixed point, G-metric, quasi-metric

1. INTRODUCTION AND PRELIMINARIES

In recent time, many generalized metric spaces were introduced and the fixed point theory in these spaces was investigated. In [13], Mustafa and Sims introduced the concept of a G-metric space as a generalized metric space. After that, many fixed point theorems on G-metric spaces were stated, see [1,4,5,9,12,14,15] and references therein. But in [8], Jleli and Samet showed that most of the obtained fixed point theorems on G-metric spaces may be deduced immediately from fixed point theorems on metric spaces or quasi-metric spaces. The similar results can be found in [2, 17].

Very recently, Karapinar and Agarwal modified some existing results to suggest new fixed point theorems that fit with the nature of a G-metric space in [10]. Also, they asserted that for their results the techniques used in [8] and [17] are inapplicable. After that, this idea was continuously developed in [3, 7].

In this paper, we prove some properties of quasi-metric spaces and state some fixed point theorems in this setting. As applications, we show that most of recent results on G-metric spaces in [3, 10] may be also implied from certain fixed point theorems on metric spaces and quasi-metric spaces.

First, we recall notions and results which will be useful in what follows.

Definition 1 ([13], Definition 3). Let X be a nonempty set and $G : X \times X \times X \rightarrow [0, \infty)$ be a function such that, for all $x, y, z \in X$,

1. $G(x, y, z) = 0$ if $x = y = z$.
2. $0 < G(x, x, y)$ if $x \neq y \in X$.
3. $G(x, x, y) \leq G(x, y, z)$ if $y \neq z$.

© 2014 Miskolc University Press
(4) \(G(x, y, z) = G(x, z, y) = G(y, x, z) = G(y, z, x) = G(z, x, y) = G(z, y, x)\).
(5) \(G(x, y, z) \leq G(x, a, a) + G(a, y, z)\).

Then \(G\) is called a \(G\)-metric on \(X\) and the pair \((X, G)\) is called a \(G\)-metric space.

Definition 2 ([13], Definition 4). The \(G\)-metric space \((X, G)\) is called symmetric if \(G(x, y, y) = G(x, x, y)\) for all \(x, y \in X\).

Definition 3 ([13]). Let \((X, G)\) be a \(G\)-metric space and \(\{x_n\}\) be a sequence in \(X\).
(1) For each \(x_0 \in X\) and \(r > 0\), the set
\[B_G(x_0, r) = \{x \in X : G(x_0, x, x) < r\}\]
is called a \(G\)-ball with center \(x_0\) and radius \(r\).
(2) The family of all \(G\)-balls forms a base of a topology \(\tau(G)\) on \(X\), and \(\tau(G)\) is called the \(G\)-metric topology.
(3) \(\{x_n\}\) is called convergent to \(x\) in \(X\) if \(\lim_{n \to \infty} x_n = x\) in the \(G\)-metric topology \(\tau(G)\).
(4) \(\{x_n\}\) is called Cauchy in \(X\) if \(\lim_{n,m,l \to \infty} G(x_n, x_m, x_l) = 0\).
(5) \((X, G)\) is called a complete \(G\)-metric space if every Cauchy sequence is convergent.

Lemma 1 ([13], Proposition 6). Let \((X, G)\) be a \(G\)-metric space. Then the following statements are equivalent.
(1) \(x_n\) is convergent to \(x\) in \(X\).
(2) \(\lim_{n \to \infty} G(x_n, x_n, x) = 0\).
(3) \(\lim_{n \to \infty} G(x_n, x, x) = 0\).
(4) \(\lim_{n, m \to \infty} G(x_n, x_m, x) = 0\).

Lemma 2 ([13], Proposition 9). Let \((X, G)\) be a \(G\)-metric space. Then the following statements are equivalent.
(1) \(\{x_n\}\) is a Cauchy sequence.
(2) \(\lim_{n,m,l \to \infty} G(x_n, x_m, x_l) = 0\).

Definition 4 ([8], Definition 2.1). Let \(X\) be a nonempty set and \(d : X \times X \to [0, +\infty)\) be a function such that, for all \(x, y, z \in X\),
(1) \(d(x, y) = 0\) if and only if \(x = y\).
(2) \(d(x, y) \leq d(x, z) + d(z, y)\).

Then \(d\) is called a quasi-metric and the pair \((X, d)\) is called a quasi-metric space.
Remark 1 ([8]). (1) Every metric is a quasi-metric.

(2) In a quasi-metric space, a sequence \(\{x_n\} \) is Cauchy if and only if it is left-Cauchy and right-Cauchy.

The following examples show that the inversion of Remark 1.(1) does not hold.

Example 1. Let \(X = \mathbb{R} \) and \(d \) be defined by

\[
d(x, y) = \begin{cases}
x - y & \text{if } x \geq y \\
1 & \text{if } x < y.
\end{cases}
\]

Then \(d \) is a quasi-metric on \(X \) but \(d \) is not a metric on \(X \).

Proof. It is clear that \(d : X \times X \to [0, +\infty) \) and \(d(x, y) = 0 \) if and only if \(x = y \).

For all \(x, y, z \in X \), we consider two following cases.

Case 1. \(x \geq y \). We have \(d(x, y) = x - y \).

If \(z < y \), then \(d(x, z) = x - z \) and \(d(z, y) = 1 \).

If \(y \leq z < x \), then \(d(x, z) = x - z \) and \(d(z, y) = z - y \).

If \(x \leq z \), then \(d(x, z) = 1 \) and \(d(z, y) = z - y \).

So we have \(d(x, y) \leq d(x, z) + d(z, y) \).

Case 2. \(x < y \). We have \(d(x, y) = 1 \).

If \(z < x \), then \(d(x, z) = x - z \) and \(d(z, y) = 1 \).

If \(x \leq z < y \), then \(d(x, z) = 1 \) and \(d(z, y) = 1 \).

If \(y \leq z \), then \(d(x, z) = 1 \) and \(d(z, y) = z - y \).

So we have \(d(x, y) \leq d(x, z) + d(z, y) \).

By the above, \(d \) is a quasi-metric on \(\mathbb{R} \). Since \(d(0, 2) = 1 \neq d(2, 0) = 2 \), \(d \) is not a metric on \(\mathbb{R} \). \(\square \)

Example 2. Let \(X = X_1 \cup X_2 \), \(X_1 \cap X_2 \neq \emptyset \) and \(d \) be defined by

\[
d(x, y) = \begin{cases}
0 & \text{if } x = y \\
2 & \text{if } x \in X_1, y \in X_2 \\
1 & \text{otherwise}.
\end{cases}
\]
Then d is a quasi-metric on X but d is not a metric on X.

For more quasi-metrics which are not metrics, see [16, Example 1.4].

In [8], Jleli and Samet showed that most of the obtained fixed point theorems on G-metric spaces may be deduced immediately from fixed point theorems on metric spaces or quasi-metric spaces. The main results in [8] are as follows.

Theorem 1 (8, Theorem 2.2). Let (X, G) be a G-metric space and $d_G : X \times X \to [0, +\infty)$ be defined by $d_G(x, y) = G(x, y, y)$ for all $x, y \in X$. Then we have

1. (X, d_G) is a quasi-metric space.
2. A sequence $\{x_n\}$ is convergent to x in (X, G) if and only if $\{x_n\}$ is convergent to x in (X, d_G).
3. A sequence $\{x_n\}$ is Cauchy in (X, G) if and only if $\{x_n\}$ is Cauchy in (X, d_G).
4. The G-metric space (X, G) is complete if and only if the quasi-metric space (X, d_G) is complete.

