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Abstract. In this paper, we prove some properties of quasi-metric spaces and state some fixed
point theorems in this setting. As applications, we show that most of recent results on G-metric
spaces in [3, 10] may be also implied from certain fixed point theorems on metric spaces and
quasi-metric spaces.
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1. INTRODUCTION AND PRELIMINARIES

In recent time, many generalized metric spaces were introduced and the fixed point
theory in these spaces was investigated. In [13], Mustafa and Sims introduced the
concept of a G-metric space as a generalized metric space. After that, many fixed
point theorems on G -metric spaces were stated, see [1,4,5,9,12,14,15] and references
therein. But in [8], Jleli and Samet showed that most of the obtained fixed point
theorems on G-metric spaces may be deduced immediately from fixed point theorems
on metric spaces or quasi-metric spaces. The similar results can be found in [2, 17].

Very recently, Karapinar and Agarwal modified some existing results to suggest
new fixed point theorems that fit with the nature of a G-metric space in [10]. Also,
they asserted that for their results the techniques used in [8] and [17] are inapplicable.
After that, this idea was continuously developed in [3, 7].

In this paper, we prove some properties of quasi-metric spaces and state some fixed
point theorems in this setting. As applications, we show that most of recent results
on G-metric spaces in [3, 0] may be also implied from certain fixed point theorems
on metric spaces and quasi-metric spaces.

First, we recall notions and results which will be useful in what follows.

Definition 1 ([13], Definition 3). Let X be a nonempty setand G : X x X x X —>
[0, 00) be a function such that, for all x,y,z € X,
1) G(x,y,z)=0ifx =y =2z.
2) 0<Gx,x,y)ifx#yeX.
3) G(x,x,y) <G(x,y,2)ify # z.
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402 N. V. DUNG

@) G(x,y,2) =G(x,z,y) =G(y,x,2) =G(y,2,x) =G(z,x,y) = G(2,y,x).
5) G(x,y,2) <G(x,a,a)+G(a,y,2).
Then G is called a G-metric on X and the pair (X, G) is called a G-metric space.

Definition 2 ([13], Definition 4). The G-metric space (X, G) is called symmetric
if G(x,y,y) =G(x,x,y) forall x,y € X.
Definition 3 ([13]). Let (X, G) be a G-metric space and {x, } be a sequence in X.
(1) For each x¢p € X and r > 0, the set

Bg(x0,7r) ={x € X : G(xg,x,x) <7}

is called a G-ball with center x¢ and radius r.

(2) The family of all G-balls forms a base of a topology 7(G) on X, and t(G) is
called the G-metric topology.

(3) {xn} is called convergent to x in X if lim x, = x in the G-metric topology

n—00
7(G).
4) {xp}iscalled Cauchy in X if lim  G(xu,Xm,x;) =0.
n,m,l—o0
(5) (X,G) is called a complete G-metric space if every Cauchy sequence is con-
vergent.

Lemma 1 ([13], Proposition 6). Let (X, G) be a G-metric space. Then the follow-
ing statements are equivalent.
(1) xp is convergent to x in X.
2) lim G(xp,x,,x)=0.
n—>oo
3) lim G(xp,x,x)=0.
n—>oo
@ lim G(xp,xm,x)=0.
o

n,m—
Lemma 2 ([13], Proposition 9). Let (X, G) be a G-metric space. Then the follow-
ing statements are equivalent.

(1) {xn} is a Cauchy sequence.
2) lim G(p,Xm,xm)=0.
n,m—00

Definition 4 ([8], Definition 2.1). Let X be a nonempty set and d : X x X —
[0, +00) be a function such that, for all x,y,z € X,
(1) d(x,y) =0if and only if x = y.
(2) d(x,y) =d(x,z) +d(z,y).
Then d is called a quasi-metric and the pair (X, d) is called a quasi-metric space.
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Definition 5 ([8]). Let (X,d) be a quasi-metric space and {x,} be a sequence in
X.

(1) {x,} is called convergent to x € X, written lim x, = x, if
n—00

lim d(x,,x) = lim d(x,x,)=0.
n—>oo n—>oo

(2) {xn} is called left-Cauchy if for each ¢ > 0 there exists n(e) such that
d(xXp,xm) <eforalln>m> n(e).

(3) {xn} is called right-Cauchy if for each ¢ > 0 there exists n(e) such that
d(xXp,xm) <eforallm>n > n(e).

(4) {xy}is called Cauchy if for each & > 0 there exists n(¢) such that d (x,, x) <
¢ for all m,n > n(e), that is, . rlr}glood(xn,xm) =0.

(5) (X,d) is called complete if each Cauchy sequence in (X, d) is convergent.

Remark 1 ([8]). (1) Every metric is a quasi-metric.
(2) In a quasi-metric space, a sequence {x,} is Cauchy if and only if it is left-
Cauchy and right-Cauchy.

The following examples show that the inversion of Remark 1.(1) does not hold.
Example 1. Let X = R and d be defined by

o x=y ifx>y
dxy) =1 if x < y.

Then d is a quasi-metric on X but d is not a metric on X.

Proof. Ttisclearthatd : X x X —> [0, +00) and d(x, y) =0 if and only if x = y.
For all x, y,z € X, we consider two following cases.

Case 1. x > y. Wehave d(x,y) = x—y.

If z < y,thend(x,z) =x—zandd(z,y) = I.

Ify<z<x,thend(x,z)=x—zandd(z,y)=2z—y.

Ifx <z,thend(x,z) =1landd(z,y) =z—y.

Sowe have d(x,y) <d(x,z)+d(z,y).

Case 2. x <y. Wehave d(x,y) = 1.

If z <x,thend(x,z) =x—zandd(z,y) = 1.

Ifx<z<y,thend(x,z)=1andd(z,y)=1.

Ify <z,thend(x,z)=1landd(z,y) =z—Y.

So we have d(x,y) <d(x,z) +d(z,y).

By the above, d is a quasi-metric on R. Since d(0,2) =1 # d(2,0) =2, d is not
a metric on R. g

Example 2. Let X = X1 U X2, X1 N X2 # @ and d be defined by

0 ifx=y
d(x,y)= 2 ifxEXl,yGXz
1 otherwise.
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Then d is a quasi-metric on X but d is not a metric on X.