Theorem 2 (8, Theorem 2.3). Let (X, G) be a G-metric space and $\delta_G : X \times X \to [0, +\infty)$ be defined by $\delta_G(x, y) = \max \{G(x, y, y), G(y, x, x)\}$ for all $x, y \in X$. Then we have

1. (X, δ_G) is a metric space.
2. A sequence $\{x_n\}$ is convergent to x in (X, G) if and only if $\{x_n\}$ is convergent to x in (X, δ_G).
3. A sequence $\{x_n\}$ is Cauchy in (X, G) if and only if $\{x_n\}$ is Cauchy in (X, δ_G).
4. The G-metric space (X, G) is complete if and only if the metric space (X, δ_G) is complete.

Theorem 3 (8, Theorem 3.2). Let (X, d) be a complete quasi-metric space and $T : X \to X$ be a map such that

$$d(Tx, Ty) \leq d(x, y) - \varphi(d(x, y)) \tag{1.1}$$

for all $x, y \in X$, where $\varphi : [0, +\infty) \to [0, +\infty)$ is continuous with $\varphi^{-1}(\{0\}) = \{0\}$. Then T has a unique fixed point.

Recently, in [16], Rajić proved the following result which is a generalization of Theorem 3.

Theorem 4 ([16], Theorem 2.2). Let (X, d) be a complete quasi-metric space and $f, g : X \to X$ be two maps such that

$$\psi(d(fx, fy)) \leq \psi(d(gx, gy)) - \phi(d(gx, gy)) \tag{1.2}$$

for all $x, y \in X$, where $\psi : [0, +\infty) \to [0, +\infty)$ is continuous, non-decreasing, $\psi^{-1}(0) = \{0\}$, $\phi : [0, +\infty) \to [0, +\infty)$ is continuous and $\phi^{-1}(0) = \{0\}$. If the range of g contains the range of f and $f(X)$ or $g(X)$ is a closed subset of X, then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly...
compatible, that is, \(fgx = gf x\) provided that \(fx = gx\), then \(f\) and \(g\) have a unique common fixed point.

The main results of the paper are presented in Section 2 and Section 3. In Section 2, we prove some properties of the quasi-metric space and its modification. Then, by similar arguments as in metric spaces, we prove some analogues of fixed point theorems in quasi-metric spaces. In Section 3, we show that most of recent fixed point theorems on \(G\)-metric spaces in \([3, 10]\) may be implied from certain fixed point theorems proved in Section 2.

2. REMARKS ON QUASI-METRIC SPACES

Note that every quasi-metric space \((X, d)\) is a topological space with the topology induced by its convergence. Then \(X \times X\) is a topological space with the product topology. The following result shows that the product space \(X \times X\) is also a quasi-metric space.

Proposition 1. Let \((X, d_X)\) and \((Y, d_Y)\) be two quasi-metric spaces. Then we have

1. \(d(x, y) = d_X(x_1, y_1) + d_Y(x_2, y_2)\) for all \(x = (x_1, x_2), y = (y_1, y_2) \in X \times Y\) is a quasi-metric on \(X \times Y\).
2. \(\lim_{n \to \infty} (x_n, y_n) = (x, y)\) in \((X \times Y, d)\) if and only if \(\lim_{n \to \infty} x_n = x\) in \((X, d_X)\) and \(\lim_{n \to \infty} y_n = y\) in \((Y, d_Y)\). In particular, the product topology on \(X \times Y\) coincides the topology induced by \(d\).
3. \(\{ (x_n, y_n) \}\) is a Cauchy sequence in \((X \times Y, d)\) if and only if \(\{ x_n \}\) is a Cauchy sequence in \((X, d_X)\) and \(\{ y_n \}\) is a Cauchy sequence in \((Y, d_Y)\).
4. \((X \times Y, d)\) is complete if and only if \((X, d_X)\) and \((Y, d_Y)\) are complete.

Proof. (1). For all \(x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2) \in X \times Y\), we have

\[d(x, z) = d_X(x_1, z_1) + d_Y(x_2, z_2) \leq d_X(x_1, y_1) + d_X(y_1, z_1) + d_Y(x_2, y_2) + d_Y(y_2, z_2) = d_X(x_1, y_1) + d_Y(x_2, y_2) + d_X(y_1, z_1) + d_Y(y_2, z_2) = d(x, y) + d(y, z). \]

By the above, \(d\) is a quasi-metric on \(X \times Y\).

(2). \(\lim_{n \to \infty} (x_n, y_n) = (x, y)\) in \((X \times Y, d)\) if and only if

\[\lim_{n \to \infty} d((x_n, y_n), (x, y)) = \lim_{n \to \infty} [d_X(x_n, x) + d_Y(y_n, y)] = 0 \]

and

\[\lim_{n \to \infty} d((x, y), (x_n, y_n)) = \lim_{n \to \infty} [d_X(x, x_n) + d_Y(y, y_n)] = 0. \]
It is equivalent to
\[
\lim_{n \to \infty} d_X(x_n, x) = \lim_{n \to \infty} d_Y(y_n, y) = \lim_{n \to \infty} d_X(x, x_n) = \lim_{n \to \infty} d_Y(y, y_n) = 0.
\]
That is, \(\lim_{n \to \infty} x_n = x \) in \((X, d_X)\) and \(\lim_{n \to \infty} y_n = y \) in \((Y, d_Y)\).

(3). \(\{(x_n, y_n)\} \) is a Cauchy sequence in \((X \times Y, d)\) if and only if
\[
\lim_{n,m \to \infty} d((x_n, y_n), (x_m, y_m)) = \lim_{n,m \to \infty} [d_X(x_n, x_m) + d_Y(y_n, y_m)] = 0.
\]
It is equivalent to
\[
\lim_{n,m \to \infty} d_X(x_n, x_m) = \lim_{n,m \to \infty} d_Y(y_n, y_m) = 0.
\]
That is, \(\{x_n\} \) is a Cauchy sequence in \((X, d_X)\) and \(\{y_n\} \) is a Cauchy sequence in \((Y, d_Y)\).

(4). It is a direct consequence of (2) and (3).

In the proof of [8, Theorem 3.2], Jleli and Samet used the sequential continuity of a quasi-metric \(d \) without proving. From Proposition 1, we see that the sequential continuity and the continuity of \(d \) are equivalent and they are guaranteed by the following proposition.

Proposition 2. Let \((X, d)\) be a quasi-metric space. Then \(d \) is a continuous function.

Proof. Suppose that \(\lim_{n \to \infty} x_n = x \) and \(\lim_{n \to \infty} y_n = y \) in \((X, d)\). We have
\[
d(x_n, y_n) \leq d(x_n, x) + d(x, y) + d(y, y_n).
\]
It implies that
\[
d(x_n, y_n) - d(x, y) \leq d(x_n, x) + d(y, y_n).
\]
(2.1)
Also, we have
\[
d(x, y) \leq d(x, x_n) + d(x_n, y_n) + d(y, y_n).
\]
It implies that
\[
d(x, y) - d(x_n, y_n) \leq d(x, x_n) + d(y_n, y).
\]
(2.2)
From (2.1) and (2.2), we have
\[
0 \leq |d(x, y) - d(x_n, y_n)| \leq \max \{d(x_n, x) + d(y, y_n), d(x, x_n) + d(y, y_n)\}. \tag{2.3}
\]
Taking the limit as \(n \to \infty \) in (2.3), we obtain \(\lim_{n \to \infty} |d(x, y) - d(x_n, y_n)| = 0. \) That is, \(\lim_{n \to \infty} d(x_n, y_n) = d(x, y). \) This proves that \(d \) is a continuous function.