For more quasi-metrics which are not metrics, see [16, Example 1.4].

In [&], Jleli and Samet showed that most of the obtained fixed point theorems on
G-metric spaces may be deduced immediately from fixed point theorems on metric
spaces or quasi-metric spaces. The main results in [8] are as follows.

Theorem 1 ([8], Theorem 2.2). Let (X,G) be a G-metric space and dg : X X
X —> [0,+00) be defined by dg(x,y) = G(x,y,y) forall x,y € X. Then we have
(1) (X,dg) is a quasi-metric space.
(2) A sequence {xy} is convergent to x in (X, G) if and only if {x, } is convergent
toxin(X,dg).
(3) A sequence {xp} is Cauchy in (X, G) if and only if {x, } is Cauchy in (X,dg).
(4) The G-metric space (X, G) is complete if and only if the quasi-metric space
(X.dg) is complete.

Theorem 2 ([8], Theorem 2.3). Let (X,G) be a G-metric space and dg : X X
X —> [0,400) be defined by 8 (x,y) = max {G(x,y.y),G(y.x,x)} forall x,y €
X. Then we have

(1) (X,ég) is a metric space.

(2) A sequence {xp} is convergent to x in (X, G) if and only if {x, } is convergent
to x in (X,6g).

(3) A sequence {xy} is Cauchy in (X, G) if and only if {x,} is Cauchy in (X,8g).

(4) The G-metric space (X, G) is complete if and only if the metric space (X,8gG)
is complete.

Theorem 3 ([8], Theorem 3.2). Let (X,d) be a complete quasi-metric space and
T : X — X be a map such that

d(Tx,Ty) <d(x,y)—¢(d(x,y)) (1.1)
forall x,y € X, where ¢ : [0, +00) —> [0, +00) is continuous with ¢~ ({0}) = {0}.
Then T has a unique fixed point.

Recently, in [16], Raji¢ proved the following result which is a generalization of
Theorem 3.

Theorem 4 ([16], Theorem 2.2). Let (X,d) be a complete quasi-metric space and
f.g : X —> X be two maps such that

V(d(fx, fy)) <v(d(gx.gy))—¢(d(gx.gy)) (1.2)

for all x,y € X, where ¢ : [0,4+00) —> [0,400) is continuous, non-decreasing,
v~10) = {0}, ¢ : [0,400) —> [0, +00) is continuous and ¢~ (0) = {0}. If the
range of g contains the range of f and f(X) or g(X) is a closed subset of X, then
f and g have a unique point of coincidence in X. Moreover, if f and g are weakly



REMARKS ON QUASI-METRIC SPACES 405

compatible, that is, fgx = g fx provided that fx = gx, then [ and g have a unique
common fixed point.

The main results of the paper are presented in Section 2 and Section 3. In Sec-
tion 2, we prove some properties of the quasi-metric space and its modification. Then,
by similar arguments as in metric spaces, we prove some analogues of fixed point the-
orems in quasi-metric spaces. In Section 3, we show that most of recent fixed point
theorems on G-metric spaces in [3, 10] may be implied from certain fixed point the-
orems proved in Section 2.

2. REMARKS ON QUASI-METRIC SPACES

Note that every quasi-metric space (X, d) is a topological space with the topology
induced by its convergence. Then X x X is a topological space with the product
topology. The following result shows that the product space X x X is also a quasi-
metric space.

Proposition 1. Let (X,dx) and (Y,dy) be two quasi-metric spaces. Then we have

(1) d(x,y) =dx(x1,y1)+dy (x2,y2) forall x = (x1,x2),y = (y1,y2) € X xY
is a quasi-metricon X X Y.

2) lim (xn,yn) = (x,y) in (X xY,d) if and only if lim x, = x in (X,dx)
n—0o0 n—o0
and nlgrgo vn =y in (Y,dy). In particular, the product topology on X xY
coincides the topology induced by d.

3) {(xn,yn)} is a Cauchy sequence in (X xY,d) if and only if {x, } is a Cauchy
sequence in (X,dy) and {y,} is a Cauchy sequence in (Y,dy).

@) (X xY,d) is complete if and only if (X,dx) and (Y,dy) are complete.

Proof. (1). For all x = (x1,x2),y = (V1,¥2),2 = (21,22) € X XY, we have
d(x,y) = 0 if and only if dyx(x1,y1) + dy(x2,y2) = 0, that is, dx(x1,y1) =
dy (x2,y2) = 0. It is equivalent to x; = y; and x = y», thatis, x = y.

We also have

d(x,z) = dx(x1,21) +dy (x2,22)
<dx(x1,y1) +dx(y1,21) +dy(x2,y2) + dy (y2,22)
=dx(x1.y1) +dy (x2,y2) +dx (y1.21) +dy (y2.22)
=d(x,y)+d(y,2).
By the above, d is a quasi-metric on X x Y.
2). li)m (Xn,¥yn) = (x,y)in (X xY,d) if and only if
n o0

Jim d((xn.yn). (x.y)) = lim_[dx (xn.x) +dy (ya.y)] =0

and
dim d ((x.y). Con. yn)) = lim_[dx (v.2n) +dy (v.yn)] = 0.
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It is equivalent to
Mim dx (xp,x) = lim dy(yn,y) = lim dx(x,xp) = lim dy(y,yn)=0.
Thatis, lim x, = xin (X,dy) and lim y, = y in (Y,dy).
n—o00 n—oo

(3). {(xn.yn)} is a Cauchy sequence in (X x Y, d) if and only if

lim  d((xn.yn), (Xm.ym)) = lim_[dx (xn,Xm) +dy (Yn.ym)] = 0.
n,m—00 ,M—>00

o n
It is equivalent to

n,rlnlgoo dX (xn’Xm) - n,rggoo dY (yn»J’m) =0

That is, {x,} is a Cauchy sequence in (X,dy) and {y,} is a Cauchy sequence in
(Y.dy).
(4). It is a direct consequence of (2) and (3). ]

In the proof of [8, Theorem 3.2], Jleli and Samet used the sequential continuity
of a quasi-metric d without proving. From Proposition 1, we see that the sequential
continuity and the continuity of d are equivalent and they are guaranteed by the
following proposition.