The following proposition proves that the topology of each quasi-metric space is metrizable. Then all topological properties of metric spaces hold on quasi-metric spaces.
Remark 3. Let \((X,d)\) be a quasi-metric space and
\[
\delta_d(x, y) = \max\{d(x, y), d(y, x)\}
\]
for all \(x, y \in X\). Then we have

(1) \((X, \delta_d)\) is a metric space.
(2) A sequence \(\{x_n\}\) is convergent to \(x\) in \((X, d)\) if and only if \(\{x_n\}\) is convergent to \(x\) in \((X, \delta_d)\).
(3) A sequence \(\{x_n\}\) is Cauchy in \((X, d)\) if and only if \(\{x_n\}\) is Cauchy in \((X, \delta_d)\).
(4) The quasi-metric space \((X, d)\) is complete if and only if the metric space \((X, \delta_d)\) is complete.

Proof. (1). See [8], page 3.
(2). We have
\[
\lim_{n \to \infty} x_n = x \quad \text{in} \quad (X, d) \quad \text{if and only if} \quad \lim_{n \to \infty} d(x_n, x) = \lim_{n \to \infty} d(x, x_n) = 0.
\]
It is equivalent to
\[
\lim_{n \to \infty} \delta_d(x_n, x) = \lim_{n \to \infty} \max\{d(x_n, x), d(x, x_n)\} = 0.
\]
That is,
\[
\lim_{n \to \infty} x_n = x \quad \text{in} \quad (X, \delta_d).
\]
(3). A sequence \(\{x_n\}\) is Cauchy in \((X, d)\) if and only if
\[
\lim_{n, m \to \infty} d(x_n, x_m) = \lim_{n, m \to \infty} d(x_m, x_n) = 0.
\]
It is equivalent to
\[
\lim_{n, m \to \infty} \delta_d(x_n, x_m) = \lim_{n, m \to \infty} \max\{d(x_n, x_m), d(x_m, x_n)\} = 0.
\]
That is, \(\{x_n\}\) is Cauchy in \((X, \delta_d)\).
(4). It is a direct consequence of (2) and (3). \(\square\)

By modifying the notion of \(T\)-orbital completeness in [6], we introduce the notion of weak \(T\)-orbitally completeness as follows.

Definition 6. Let \((X, d)\) be a quasi-metric space and \(T : X \to X\) be a map. Then \(X\) is called weak \(T\)-orbitally complete if \(\{T^n x\}\) is convergent in \(X\) provided that it is a Cauchy sequence in \(X\).

Note that every \(T\)-orbitally complete quasi-metric space is a weak \(T\)-orbitally complete quasi-metric space for all maps \(T : X \to X\). The following example shows that the inversion does not hold, even when \((X, d)\) is a metric space.

Example 3. Let \(X = \{1, 3, \ldots, 2n + 1, \ldots\} \cup \left\{1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{2n}, \ldots\right\}\) with the usual metric and
\[
T \frac{1}{2n} = 2n + 1, T(2n - 1) = \frac{1}{2n}
\]
for all \(n \in \mathbb{N} \). Since \(\{T^n x\} \) is not Cauchy for all \(x \in X \), \((X,d)\) is weak \(T\)-orbitally complete. For \(x = 1 \), we have
\[
\{T^n 1 : n \in \mathbb{N}\} = \{1, \frac{1}{2}, \frac{1}{4}, \ldots, 2n + 1, \frac{1}{2n}, \ldots\}.
\]
Since \(\{\frac{1}{2n}\} \) is a Cauchy sequence in \((X,d)\) which is not convergent, \((X,d)\) is not \(T\)-orbitally complete.

Following the proof of [11, Theorem 3.1], we get the following fixed point theorem on quasi-metric spaces.

Theorem 5. Let \((X,d)\) be a quasi-metric space and \(T : X \rightarrow X\) be a map such that

1. \(X\) is weak \(T\)-orbitally complete.
2. There exists \(q \in [0,1)\) such that for all \(x, y \in X\),
 \[
d(Tx,Ty) \leq q \max \{d(x,y), d(y,x), d(x,Tx), d(Tx,x), d(y,Ty)\},
 \]
 \[
d(Tx,Ty), d(y,Tx), d(Tx,y), d(Tx,y), d(T^2 x,x), d(T^2 x,Tx),
 \]
 \[
d(Tx,T^2 x), d(T^2 y,y), d(y,T^2 y), d(T^2 x,Ty)\},
 \]
Then we have

1. \(T\) has a unique fixed point \(x^*\) in \(X\).
2. \(\lim_{n \to \infty} T^n x = x^*\) for all \(x \in X\).
3. \(\max \{d(T^n x^*,d(x^*,T^n x)\} \leq q^n \max \{d(x,Tx), d(Tx,x)\} \) for all \(x \in X\) and \(n \in \mathbb{N}\).

Proof. (1). For each \(x \in X\) and \(1 \leq i \leq n-1, 1 \leq j \leq n\), we have
\[
d(T^i x, T^{j-1} x) = d(T T^{i-1} x, T T^{j-1} x)
\]
\[
\leq q \max \{d(T^{i-1} x, T^{j-1} x), d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T T^{i-1} x),
 d(T T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T T^{j-1} x), d(T^{i-1} x, T T^{j-1} x),
 d(T^{i-1} x, T^{j-1} x), d(T T^{i-1} x, T T^{i-1} x), d(T^{i-1} x, T T^{i-1} x),
 d(T T^{i-1} x, T T^{i-1} x), d(T T^{i-1} x, T T^{i-1} x), d(T T^{i-1} x, T T^{i-1} x),
 d(T^{i-1} x, T T^{i-1} x), d(T T^{i-1} x, T T^{i-1} x), d(T T^{i-1} x, T T^{i-1} x),
 d(T T^{i-1} x, T T^{i-1} x), d(T T^{i-1} x, T T^{i-1} x)\}
\]
\[
= q \max \{d(T^{i-1} x, T^{j-1} x), d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x),
 d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x),
 d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x),
 d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x),
 d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x), d(T^{i-1} x, T^{i-1} x)\}
\]
\[\leq q \delta [O_T(x, n)] \]

where \(\delta [O_T(x, n)] = \max \{d(T^i x, T^j x) : 0 \leq i \leq n - 1, 0 \leq j \leq n\} \).

From (2.5), since \(0 \leq q < 1 \), there exists \(k_n(x) \leq n \) such that
\[d(x, T^{k_n(x)} x) = \delta [O_T(x, n)] \tag{2.6} \]
or there exists \(k_n(x) \leq n - 1 \) such that
\[d(T^{k_n(x)} x, x) = \delta [O_T(x, n)]. \tag{2.7} \]

If (2.6) holds, we have
\[
d(x, T^{k_n(x)} x) \leq d(x, T x) + d(T x, T^{k_n(x)} x)
\leq d(x, T x) + q \delta [O_T(x, n)]
= d(x, T x) + q d(x, T^{k_n(x)} x).
\]

It implies that
\[\delta [O_T(x, n)] = d(x, T^{k_n(x)} x) \leq \frac{1}{1 - q} d(x, T x). \tag{2.8} \]

If (2.7) holds, we have
\[
d(T^{k_n(x)} x, x) \leq d(T^{k_n(x)} x, T x) + d(T x, x)
\leq q \delta [O_T(x, n)] + d(T x, x)
= q d(T^{k_n(x)} x, x) + d(T x, x).
\]

It implies that
\[\delta [O_T(x, n)] = d(T^{k_n(x)} x, x) \leq \frac{1}{1 - q} d(T x, x). \tag{2.9} \]

For all \(n < m \), it follows from (2.4) and (2.8), (2.9) that
\[d(T^n x, T^m x) = d(T T^{n-1} x, T^{m-n+1} T^{n-1} x) \]
\[\leq q \delta [O_T(T^{n-1} x, m - n + 1)]
= q d(T^{n-1} x, T^{k_m-n+1} x) T^{n-1} x)
= q d(T T^{n-2} x, T^{k_m-n+1} x) x + T^{n-2} x)
\]
\[\leq q^2 \delta [O_T(T^{n-2} x, k_m-n+1 (T^{n-1} x) + 1)]
\leq q^2 \delta [O_T(T^{n-2} x, m - n + 2)]
\leq \ldots
\]
\[\leq q^n \delta [O_T(x, m)]
\leq \frac{q^n}{1 - q} \max \{d(x, T x), d(T x, x)\}. \]
Since \(\lim_{n \to \infty} q^n = 0 \), by taking the limit as \(n, m \to \infty \) in (2.10), we have
\[
\lim_{n,m \to \infty} d(T^n x, T^m x) = 0. \tag{2.11}
\]
This proves that \(\{T^n x\} \) is a Cauchy sequence in \(X \). Since \(X \) is weak \(T \)-orbitally complete, there exists \(x^* \in X \) such that
\[
\lim_{n \to \infty} d(T^n x, x^*) = \lim_{n \to \infty} d(x^*, T^n x) = 0. \tag{2.12}
\]
Therefore, by using (2.4) again, we have
\[
d(x^*, T x^*) \leq d(x^*, T^n x) + d(T^n x, T x^*)
\leq d(x^*, T^n x) + q \max \{d(T^n x, x^*), d(x^*, T x^*), d(T^n x, T T^n x), d(T T^n x, T^n x), d(x^*, T x^*), d(T^n x, T T^n x), d(T T^n x, T^n x), d(x^*, T x^*), d(T^n x, T^2 T^n x), d(T^2 T^n x, T^n x), d(T^n x, T T^n x), d(T^2 T^n x, T^n x), d(T^n x, T^2 T^n x), d(T^2 T^n x, T^n x), d(x^*, T x^*), d(T^2 T^n x, T x^*)\}
= d(x^*, T^n x) + q \max \{d(T^n x, x^*), d(x^*, T x^*), d(T^n x, T T^n x), d(T T^n x, T^n x), d(x^*, T x^*), d(T^n x, T^2 T^n x), d(T^2 T^n x, T^n x), d(T^n x, T T^n x), d(T^2 T^n x, T^n x), d(x^*, T x^*), d(T^2 T^n x, T x^*)\}.
\[
\text{Taking the limit as } n \to \infty \text{ in (2.13), and using (2.11), (2.12) and Proposition 2, we get } d(x^*, T x^*) \leq q d(x^*, T x^*). \text{ Since } q \in [0, 1], d(x^*, T x^*) = 0, \text{ that is, } x^* = T x^*. \text{ Then } T \text{ has a fixed point.}
\]
Now, we prove the uniqueness of the fixed point of \(T \). Let \(x^*, y^* \) be two fixed points of \(T \). From (2.4), we have
\[
d(x^*, y^*) = d(T x^*, T y^*)
\leq q \max \{d(x^*, y^*), d(x^*, x^*), d(T x^*, x^*), d(T y^*, y^*), d(x^*, T y^*), d(x^*, y^*), d(y^*, T x^*), d(y^*, T^2 x^*), d(T x^*, x^*), d(T^2 x^*, x^*), d(T x^*, T x^*), d(T x^*, T^2 x^*), d(T y^*, y^*), d(y^*, T x^*), d(y^*, T^2 x^*), d(T y^*, y^*)\}
= q \max \{d(x^*, y^*), d(y^*, x^*)\}.
\[
\text{Since } q \in [0, 1], \text{ we get }
\]
\[
d(x^*, y^*) \leq q d(y^*, x^*). \tag{2.14}
\]
Again, from (2.4), we also have
\[
d(y^*, x^*) = d(T y^*, T x^*)
\leq q \max \{d(y^*, x^*), d(x^*, y^*), d(y^*, T y^*), d(T y^*, y^*), d(x^*, T x^*), d(y^*, T x^*)\},
\]
\[d(x^*, Ty^*), d(x^*, Ty^*), d(T^2 y^*, y^*), d(y^*, T^2 y^*), d(T y^*, T^2 y^*), d(T^2 y^*, x^*), d(x^*, T^2 y^*), d(T y^*, T x^*) \]
\[= q \max \{d(y^*, x^*), d(x^*, y^*)\}. \]

Since \(q \in [0, 1) \), we get
\[d(y^*, x^*) \leq q d(x^*, y^*). \] (2.15)

From (2.14) and (2.15), since \(q \in [0, 1) \), we obtain \(d(x^*, y^*) = 0 \). That is, \(x^* = y^* \). Then the fixed point of \(T \) is unique.

(2). It is proved by (2.12).

(3). Taking the limit as \(m \to \infty \) in (2.10) and using Proposition 2, we get
\[d(T^n x, x^*) \leq q^n \max \{d(x, T x), d(T x, x)\}. \]

Similarly, we have \(d(x^*, T^n x) \leq q^n \max \{d(x, T x), d(T x, x)\} \). Therefore,
\[\max \{d(T^n x, x^*), d(x^*, T^n x)\} \leq \frac{q^n}{1-q} \max \{d(x, T x), d(T x, x)\}. \]

If \(d \) in Theorem 5 is a metric, then we have the following result. Note that Corollary 1 is a generalization of the following well-known result of Ćirić in [6]. This generalization is proper by [11, Example 3.6].

Corollary 1 ([11], Theorem 3.1). Let \((X, d) \) be a metric space and \(T : X \to X \) be a map satisfying the following

1. \(X \) is weak \(T \)-orbitally complete.
2. There exists \(q \in [0, 1) \) such that for all \(x, y \in X \),
\[d(T x, T y) \leq q \max \{d(x, y), d(x, T x), d(y, T y), d(x, T y)\}, \] (2.16)
\[d(y, T x), d(T^2 x, x), d(T^2 x, T x), d(T^2 x, y), d(T^2 x, T y) \} \].

Then we have

1. \(T \) has a unique fixed point \(x^* \) in \(X \).
2. \(\lim_{n \to \infty} T^n x = x^* \) for all \(x \in X \).
3. \(d(T^n x, x^*) \leq \frac{q^n}{1-q} d(x, T x) \) for all \(x \in X \).