Proposition 2. Let (X,d) be a quasi-metric space. Then d is a continuous func-
tion.

Proof. Suppose that nll)n;o Xn = x and nll)ngo yn =y in (X,d). We have

d(xn,yn) <d(xn,x)+d(x,y) +d(y,yn).
It implies that
d(xn,yn)—d(x,y) <d(xn,x) +d(y,yn). (2.1)
Also, we have
d(x,y) <d(x,xp)+d(xn,yn) +d(yn.y).
It implies that
d(x,y)—d(xn,yn) <d(x,xn) +d(yn,y). (2.2)
From (2.1) and (2.2), we have
0=<ld(x,y)—d(xn,yn)| = max{d(xn,x) +d(y,yn) d(x,xn) +d(yn,)’)}- (2.3)
Taking the limit as n — oo in (2.3), we obtain nli)moo |d(x,y)—d(xn, yn)| = 0. That
is, nlgr;o d(xn,yn) = d(x,y). This proves that d is a continuous function. O
The following proposition proves that the topology of each quasi-metric space is

metrizable. Then all topological properties of metric spaces hold on quasi-metric
spaces.
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Proposition 3. Ler (X, d) be a quasi-metric space and

84 (x,y) = max{d(x,y),d(y,x)}
forall x,y € X. Then we have

(1) (X,84) is a metric space.

(2) A sequence {xy} is convergent to x in (X,d) if and only if {x, } is convergent
toxin(X,6g).

(3) A sequence {xy} is Cauchy in (X,d) if and only if {x, } is Cauchy in (X,87).

(4) The quasi-metric space (X,d) is complete if and only if the metric space
(X,84) is complete.

Proof. (1). See [8], page 3.
(2). We have lim x, = x in (X, d) if and only if
n—>oo
lim d(x,,x) = lim d(x,x,)=0.
n—->oo n—>oo
It is equivalent to

lim 64 (xp,x) = lim max{d(xn,x),d(x,xn)} =0.
n—>oo n—>oo

Thatis, lim x, = x in (X,8;).
n—o0
(3). A sequence {x,} is Cauchy in (X, d) if and only if

lim d(xy,xm)= lim d(xm,x,)=0.
n,m—>00 n,m—>00

It is equivalent to

lim 68;(xn,xp) = lim max{d(xn,xm),d(xm,xn)}=O.
o) n,m—>00

n,m—
That is, {x,} is Cauchy in (X,8;).
(4). It is a direct consequence of (2) and (3). O

By modifying the notion of T -orbital completeness in [6], we introduce the notion
of weak T -orbital completeness as follows.

Definition 6. Let (X, d) be a quasi-metric space and 7' : X —> X be a map. Then
X is called weak T -orbitally complete if {T"x} is convergent in X provided that it
is a Cauchy sequence in X.

Note that every T -orbitally complete quasi-metric space is a weak 7 -orbitally
complete quasi-metric space for all maps 7 : X — X . The following example shows
that the inversion does not hold, even when (X, d) is a metric space.

11 1

Example 3. LetX={1,3,...,2n+1,...}U{§,Z...,2—
n

ric and

e } with the usual met-

1 1
T—=2 1,T2n—-1) = —
2n nt (2n ) 2n
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for all n € N. Since {T"x} is not Cauchy for all x € X, (X,d) is weak T -orbitally
complete. For x = 1, we have

1
niy. — J—
{T"1:neN}={1,-,3 ..,2n+1,2n,...}.

1
747'

| =

1

Since {—} is a Cauchy sequence in (X,d) which is not convergent, (X,d) is not
n

T -orbitally complete.

Following the proof of [1 |, Theorem 3.1], we get the following fixed point theorem
on quasi-metric spaces.

Theorem 5. Let (X,d) be a quasi-metric space and T : X —> X be a map such
that

(1) X is weak T -orbitally complete.
(2) There exists q € [0,1) such that for all x,y € X,

d(Tx,Ty) <gmax {d(x,y),d(y,x),d(x, Tx),d(Tx,x),d(y,Ty), 2.4)
d(x,Ty),d(y,Tx),d(Tx,y),d(T?x,x),d(x,T?*x),d(T*x,Tx),
d(Tx,T?x),d(T?x,y).d(y,T*x),d(T*x,Ty)}.

Then we have
(1) T has a unique fixed point x* in X.
2) nll)n;o T"x =x*forall x € X.

n

(3) max {d(T”x,x*),d(x*,T"x)} <
X andn € N.

T _qmax {d(x, Tx),d(Tx,x)}forallx €
Proof. (1). Foreachx e X and1 <i <n—1,1<j <n, we have

d(T'x, T'x)=d(TT "'x, TT/'x) (2.5)

< qmax{d(Ti_lx,Tj_lx),d(Tj_lx,Ti_lx),d(Ti_lx,TTi_lx),
d(TT ', TP %), d(T/ ', TT? 7)), d(TF %, TT/ 7 %), d(T/ " 'x, TT " x),
d(TT 'x, T/ %), d(T?T  'x, T 1), d(T ' x, T?T" " 1x),
d(T?*T ', TT 7 X)), d(TT Y%, T2T %), d(T?T " 'x, T/ 1),
d(T/ ', T*T" %), d(T*T''x, TT/"'x)}

=gmax {d(T"'x, T/ x),d(T/'x, 7" x),d(T" 'x,T"x),d(T"x, T 'x),
d(T/ 7Y%, T/ x),d(T" " x, T/ x),d(T’ " 'x,T'x),d(T' x, T’ ~x),
d(T™ X, T %), d(T" ' x, T %), d(T"H %, T x),d(T x, T+ x),
d(T™H %, 777 %), d(T 7 x, T ), d (T x, TV x))}
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<q8[Or(x.n)]

where §[O7 (x,n)] = max{d(T'x,T/x):0<i <n—1,0< j <n}.
From (2.5), since 0 < g < 1, there exists k5 (x) < n such that

d(x, T*"®x) = §[Or (x,n)] (2.6)
or there exists k(x) < n—1 such that
d(T*"®x,x) = §[ O (x,n)]. (2.7)