Now, we modify the notion of a quasi-metric space in Definition 4 as follows.

Definition 7. Let \(X \) be a nonempty set and \(d : X \times X \to [0, +\infty) \) be a function such that, for all \(x, y, z \in X \),

1. \(d(x, y) = 0 \) if and only if \(x = y \).
2. \(d(x, y) \leq d(x, z) + d(y, z) \) if \(z \neq x \).
Then d is also called a *quasi-metric* and the pair (X, d) is also called a *quasi-metric space*.

Note that if $\varepsilon = x$ in Definition 7.2, then $d(x, y) = d(y, x)$ for all $x, y \in X$. In this case, d deduces a metric on X.

The following proposition gives a way to set examples of quasi-metrics in the sense of Definition 7.

Proposition 4. Let (X, G) be a G-metric space and $T : X \to X$ be a map. For all $x, y \in X$, put

$$d_{T, G}(x, y) = \begin{cases} 0 & \text{if } x = y \\ G(x, Tx, y) & \text{if } x \neq y. \end{cases}$$

If T has no any fixed point, then $d_{T, G}$ is a quasi-metric in the sense of Definition 7 on X.

Proof. For all $x, y, z \in X$ with $z \neq x$, note that $y \neq Ty$ for all $y \in X$, we have $G(y, z, z) \leq G(z, y, Ty)$ for all $y, z \in X$. Then

$$d_{T, G}(x, y) \leq G(x, Tx, y)$$

$$= G(y, x, Tx)$$

$$\leq G(y, z, z) + G(x, Tx, z)$$

$$\leq G(z, y, Ty) + G(x, Tx, z)$$

$$= d_{T, G}(x, z) + d_{T, G}(y, z).$$

This proves that $d_{T, G}$ is a quasi-metric in the sense of Definition 7 on X. □

Example 4. Let $X = \{1, 2, 3\}$ and

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 2 & \text{if } (x, y) = (1, 2) \\ 1 & \text{otherwise.} \end{cases}$$

Then d is a quasi-metric in the sense of Definition 7 on X. For $(2, 1), (1, 2), (1, 1) \in X \times X$, we have

$$d(2, 1) + d(1, 2) = 3$$

$$d(2, 1) + d(1, 1) = 1$$

$$d(1, 1) + d(2, 1) = 1.$$

This proves that $d(2, 1) + d(1, 2) > d(2, 1) + d(1, 1) + d(1, 1) + d(2, 1)$. So Proposition 1.1 does not hold for quasi-metrics in the sense of Definition 7.

Proposition 5. Let (X, d) be a quasi-metric space in the sense of Definition 7. For each $y \in X$, if $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} d(y, x_n) = d(y, x)$.

Proof. Case 1. \(y = x\). Then we have
\[
d(y, x) = d(x, x) = 0 = \lim_{n \to \infty} d(x, x_n) = \lim_{n \to \infty} d(y, x_n).
\]

Case 2. \(y \neq x\). If \(x_n = x\) for infinitely many \(n\), then
\[
\lim_{m \to \infty} d(y, x_n) = d(y, x).
\]
So, we may assume that \(x_n \neq x\) for \(n\) large enough. Also, \(y \neq x_n\) for \(n\) large enough. Then we have, for all \(n \in \mathbb{N}\),
\[
d(y, x) \leq d(y, x_n) + d(x, x_n) \leq d(y, x) + d(x_n, x) + d(x, x_n).
\] (2.17)
Taking the limit as \(n \to \infty\) in (2.17), we get \(\lim_{n \to \infty} d(y, x_n) = d(y, x)\).

With some minor changes in the proof of Theorem 5, we have the following result.
Note that these changes mainly relate to Definition 7.(2).

Proposition 6. Let \((X, d)\) be a quasi-metric space in the sense of Definition 7 and \(T : X \to X\) be a map satisfying the following

1. \(X\) is weak \(T\)-orbitally complete.
2. There exists \(q \in [0, 1)\) such that for all \(x, y \in X\),
\[
d(Tx, Ty) \leq q \max\{d(x, y), d(y, x), d(Tx, x), d(Ty, y), d(Ty, x), d(Tx, y), d(Tx, Ty), d(Ty, Ty), d(Ty, T^2y), d(Tx, T^2y), d(T^2y, x), d(x, T^2y), d(Tx, T^2y)\}. \tag{2.18}
\]
Then we have

1. \(T\) has a unique fixed point \(x^*\) in \(X\).
2. \(\lim_{n \to \infty} T^n x = x^*\) for all \(x \in X\).
3. \(\max\{d(T^n x, x^*), d(x^*, T^n x)\} \leq q^n \max\{d(x, Tx), d(Tx, x)\}\) for all \(x \in X\) and \(n \in \mathbb{N}\).

Proof. As in the proof of Theorem 5.(1), there exists \(k_n(x) \leq n\) such that
\[
d(x, T^{k_n(x)} x) = \delta[O_T(x, n)] \tag{2.19}
\]
or there exists \(k_n(x) \leq n - 1\) such that
\[
d(T^{k_n(x)} x, x) = \delta[O_T(x, n)]. \tag{2.20}
\]
If \(Tx = x\), then \(T\) has a fixed point. So we may assume that \(Tx \neq x\). If (2.19) holds, we have
\[
d(x, T^{k_n(x)} x) \leq d(x, Tx) + d(T^{k_n(x)} x, Tx) \\
\leq d(x, Tx) + q\delta[O_T(x, n)]
\]
\[d(x, Tx) = d(x, T x) + q d(x, T^{k_n}(x)x). \]

It implies that
\[\delta[O_T(x, n)] = d(x, T^{k_n}(x)x) \leq \frac{1}{1-q} d(x, Tx). \quad (2.21) \]

If (2.20) holds and \(T^{k_n}(x)x = Tx \), we have
\[\delta[O_T(x, n)] = d(T^{k_n}(x)x, x) = d(Tx, x) \leq \frac{1}{1-q} d(Tx, x). \quad (2.22) \]

So, we may assume that \(T^{k_n}(x)x \neq Tx \). Then
\[d(T^{k_n}(x)x, x) \leq d(T^{k_n}(x)x, Tx) + d(x, Tx) \]
\[\leq q \delta[O_T(x, n)] + d(x, Tx) \]
\[= q d(T^{k_n}(x)x, x) + d(x, Tx). \]

It implies that
\[\delta[O_T(x, n)] = d(T^{k_n}(x)x, x) \leq \frac{1}{1-q} d(x, Tx). \quad (2.23) \]

As in the proof of Theorem 5.1, we also have
\[\lim_{n,m \to \infty} d(T^n x, T^m x) = 0 \quad (2.24) \]
and there exists \(x^* \in X \) such that
\[\lim_{n \to \infty} d(T^n x, x^*) = \lim_{n \to \infty} d(x^*, T^n x) = 0. \quad (2.25) \]

If \(T^{n+1} x = Tx^* \) for infinitely many \(n \), then \(\lim_{n \to \infty} T^{n+1} x = Tx^* = x^* \). Then \(x^* \) is a fixed point of \(T \). So, we may assume that \(T^{n+1} x \neq x^* \) for \(n \) large enough.