If (2.6) holds, we have
d(x,T*"®x) < d(x,Tx)+d(Tx,T*®x)
<d(x,Tx) +q8[OT(x,n)]
=d(x,Tx)+qd(x, T*"®x).
It implies that

§[Or(x,n)] = d(x, T*"®x) < ﬁd(x, Tx). (2.8)

If (2.7) holds, we have
d(Tk®x x) < d(T**®x Tx)+d(Tx,x)
< qB[OT(x,n)] +d(Tx,x)
= qd(T*"®x, x)+d(Tx,x).
It implies that

§[Or(x,n)] = d(T*" @ x x) < ﬁd(Tx,x). (2.9)

For all n < m, it follows from (2.4) and (2.8), (2.9) that
d(T"x, T"x) =d(TT" 'x, 7" "1~ 1y) (2.10)
< qS[OT(T”_lx,m —n+1)]
_ qd(Tn—lx’Tkm_n_H(T”_lx)Tn—lx)
_ qd(TTn—zx’Tkm,,,Jrl(T"—lx)HTn—zx)
< ¢28[Or(T" 2% Kpp 41 (T" 1 2) + 1)]

< q28[0T(T”_2x,m —n+2)]
<...

<q"§[Or(x,m)]
S n

max{d(x,Tx),d(Tx,x)}.
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Since nll)n;o q" = 0, by taking the limit as n,m — oo in (2.10), we have
lim d(T"x,T™x)=0. (2.11)
1 ,m—>00
This proves that {7"x} is a Cauchy sequence in X. Since X is weak T -orbitally
complete, there exists x* € X such that
nli)ngod(T”x,x*) = nli)néod(x*,T"x) =0. (2.12)
Therefore, by using (2.4) again, we have
d(x* Tx*) <d(x* T"x)+d(T" T x, Tx*) (2.13)
=d(x*, T" x)+d(TT"x,Tx*)
<d(x*,T"tx) 4+ gmax {d(T"x,x*),d(x*,T"x),d(T"x,TT"x),
d(TT"x,T"x),d(x*,Tx*),d(T"x, Tx*),d(x*,TT"x),d(TT"x,x%),
d(T?T"x,T"x),d(T"x,T*T"x),d(T*T"x, TT"x),d(TT"x,T*T"x),
d(T>T"x,x*),d(x*, T*T"x),d(T*T"x,Tx*)}
=d(x*. T" ' x) + gmax {d(T"x, x*).d(x*. T"x).d(T"x, T"* ' x),
d(T" %, T"x). d(x* Tx*).d(T"x, Tx*).d(x* . T" ' x).d(T" ' x,x*).
d(T" 2x, T"x).d(T"x. T" 2x).d(T"x. T" ' x),d(T" ' x, T"2x),
d(T" 2x,x*),d(x*, T"2x),d(T"2x, Tx*)}.

Taking the limit as n — oo in (2.13), and using (2.11), (2.12) and Proposition 2, we
getd(x*, Tx*) <qd(x*,Tx*).Sinceq €[0,1),d(x*,Tx*) =0, thatis, x* = Tx*.
Then T has a fixed point.

Now, we prove the uniqueness of the fixed point of 7. Let x*, y* be two fixed
points of 7. From (2.4), we have

d(x*,y*) =d(Tx*,Ty")
<gmax{d(x*,y*),d(y*,x*),d(x*, Tx*),d(Tx*,x*),d(y*. Ty*),d(x*,Ty"),
d(y*, Tx*),d(y* Tx*),d(T?*x*,x*),d(x*, T?x*),d(T*x*, Tx*),
d(Tx*, T?x*),d(T*x*,y*),d(y*, T*x*),d(T*x*,Ty*)}
=gmax{d(x*,y*),d(y*.x")}.
Since ¢ € [0, 1), we get
d(x*,y*) <qd(y*.x7). (2.14)
Again, from (2.4), we also have
d(y*,x*)=d(Ty*, Tx")
< gmax {d(y*,x*),d(x*, y*),d(y*, Ty*),d(Ty*,y*),d(x*, Tx"),d(y*, Tx"),
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d(x*, Ty*),d(x*, Ty*),d(T?y*, y*),d(y*, T?y*),d(T?y*, Ty*),
d(Ty*. T?y*).d(T?y* . x™).d(x* . T?y*),d(T?y* ., Tx")}
=gmax {d(y*,x*).d(x*,y")}.
Since ¢ € [0, 1), we get
d(y*,x*) < qd(x*,y"). (2.15)

From (2.14) and (2.15), since ¢ € [0,1), we obtain d(x*, y*) = 0. That is, x* =
y*. Then the fixed point of T is unique.

(2). Itis proved by (2.12).

(3). Taking the limit as m — oo in (2.10) and using Proposition 2, we get

n

d(T"x,x™) < 0 max{d(x,Tx),d(Tx,x)}.
—4q

n

Similarly, we have d(x*,T"x) < lq max{d(x,Tx),d(Tx,x)}. Therefore,

n

max {d(T"x,x*),d(x*,T"x)} < lq

max{d(x,Tx),d(Tx,x)}. O

If d in Theorem 5 is a metric, then we have the following result. Note that Co-
rollary 1 is a generalization of the following well-known result of Ciri¢ in [6]. This
generalization is proper by [ 1, Example 3.6].

Corollary 1 ([1 1], Theorem 3.1). Let (X,d) be a metric space and T : X — X
be a map satisfying the following
(1) X is weak T -orbitally complete.
(2) There exists g € [0,1) such that for all x,y € X,
d(Tx,Ty) <gmax {d(x,y),d(x, Tx),d(y,Ty),d(x,Ty), (2.16)
d(y,Tx),d(T*x,x),d(T*x,Tx),d(T*x,y),d(T*x,Ty)}.
Then we have
(1) T has a unique fixed point x* in X.
(2) lim T"x =x*forall x € X.
n—0o0
n

(3) d(T"x,x*) <

1 d(x,Tx) forall x € X.
—q

Now, we modify the notion of a quasi-metric space in Definition 4 as follows.
Definition 7. Let X be a nonempty set and d : X x X — [0, +00) be a function
such that, for all x,y,z € X,
(1) d(x,y) =0ifand only if x = y.
(2) d(x,y) <d(x,z2)+d(y,z)if z # x.
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Then d is also called a quasi-metric and the pair (X, d) is also called a quasi-metric
space.

Note that if z = x in Definition 7.(2), then d(x,y) = d(y,x) forall x,y € X. In
this case, d deduces a metric on X .

The following proposition gives a way to set examples of quasi-metrics in the
sense of Definition 7.

Proposition 4. Let (X, G) be a G-metric space and T : X —> X be a map. For
allx,y € X, put

_)0 fx=y
TN =0 G, Txy) ifx#y.

If T has no any fixed point, then dr,G is a quasi-metric in the sense of Definition 7
on X.

Proof. For all x,y,z € X with z # x, note that y # Ty for all y € X, we have
G(y,z2.2) <G(z,y,Ty) forall y,z € X. Then
dr,g(x,y) <G(x,Tx,y)
=G(y,x,Tx)
<G(,2,2)+G(x,Tx,z)
<G(z,y.Ty)+G(x,Tx,z)
=dr,g(x,2) +dr,6(y.2).

This proves that dr g is a quasi-metric in the sense of Definition 7 on X. g
Example 4. Let X = {1,2,3} and

0 ifx=y
dix,y)=14 2 if(x,y)=(1,2)
1 otherwise.

Then d is a quasi-metric in the sense of Definition 7 on X. For (2,1),(1,2),(1,1) €
X x X, we have

d2,1)+d(1,2)=3
d2,1)+d(1,1) =1
d(1,1)+d2,1)=1.
This proves that d(2,1) +d(1,2) > d(2,1) +d(1,1)+d(1,1)+d(2,1). So Propos-

ition 1.(1) does not hold for quasi-metrics in the sense of Definition 7.

Proposition 5. Let (X, d) be a quasi-metric space in the sense of Definition 7. For
eachy € X, if lim x, = x, then lim d(y,x,) =d(y,x).
n—0o0 n—0o0
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Proof. Case 1. y = x. Then we have
d(y,x)=d(x,x)=0= lim d(x,x,) = lim d(y,xy).
n—00 n—o0
Case 2. y # x. If x, = x for infinitely many 7, then
lim d(y,x,) =d(y,x).
m—o0

So, we may assume that x, 7# x for n large enough. Also, y # x, for n large enough.
Then we have, for all n € N,

d(y,x) <d(y,xn) +d(x,xn) <d(y,x) +d(xn,x) +d(x,xn). (2.17)
Taking the limit as n — oo in (2.17), we get lim d(y,x,) =d(y,x). g
n—->oo

With some minor changes in the proof of Theorem 5, we have the following result.
Note that these changes mainly relate to Definition 7.(2).

Proposition 6. Let (X,d) be a quasi-metric space in the sense of Definition 7 and
T : X — X be a map satisfying the following

(1) X is weak T -orbitally complete.
(2) There exists q € [0,1) such that for all x,y € X,

d(Tx,Ty) (2.18)

< gmax{d(x,y),d(y,x),d(Tx,x),d(y,Ty),d(Ty,y),d(x,Ty),d(Ty,x),
d(Tx.y).d(T?y.y).d(y.T?y).d(T?y.Ty).d(Ty.T?y).d(T?y,x),
d(x,T?y).d(Tx, sz)}.
Then we have

(1) T has a unique fixed point x* in X.
(2) lim T"x =x* forall x € X.
n—->oo

n

3) max{d(T”x,x*),d(x*,T”x)} < 1

T max {d(x,Tx),d(Tx,x)}forallx €
—q
X andn € N.

Proof. As in the proof of Theorem 5.(1), there exists k, (x) < n such that

d(x, T*"®x) = §[Or (x,n)] (2.19)
or there exists k, (x) < n — 1 such that
d(T*"®x, x) = §[ O (x,n)]. (2.20)

If Tx = x, then T has a fixed point. So we may assume that 7x # x. If (2.19)
holds, we have

d(x, T*"®x) < d(x,Tx)+d(T*x, Tx)
< d(x,Tx)+q8[OT(x,n)]
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=d(x,Tx)+qd(x,T*"®x).
It implies that

1
§[Or(x,n)] =d(x, T*"®x) < A Tx). (2.21)
—q
If (2.20) holds and Tk ™) x = T x, we have
1
§[Or(x.,n)] = d(T*"Wx x) =d(Tx,x) < l—d(Tx,x). (2.22)
—q

So, we may assume that 7%2()x £ T'x. Then
d(TF"®x x) < d(TF®x Tx)+d(x, Tx)
< q8[Or(x.,n)] +d(x,Tx)
= qd(T*""®x, x)+d(x,Tx).
It implies that

1
§[Or(x,n)] = d(T*" @ x x) < qd(x, Tx). (2.23)

As in the proof of Theorem 5.(1), we also have

lim d(T"x,T™x) =0 (2.24)
n,m—00
and there exists x* € X such that
lim d(T"x,x*) = lim d(x*,T"x) =0. (2.25)
n—0o0 n—>00
If T"T1x = Tx* for infinitely many 7, then lim T7T!x = Tx* = x*. Then x*
n—>0o0

is a fixed point of 7. So, we may assume that 7" 1x % x* for n large enough.
Therefore, by using (2.18) again, we have

d(Tx* x*) <d(Tx* T"Tx)+d(x*, T" 1x) (2.26)

=d(x*, T" x)+d(Tx*,TT"x)

<d(x*,T"tx) 4+ gmax {d(T"x,x*),d(x*,T"x),d(T"x,TT"x),
d(TT"x,T"x),d(Tx*,x*),d(Tx*,T"x),d(x*,TT"x),d(TT"x,x%),
d(T?T"x,T"x),d(T"x,T*T"x),d(T*T"x, TT"x),d(TT"x,T*T"x),
d(T>T"x,x*),d(x*, T*T"x),d(Tx*,T*T"x)}

=d(x*, T""'x) +gmax {d(T"x,x*),d(x*,T"x),d(T"x,T"1x),
d(T" M x, T"x),d(Tx*,x*),d(Tx*, T"x),d(x*, T"1x),d(T" 1x,x*),
d(T”+2x,T"x),d(T”x,T”+2x),d(T”+2x,T”+1x),d(T”+1x,T”+2x),
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d(T" 2x,x*),d(x*, T"2x),d(Tx*, T"2x)}.