Therefore, by using (2.18) again, we have
\[d(Tx^*, x^*) \leq d(Tx^*, T^{n+1} x) + d(x^*, T^{n+1} x) \]
\[= d(x^*, T^{n+1} x) + d(Tx^*, T^{n+1} x) \]
\[\leq d(x^*, T^{n+1} x) + q \max \{d(T^n x, x^*), d(x^*, T^n x), d(T^n x, TT^n x), \]
\[d(TT^n x, T^n x), d(Tx^*, x^*), d(Tx^*, T^n x), d(x^*, TT^n x), d(TT^n x, x^*), \]
\[d(T^2 T^n x, T^n x), d(T^n x, T^2 T^n x), d(T^2 T^n x, TT^n x), d(TT^n x, T^2 T^n x), \]
\[d(T^2 T^n x, x^*), d(x^*, T^2 T^n x), d(Tx^*, T^2 T^n x) \} \]
\[= d(x^*, T^{n+1} x) + q \max \{d(T^n x, x^*), d(x^*, T^n x), d(T^n x, T^{n+1} x), \]
\[d(T^{n+1} x, T^n x), d(Tx^*, x^*), d(Tx^*, T^n x), d(x^*, T^{n+1} x), d(T^{n+1} x, x^*), \]
\[d(T^{n+2} x, T^n x), d(T^n x, T^{n+2} x), d(T^{n+2} x, T^{n+1} x), d(T^{n+1} x, T^{n+2} x), \]
Let \((X, d) \) be a quasi-metric space in the sense of Definition 7 and \(T : X \rightarrow X \) be a map such that \((X, d) \) is weak \(T \)-orbitally complete and
\[
d(Tx, Ty) \leq d(x, y) - \varphi(d(x, y))
\] (2.27)
for all \(x, y \in X \), where \(\varphi : [0, +\infty) \rightarrow [0, +\infty) \) is continuous with \(\varphi^{-1}(\{0\}) = \{0\} \).

Then \(T \) has a unique fixed point.

Proof. Let \(x_0 \in X \) and define the sequence \(x_{n+1} = Tx_n \) for all \(n \geq 0 \). From (2.27), we have
\[
d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \leq d(x_{n-1}, x_n) - \varphi(d(x_{n-1}, x_n))
\] (2.28)
for all \(n \geq 1 \). This proves that \(\{d(x_n, x_{n+1})\} \) is a non-increasing sequence of positive numbers. Then there exists \(r \geq 0 \) such that \(\lim_{n \to \infty} d(x_n, x_{n+1}) = r \). Taking the limit as \(n \to \infty \) in (2.28), we get \(\varphi(r) = 0 \), that is, \(r = 0 \). Then
\[
\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.
\] (2.29)

Using the same technique, we also have
\[
\lim_{n \to \infty} d(x_{n+1}, x_n) = 0.
\] (2.30)

Now, we will prove that \(\{x_n\} \) is a Cauchy sequence in the quasi-metric space \((X, d) \), that is, \(\{x_n\} \) is left-Cauchy and right-Cauchy. By (2.29) and (2.30), since the sequences \(\{d(x_{n+1}, x_n)\} \) and \(\{d(x_n, x_{n+1})\} \) are non-increasing, we have \(\{x_n\} \) is a Cauchy sequence if there exists \(n \) such that \(d(x_{n+1}, x_n) = 0 \) or \(d(x_n, x_{n+1}) = 0 \). Then, we may assume that, for all \(n \in \mathbb{N} \),
\[
d(x_{n+1}, x_n) \neq 0 \text{ and } d(x_n, x_{n+1}) \neq 0.
\] (2.31)

Now, suppose to the contrary that \(\{x_n\} \) is not a left-Cauchy sequence. Then there exists \(\varepsilon > 0 \) such that for each \(k \in \mathbb{N} \), there exist \(n > m \geq k \) satisfying \(d(x_n, x_m) \geq \varepsilon \).

Put
\[
n(1) = \min \{n : n > 1 \text{ and there exists } m \text{ with } 1 \leq m < n, d(x_n, x_m) \geq \varepsilon\}
\]
\[
m(1) = \max \{m : 1 \leq m < n(1) \text{ with } d(x_{n(1)}, x_m) \geq \varepsilon\}
\]
\[
n(2) = \min \{n : n > n(1), \text{ there exists } m \text{ with } n(1) \leq m < n, d(x_n, x_m) \geq \varepsilon\}
\]
\[
m(2) = \max \{m : n(1) \leq m < n(2) \text{ with } d(x_{n(2)}, x_m) \geq \varepsilon\}.
\]
Note that \(n(1) < n(2), m(1) < m(2) \) and
\[
d(x_{n(1)} - 1, x_{m(1)}) < \varepsilon, d(x_{n(2)} - 1, x_{m(2)}) < \varepsilon.
\]
Continuing this process, we can find two subsequences \(\{x_{n(k)}\} \) and \(\{x_{m(k)}\} \) of \(\{x_n\} \) such that, for all \(k \in \mathbb{N} \), we have \(n(k) > m(k) > k \) and
\[
d(x_{n(k)}, x_{m(k)}) \geq \varepsilon, d(x_{n(k) - 1}, x_{m(k) - 1}) < \varepsilon. \tag{2.32}
\]
Now, by (2.31) and (2.32), we have
\[
d(x_{n(k) - 1}, x_{m(k) - 1}) \leq d(x_{n(k) - 1}, x_{n(k)}) + d(x_{m(k) - 1}, x_{n(k)})
\]
and
\[
d(x_{n(k)}, x_{m(k)}) \leq d(x_{n(k) - 1}, x_{n(k)}) + d(x_{m(k) - 1}, x_{m(k)}) \tag{2.35}
\]
and
\[
d(x_{n(k)}, x_{m(k)}) \leq d(x_{n(k) - 1}, x_{n(k)}) + d(x_{m(k) - 1}, x_{m(k)}) \tag{2.36}
\]
Taking the limit as \(k \to \infty \) in (2.35) and using (2.29), (2.30), we get
\[
\lim_{k \to \infty} d(x_{n(k) - 1}, x_{m(k) - 1}) = \varepsilon. \tag{2.37}
\]
Now, from (2.27), for all \(k \in \mathbb{N} \), we have
\[
d(x_{n(k)}, x_{m(k)}) \leq d(x_{n(k) - 1}, x_{m(k) - 1}) - \varphi(d(x_{n(k) - 1}, x_{m(k) - 1})). \tag{2.38}
\]
Taking the limit as \(k \to \infty \) in (2.38) and using (2.34), (2.37), we obtain \(\varepsilon \leq \varepsilon - \varphi(\varepsilon) \).
It implies that \(\varepsilon = 0 \). It is a contradiction. Then \(\{x_n\} \) is a left-Cauchy sequence. Similarly, we can show that \(\{x_n\} \) is a right-Cauchy sequence. Then \(\{x_n\} \) is Cauchy.
Since \((X, d)\) is weak \(T\)-orbitally complete, there exists \(x^* \in X \) such that
\[
\lim_{n \to \infty} d(x_n, x^*) = \lim_{n \to \infty} d(x^*, x_n) = 0. \tag{2.39}
\]
From (2.27), for all \(n \in \mathbb{N} \), we have
\[
d(Tx^*, x_{n+1}) = d(Tx^*, Tx_n) \leq d(x^*, x_n) - \varphi(d(x^*, x_n)) \tag{2.40}
\]
Taking the limit as $n \to \infty$ in (2.40) and using (2.39), Proposition 5, we get $d(Tx^*,x^*) = 0$. It implies that $x^* = Tx^*$, that is, x^* is a fixed point of T.