Taking the limit as n — oo in (2.26), and using (2.24), (2.25) and Proposition 5, we
getd(Tx*,x*) <qd(Tx*,x*).Sinceq €[0,1), d(Tx*,x*) =0, thatis, Tx* = x*.
Then T has a fixed point.

The remaining is similar as the proof of Theorem 5. U

With some minor changes in the proof of Theorem 3, we get the following result.
Also, these changes mainly relate to Definition 7.(2).

Proposition 7. Let (X,d) be a quasi-metric space in the sense of Definition 7 and
T : X — X be a map such that (X,d) is weak T -orbitally complete and

d(Tx,Ty) <d(x,y)—¢(d(x,y)) (2.27)
forall x,y € X, where ¢ : [0, +00) —> [0, +00) is continuous with ¢! ({0}) = {0}.
Then T has a unique fixed point.

Proof. Let xg € X and define the sequence x,+1 = T x5 forall n > 0. From (2.27),
we have

d(xp,xp+1) = d(Txp—1.Txy) < d(xXp—1,%n) — (/)(d(xn—l ) xn)) (2.28)
for all n > 1. This proves that {d(x;,,X,+1)} is a non-increasing sequence of positive
numbers. Then there exists > 0 such that ILm d(xp,xn+1) = r. Taking the limit

n o0
as n — oo in (2.28), we get ¢(r) = 0, that is, » = 0. Then
lim d(x,,xp+1) =0. (2.29)
n—>oo
Using the same technique, we also have
lim d(xy+41,xn) =0. (2.30)
n—->oo

Now, we will prove that {x,} is a Cauchy sequence in the quasi-metric space (X,d),
that is, {x,} is left-Cauchy and right-Cauchy. By (2.29) and (2.30), since the se-
quences {d(xp+1,Xn)} and {d(x,,Xxn+1)} are non-increasing, we have {x,} is a
Cauchy sequence if there exists n such that d(x,+1,X,) = 0 or d(x,,xp+1) = 0.
Then, we may assume that, for all n € N,

d(Xp+1,%xp) # 0 and d(x, Xp41) # 0. (2.31)

Now, suppose to the contrary that {x,} is not a left-Cauchy sequence. Then there
exists & > 0 such that for each k € N, there exist n > m > k satisfying d (x,,X;;) > €.
Put

n(l) = min{n :n > 1 and there exists m with 1 <m < n,d(x,,xp) > g}
m(l) =max{m:1<m <n(l) with d(xp(1),Xm) > &}
n(2) =min{n :n > n(1), there exists m with n(1) <m < n,d(xn,xm) > &}

m(2) = max {m :n(1) <m < n(2) with d(xn(2), Xm) = &}.
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Note that n(1) < n(2), m(1) <m(2) and

d(Xp(1)=1-Xm(1)) < &d(Xp@2)—1:Xm(2)) <&

Continuing this process, we can find two subsequences {x, )} and {x,,(x)} of {xn}
such that, for all k € N, we have n(k) > m(k) > k and

d(Xpky» Xm(k)) = &€ d(Xnk)—1>Xm(k)) < & (2.32)
Now, by (2.31) and (2.32), we have
& < d(Xn(k)> Xm(k)) (2.33)

< d(Xn(k)s Xnk)-1) +dXm)s Xn(k)—1)
< d(Xn), Xn)—1) +d Xy Xmk)—1) + d(Xn@)—1>Xmk)—1)
< d(Xn(k)s Xnk)-1) +dXm)s Xme)—1) +dXn@)—1- Xm(k))
+d(Xmk)—1>Xm(k))
<d(Xn(k)s *nk)-1) +dXmys Xm)—1) + € + d(Xmg) -1, Xm(k))-
Taking the limit as k — oo in (2.33) and using (2.29), (2.30), we get

lim d(xn(k),xm(k)) = ¢&. (2.34)
k—o0
Also, by (2.31), we have
d(Xn)—1-Xm)—1) < d(Xnk)—1:Xn(k)) + dXm@E)—1>Xn(k)) (2.35)
< d(Xnk)y=1-Xn(k)) + dXmEk)—1>Xmk)) T d(Xnk)> Xm(k))
and
d(Xnky, Xmk)) < d(Xny Xn)—1) + d (Xm)s Xnk)—1) (2.36)

< d(Xnk)s Xn)—1) T dXmi)s Xm)—1) + d(Xn) =1+ Xmk)—1)-

Taking the limit as k — oo in (2.35) and (2.36) and using (2.29), (2.30), (2.34), we
get

lim d(Xpk)—1,Xm@k)—1) = & (2.37)
k—o0
Now, from (2.27), for all k € N, we have
d(Xn(iey: Xm(k)) < dXn)—1:Xm)=1) — (d Xn(i)=1: Xm()—1))- (2.38)

Taking the limit as k — oo in (2.38) and using (2.34), (2.37), we obtain ¢ < ¢ — ().
It implies that ¢ = 0. It is a contradiction. Then {x,} is a left-Cauchy sequence.
Similarly, we can show that {x,} is a right-Cauchy sequence. Then {x,} is Cauchy.
Since (X,d) is weak T-orbitally complete, there exists x* € X such that

lim d(x,,x*) = lim d(x*,x,) =0. (2.39)
n—>oo n—>oo
From (2.27), for all n € N, we have
d(Tx*,xps1) =d(Tx*,Txp) <d(x*,xn) —@(d(x*,xs)) (2.40)
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Taking the limit as n — oo in (2.40) and using (2.39), Proposition 5, we get
d(Tx*,x*) = 0. It implies that x* = Tx*, that is, x* is a fixed point of T'.
The uniqueness of the fixed point is easy to see. O

Similar as the proof of [16, Theorem 2.2] and the proof of Proposition 7, we get
the following result.