The uniqueness of the fixed point is easy to see.

Similar as the proof of [16, Theorem 2.2] and the proof of Proposition 7, we get the following result.

Proposition 8. Let (X,d) be a weak T-orbitally complete quasi-metric space in the sense of Definition 7 and let $T : X \to X$ be a map such that

$$
\psi(d(Tx,Ty)) \leq \psi(d(x,y)) - \varphi(d(x,y))
$$

(2.41)

where $\psi, \varphi : [0, +\infty) \to [0, +\infty)$, ψ is continuous and non-decreasing, φ is lower semi-continuous, and $\psi(t) = \varphi(t) = 0$ if and only if $t = 0$. Then T has a unique fixed point.

3. APPLICATIONS TO RECENT FIXED POINT RESULTS IN G-METRIC SPACES

In this section, we show that most of recent results on G-metric spaces in [3, 10] may be also implied from certain fixed point theorems in metric spaces and quasi-metric spaces mentioned in Section 2. Notice that the authors of [10] forgot the assumption of completeness in [10, Theorems 3.1 & 3.2].

Corollary 2 ([10], Theorem 3.1). Let (X,G) be a complete G-metric space and $T : X \to X$ be a map such that

$$
G(Tx,Ty,Tz) \leq kM(x,y,z)
$$

(3.1)

for all $x, y, z \in X$, where $k \in \left[0, \frac{1}{2}\right]$ and

$$
M(x,y,z) = \max \left\{ G(x,Tx,y), G(y,T^2x,Ty), G(Tx,T^2x,Ty),
G(y,Tx,y), G(x,Tx,z), G(z,T^2x,Tz),
G(Tx,T^2x,Tz), G(z,Tx,Ty), G(x,y,z),
G(x,Tx,Tx), G(y,Ty,Ty), G(z,Tz,Tz),
G(z,Tx,Tx), G(x,Ty,Ty), G(y,Tz,Tz),
G(y,Tx,Tx), G(x,Ty,Ty), G(y,Ty,Ty) \right\}
$$

Then T has a unique fixed point.

Proof. Let d_G be the quasi-metric in Theorem 1. By choosing $z = y$ and using the axioms (G4) and (G5) in Definition 1, we have

$$
M(x,y,y) = \max \left\{ G(x,Tx,y), G(y,T^2x,Ty), G(Tx,T^2x,Ty),
G(y,Tx,Ty), G(x,Tx,y), G(y,T^2x,Ty),
G(Tx,T^2x,Ty), G(y,Tx,Ty), G(x,y,y),
G(x,Tx,Tx), G(y,Ty,Ty), G(y,Ty,Ty),
G(y,Tx,Tx), G(x,Ty,Ty), G(y,Ty,Ty) \right\}
$$
Then (3.1) becomes
\[
\begin{align*}
&= \max \left\{ G(x, T x, y), G(y, T y, T^2 x), G(T x, y, T^2 x),
\right. \\
&\quad \quad \quad \quad G(y, T y, T x),
\left. \quad G(x, y, y), G(y, y, T y), G(y, T y, T y)
\right\}
\end{align*}
\]
\[
\leq \max \left\{ G(x, T x, T x) + G(T x, T x, y), G(y, T y, T y) + G(T y, T y, T^2 x),
\right. \\
&\quad \quad \quad \quad G(y, T y, T x),
\left. \quad G(x, T x, T x) + G(T x, T x, y),
\right\}
\end{align*}
\]
\[
\begin{align*}
&= \max \left\{ d_G(x, T x) + d_G(y, T x), d_G(y, T y) + d_G(T^2 x, T y),
\right. \\
&\quad \quad \quad \quad d_G(T x, T y) + d_G(T x, T y, T^2 x),
\left. \quad d_G(x, T x) + d_G(y, T x),
\right\}
\end{align*}
\]
\[
\leq 2 \max \left\{ d_G(x, T x), d_G(y, T x), d_G(T^2 x, T y), d_G(T x, T y),
\right. \\
&\quad \quad \quad \quad d_G(x, y),
\left. \quad d_G(x, T x),
\right\}
\end{align*}
\]

Then (3.1) becomes
\[
\begin{align*}
d_G(T x, T y) \leq 2k \max \left\{ d_G(x, T x), d_G(y, T x), d_G(y, T y), d_G(T^2 x, T y),
\right. \\
&\quad \quad d_G(T x, T y), d_G(x, y),
\left. \quad d_G(x, T y)
\right\}
\end{align*}
\]

Since 0 ≤ 2k < 1, we have
\[
\begin{align*}
d_G(T x, T y) \leq 2k \max \left\{ d_G(x, y), d_G(x, T x), d_G(y, T y), d_G(x, T y),
\right. \\
&\quad \quad d_G(y, T x),
\left. \quad d_G(T^2 x, T y)
\right\}
\end{align*}
\]

By Theorem 5, we see that T has a unique fixed point. □

Remark 2. The authors of [10] claimed that the proof of [10, Theorem 3.2] is the mimic of [10, Theorem 3.1]. But, by redoing the proof of [10, Theorem 3.1], we see that the equality (23) in the proof of [10, Theorem 3.1] becomes
\[
G(x^*, T x^*, T x^*) \leq k G(x^*, T x^*, T x^*)
\]
and the equality (25) in the proof of [10, Theorem 3.1] becomes
\[
G(t^*, t^*, x^*) \leq k G(t^*, t^*, x^*)
\]
In general, the second inequalities do not hold if k ∈ [0, 1).
Corollary 3 ([10], Theorem 3.3). Let \((X, G)\) be a complete \(G\)-metric space and \(T : X \to X\) be a map such that
\[
\psi \left(G(Tx, T^2x, Ty) \right) \leq G(x, Tx, y) - \varphi(G(x, Tx, y))
\] (3.2)
for all \(x, y \in X\), where \(\varphi : [0, +\infty) \to [0, +\infty)\) is continuous with \(\varphi^{-1}(\{0\}) = 0\). Then \(T\) has a unique fixed point.