Proposition 8. Let (X,d) be a weak T -orbitally complete quasi-metric space in
the sense of Definition 7 and let T : X — X be a map such that

Y (d(Tx.Ty)) =¥ (d(x.y))—e(d(x.y)) (2.41)

where Y, ¢ : [0,400) —> [0, +00), ¥ is continuous and non-decreasing, ¢ is lower
semi-continuous, and ¥ (t) = ¢(t) = 0ifand only ift =0. Then T has a unique fixed
point.

3. APPLICATIONS TO RECENT FIXED POINT RESULTS IN G-METRIC SPACES

In this section, we show that most of recent results on G-metric spaces in [3, 10]
may be also implied from certain fixed point theorems in metric spaces and quasi-
metric spaces mentioned in Section 2. Notice that the authors of [10] forgot the
assumption of completeness in [10, Theorems 3.1 & 3.2].

Corollary 2 ([10], Theorem 3.1). Let (X,G) be a complete G-metric space and
T : X — X be a map such that

G(Tx,Ty,Tz) <kM(x,y.z) (3.1)

1
forall x,y,z € X, where k € [0, 5) and

G(x,Tx,y),G(y,T*x,Ty),G(Tx,T?*x,Ty),
G(y.Tx,Ty),G(x,Tx,z),G(z,T?*x,Tz),
M(x,y,z) =max{ G(Tx,T*x,Tz),G(z,Tx,Ty),G(x,y,2),
G(x,Tx,Tx),G(y,Ty,Ty),G(z.Tz,Tz),
G(z,Tx,Tx),G(x,Ty,Ty),G(y,Tz,Tz).

Then T has a unique fixed point.

Proof. Let dg be the quasi-metric in Theorem 1. By choosing z = y and using
the axioms (G4) and (G5) in Definition 1, we have

G(x,Tx,y),G(y,T?*x,Ty),G(Tx,T*x,Ty),
G(y.Tx,Ty),G(x,Tx,y).G(y.T?x,Ty),
M(x,y,y) =max{ G(Tx,T?*x,Ty),G(y,Tx,Ty),G(x,y,y),
G(x,Tx,Tx),G(y,Ty,Ty),G(y.Ty.Ty),
Gy, Tx,Tx),G(x, Ty, Ty),G(y,Ty,Ty)
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G(x,Tx,y),G(y,Ty,sz),G(Tx,Ty,sz),
G(y,Ty.Tx),G(x,Tx,y),G(y,Ty,T?x),
=max{ G(T?*x,Tx,Ty),G(y,Ty,Tx),G(x,y,y),
Gx.Tx,Tx).G(y,Ty.Ty).G(y.Ty,Ty),
Gy.Tx,Tx).G(x,Ty,Ty),G(y.Ty,Ty)

G(x,Tx,Tx)+G(Tx,Tx,y),G(y, Ty, Ty)+G(Ty, Ty, T?x),
G(Tx,Ty,Ty)+G(Ty, Ty, T?x),

Gy, Ty, Ty)+G(Ty, Ty, Tx),G(x,Tx,Tx)+G(Tx,Tx,y),
G(y.Ty,Ty)+G(Ty, Ty, T*x),
G(T?x,Tx,Tx)+G(Tx,Tx,Ty),
G(y.Ty.Ty)+G(Ty,Ty,Tx),
G(x,y,9),G(x,Tx,Tx),G(y,Ty,Ty),G(y. Ty, Ty),
G(y.Tx.Tx),.G(x,Ty.Ty),G(y,Ty.Ty)

dg(x,Tx)+dg(y.Tx),dg(y,Ty)+dg(T?*x,Ty).
dg(Tx,Ty)+dg(T*x,Ty).dg(y.Ty)+dg(Tx,Ty),
dg(x,Tx)+dg(y.Tx).dg(y.Ty)+dc(T*x,Ty),
dG(T?x,Tx)+dg(Ty,Tx),dg(y.Ty)+dg(Tx,Ty),
dg(x,y),dg(x,Tx),dg(y.Ty),dc(y,Ty),dc(y,Tx),
dg(x,Ty),dg(y,Ty)

< 2max {dg(x,Tx),dg(y, Tx),dg(y.Ty).dg(T?*x,Ty),dg(Tx,Ty),

dG(x,y),dG(x,Ty)}.

Then (3.1) becomes
dg(Tx,Ty) <2k max {dg(x, Tx).dg(y,Tx),dg(y,.Ty).dg(T?*x,Ty),

dg(Tx,Ty),dc(x,y),dc(x,Ty)}.
Since 0 < 2k < 1, we have
de(Tx,Ty) < 2kmax{dg(x,y),dG(x,Tx),dG(y,Ty),dc(x,Ty),dG(y.Tx),
dg(T*x,Ty)}.
By Theorem 5, we see that 7 has a unique fixed point. O

< max

= max

Remark 2. The authors of [10] claimed that the proof of [10, Theorem 3.2] is the
mimic of [10, Theorem 3.1]. But, by redoing the proof of [10, Theorem 3.1], we see
that the equality (23) in the proof of [10, Theorem 3.1] becomes

GOx*,Tx*Tx*) <kG(x*,Tx*Tx*)or G(x*,Tx*,Tx*) <kG(x*,x*,Tx™)
and the equality (25) in the proof of [10, Theorem 3.1] becomes
G(t*,t* . x*) <kG@*,t*,x*) or Gt*,t*,x*) <kG(t*,x*,x™).

In general, the second inequalities do not hold if k € [0, 1).
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Corollary 3 ([10], Theorem 3.3). Let (X,G) be a complete G-metric space and
T : X — X be a map such that

W(G(Tx, T2x, Ty)) <Gx,Tx,y) —<p(G(x, Tx,y)) (3.2)
for all x,y € X, where ¢ : [0, +00) —> [0, +00) is continuous with ¢~ 1({0}) = 0.
Then T has a unique fixed point.