Proof. It is easy to see that \(T\) has at most one fixed point. Suppose to the contrary that \(T\) has no any fixed point. Let \(d_{T,G}\) be defined as in Proposition 4. Then, \(d_{T,G}\) is a quasi-metric in the sense of Definition 7 on \(X\). We prove that \((X, d_{T,G})\) is a weak \(T\)-orbitally complete quasi-metric space. Let \(\{x_n\}\) be a Cauchy sequence in \((X, d_{T,G})\) where \(x_0 \in X\) and \(x_{n+1} = Tx_n\) for all \(n \in \mathbb{N}\). We have
\[
\lim_{n,m \to \infty} d_{T,G}(x_n, x_m) = 0.
\]
We may assume that \(x_n \neq x_m\) for all \(n \neq m \in \mathbb{N}\). Then
\[
0 \leq \lim_{n,m \to \infty} G(x_n, x_m, x_m)
\]
\[
\leq \lim_{n,m \to \infty} G(x_n, x_{n+1}, x_m)
\]
\[
= \lim_{n,m \to \infty} G(x_n, Tx_n, x_m)
\]
\[
= \lim_{n,m \to \infty} d_{T,G}(x_n, x_m)
\]
\[
= 0.
\]
It implies that \(\lim_{n,m \to \infty} G(x_n, x_m, x_m) = 0\). By Lemma 2, \(\{x_n\}\) is a Cauchy sequence in \((X, G)\). Since \((X, G)\) is complete, there exists \(x^* \in X\) such that \(\lim_{n \to \infty} x_n = x^*\) in \((X, G)\). Since \(x_n \neq x_m\) for all \(n \neq m \in \mathbb{N}\), we may assume that \(x_n \neq x^*\) for all \(n \in \mathbb{N}\). Therefore,
\[
\lim_{n \to \infty} d_{T,G}(x_n, x^*) = \lim_{n \to \infty} G(x_n, Tx_n, x^*) = \lim_{n \to \infty} G(x_n, x_{n+1}, x^*) = 0. \quad (3.3)
\]
We also have
\[
d_{T,G}(x^*, x_n) = G(x^*, Tx^*, x_n)
\]
\[
\leq G(x^*, x_{n+1}, x_{n+1}) + G(x_{n+1}, Tx^*, x_n)
\]
\[
= G(x^*, x_{n+1}, x_{n+1}) + G(x_{n+1}, x_{n+1}, Tx^*)
\]
\[
= G(x^*, x_{n+1}, x_{n+1}) + G(Tx_{n-1}, T^2x_{n-1}, Tx^*)
\]
\[
\leq G(x^*, x_{n+1}, x_{n+1}) + G(x_{n-1}, Tx_{n-1}, x^*) - \varphi(G(x_{n-1}, Tx_{n-1}, x^*))
\]
\[
\leq G(x^*, x_{n+1}, x_{n+1}) + G(x_{n-1}, x_n, x^*) - \varphi(G(x_{n-1}, x_n, x^*)).
\]
Taking the limit as \(n \to \infty\) in (3.4) and using Lemma 1, we obtain
\[
\lim_{n \to \infty} d_{T,G}(x^*, x_n) = 0. \quad (3.5)
\]
From (3.3) and (3.5), we get \(\lim_{n \to \infty} x_n = x^* \) in \((X, d_{T,G})\). Then \((X, d_{T,G})\) is weak \(T\)-orbitally complete. Note that (3.2) becomes
\[
\psi(d_{T,G}(Tx,Ty)) \leq d_{T,G}(x,y) - \varphi(d_{T,G}(x,y))
\]
Therefore, by using Proposition 7, we conclude that \(T\) has a fixed point. It is a contradiction.

By the above, \(T\) has a unique fixed point. \(\square\)

Corollary 4 ([3], Theorem 2.3). Let \((X,G)\) be a complete \(G\)-metric space and \(T : X \to X\) be a map such that
\[
\psi(G(Tx,T^2x,Ty)) \leq \psi(G(x,Tx,y)) - \varphi(G(x,Tx,y))
\]
for all \(x,y \in X\), where \(\psi : [0, +\infty) \to [0, +\infty)\) is non-decreasing and continuous, and \(\varphi : [0, +\infty) \to [0, +\infty)\) is lower semi-continuous and \(\varphi(t) = \varphi(t) = 0\) if and only if \(t = 0\). Then \(T\) has a unique fixed point.

Proof. It is easy to see that \(T\) has at most one fixed point. Suppose to the contrary that \(T\) has no any fixed point. Using \(d_{T,G}\) as in the proof of Corollary 3, then \(d_{T,G}\) is a quasi-metric in the sense of Definition 7 on \(X\). We prove that \((X,d_{T,G})\) is a weak \(T\)-orbitally complete quasi-metric space. Let \(\{x_n\}\) be a Cauchy sequence in \((X,d_{T,G})\) where \(x_0 \in X\) and \(x_{n+1} = Tx_n\) for all \(n \in \mathbb{N}\). We have \(\lim_{n,m \to \infty} d_{T,G}(x_n,x_m) = 0\).

We may assume that \(x_n \neq x_m\) for all \(n \neq m \in \mathbb{N}\). Then
\[
0 \leq \lim_{n,m \to \infty} G(x_n,x_m,x_m) \\
\leq \lim_{n,m \to \infty} G(x_n,x_{n+1},x_m) \\
= \lim_{n,m \to \infty} G(x_n,Tx_n,x_m) \\
= \lim_{n,m \to \infty} d_{T,G}(x_n,x_m) \\
= 0.
\]
It implies that \(\lim_{n,m \to \infty} G(x_n,x_m,x_m) = 0\). By Lemma 2, \(\{x_n\}\) is a Cauchy sequence in \((X,G)\). Since \((X,G)\) is complete, there exists \(x^* \in X\) such that \(\lim_{n \to \infty} x_n = x^*\) in \((X,G)\). Since \(x_n \neq x_m\) for all \(n \neq m \in \mathbb{N}\), we may assume that \(x_n \neq x^*\) for all \(n \in \mathbb{N}\). Therefore,
\[
\lim_{n \to \infty} d_{T,G}(x_n,x^*) = \lim_{n \to \infty} G(x_n,Tx_n,x^*) = \lim_{n \to \infty} G(x_n,x_{n+1},x^*) = 0. \tag{3.7}
\]
We also have
\[
d_{T,G}(x^*,x_n) = G(x^*,Tx^*,x_n) \leq G(x^*,x_{n+1},x_{n+1}) + G(x_{n+1},Tx^*,x_n) \\
= G(x^*,x_{n+1},x_{n+1}) + G(x_n,x_{n+1},Tx^*)
\]

We have
Taking the limit as $n \to \infty$ in (3.8) and using Lemma 1, we get
\[
\lim_{n \to \infty} d_{T,G}(x^*, x_n) = 0.
\] (3.9)
From (3.7) and (3.9), we get $\lim_{n \to \infty} x_n = x^*$ in $(X, d_{T,G})$. Then $(X, d_{T,G})$ is weak T-orbitally complete. Note that (3.6) becomes
\[
\psi(d_{T,G}(T x, T y)) \leq \psi(d_{T,G}(x, y) - d_{T,G}(x, y)).
\]
Therefore, by using Proposition 8, we conclude that T has a fixed point. It is a contradiction.

By the above, T has a unique fixed point. □

Remark 3. By using $d_{T,G}$ as in the proof of Corollary 3, we see that the inequality (30) in [3, Theorem 3.1] becomes
\[
d_{T,G}(T x, T y) \geq \alpha d_{T,G}(x, y).
\]
By similar arguments, we get analogues of the results in [18] for expansive maps on quasi-metric spaces and then we get [3, Theorem 3.1]. Also, similar arguments to the above may be possible for results in [7]. Note that for a complete G-metric space (X, G) with $|X| \geq 2$ and $T : X \to X$ being the identify map, all assumptions of [3, Theorem 3.2] hold but T has more than one fixed point. This shows that the uniqueness of fixed points in [3, Theorem 3.2] is a gap.

ACKNOWLEDGMENT

The author is thankful to the referee for the valuable comments, especially the comment on adding $\neq x$ in Definition 7.(2).

The author is also thankful to The Dong Thap Seminar on Mathematical Analysis and Applications for valuable discussions.

REFERENCES

Author’s address

N. V. Dung
Dong Thap University, Faculty of Mathematics and Information Technology Teacher Education,
783 Pham Huu Lau St., Cao Lanh City, Dong Thap Province, Viet Nam

E-mail address: nvdung@dthu.edu.vn