Proof. It is easy to see that 7" has at most one fixed point. Suppose to the contrary
that 7 has no any fixed point. Let d7,g be defined as in Proposition 4. Then, dr,¢
is a quasi-metric in the sense of Definition 7 on X. We prove that (X.dr,G) is a
weak T -orbitally complete quasi-metric space. Let {x,} be a Cauchy sequence in
(X.dr,g) where xo € X and x,,+1 = Tx, for all n € N. We have

lim dr,6(xn,xm)=0.
n,m—>00

We may assume that x;, % x, for all n # m € N. Then

0< lim GO, Xm,Xm)
n,m—00

< lim G(xp, Xn4+1,%Xm)
7 ,m—>00

= lim G(xn,Txn,Xm)
n,m—00

n,m—00
=0.
It implies that lig G(xn,Xm,Xm) = 0. By Lemma 2, {x,} is a Cauchy sequence
n,m—00
in (X,G). Since (X,G) is complete, there exists x* € X such that lim x, = x*
n—>oo

in (X,G). Since x, # x, for all n # m € N, we may assume that x, # x* for all
n € N. Therefore,

nli)n;odT,G(xn,x*) = nll)n;o G(xn,Txp,x*) = nli)n;o G(xXn,Xn+1,x¥)=0. (3.3)
We also have
dr.g(x*,x,) = G(x*,Tx™*,x,) (3.4)
< G(x", Xn41,%n+1) + G(Xn41, TX™, Xp)
= G(xX™, Xn+1,Xn+1) + G(xn, Xn41,Tx™)
= G(X™, Xn+1,Xn+1) + G(Txn—laszn—l»Tx*)
< GO xpt1.X041) + G(Xn—1. Txp—1.x") —9(G (xp—1. T xp—-1.x™))
< G(X™* Xnt1.%n+41) + G(xp—1.Xn.x™) — (G (xp—1,xn,x¥)).
Taking the limit as n — oo in (3.4) and using Lemma 1, we obtain

lim dr.g(x* xp) = 0. 3.5)
n—>oo
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From (3.3) and (3.5), we get 111>n xp = x* in (X,dr,g). Then (X,dr,) is weak
n—oo
T -orbitally complete. Note that (3.2) becomes

Y (dr,g(Tx.Ty)) <dr,c(x.y)—¢(dr,c(x.)).

Therefore, by using Proposition 7, we conclude that 7' has a fixed point. It is a
contradiction.
By the above, T has a unique fixed point. ([l

Corollary 4 ([3], Theorem 2.3). Let (X,G) be a complete G-metric space and
T : X — X be a map such that

W(G(Tx, T2x, Ty)) < W(G(X,Tx,y)) —(p(G(x, Tx,y)) (3.6)

forall x,y € X, where ¥ : [0,+00) —> [0, 4+00) is non-decreasing and continuous,
@ 1 [0,400) —> [0, +00) is lower semi-continuous and ¥ (t) = @(t) = 0 if and only
ift =0. Then T has a unique fixed point.

Proof. It is easy to see that 7" has at most one fixed point. Suppose to the contrary
that 7" has no any fixed point. Using dr,g as in the proof of Corollary 3, then d7,G is a
quasi-metric in the sense of Definition 7 on X. We prove that (X, dr ) is a weak T -
orbitally complete quasi-metric space. Let {x,} be a Cauchy sequence in (X,dr,G)
where xg € X and x,,+1 = T x, for all n € N. We have . ;EgoodT’G (xn,xm) = 0.

We may assume that x;, # x, for all n # m € N. Then
0< Iim G(Xp,Xm,Xm)
n,m—>00

< lim G(xu, Xp+1,Xm)
n,m—00

= lim G(x,,Txp,Xm)
n,m—00

= lim dT,G(xmxm)
n,m—00
=0.
It implies that lim G(xp,X;;,xXm) = 0. By Lemma 2, {x,} is a Cauchy sequence
n,m—00
in (X,G). Since (X,G) is complete, there exists x* € X such that li>m Xp = x*
n—-oo

in (X,G). Since x;, # x;, for all n # m € N, we may assume that x, # x* for all
n € N. Therefore,

lim dr.g(xp,x*) = lim G(x,Txp,x*) = lim G(xn,xp+1,x*)=0. (3.7)
n—00 n—oco n—0o
We also have
dr.g(x*,xn) = G(x*,Tx™,x,) (3.8)
< G(X* xn+1,%n+1) + G(Xnt1, TX™, Xn)

= G(x*,xn+1»xn+1) + G(xn,xn+1, Tx*)
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= G(x* xnt1.%n41) + G(Txn—1, T xp-1, Tx™)
<GO™ Xp4 1. X041) + ¥ (G(Xn—1, T xn—1,X")) —0(G(xn—1, T Xp—1,x™))
<G(* Xn41.%n41) + ¥ (G(Xn—1,%0.X™)) — (G (xXp—1,Xn,x¥)).

Taking the limit as n — oo in (3.8) and using Lemma 1, we get

lim dr,g(x*,x,) =0. (3.9)
n—>o0

From (3.7) and (3.9), we get lim x, = x* in (X,dr,g). Then (X,dr ) is weak
n—>oo
T -orbitally complete. Note that (3.6) becomes

V(dr,g(Tx,Ty)) <y (dr,c(x.y)) —¢(dr,c(x.y)).

Therefore, by using Proposition 8, we conclude that 7" has a fixed point. It is a
contradiction.
By the above, T has a unique fixed point. g

Remark 3. By using dr, as in the proof of Corollary 3, we see that the inequal-
ity (30) in [3, Theorem 3.1] becomes

dr,c(Tx,Ty) > adr,g(x.y).

By similar arguments, we get analogues of the results in [18] for expansive maps
on quasi-metric spaces and then we get [3, Theorem 3.1]. Also, similar arguments
to the above may be possible for results in [7]. Note that for a complete G-metric
space (X,G) with |X|>2and T : X —> X being the identify map, all assumptions
of [3, Theorem 3.2] hold but 7" has more than one fixed point. This shows that the
uniqueness of fixed points in [3, Theorem 3.2] is a gap.

ACKNOWLEDGMENT

The author is thankful to the referee for the valuable comments, especially the
comment on adding z # x in Definition 7.(2).

The author is also thankful to The Dong Thap Seminar on Mathematical Analysis
and Applications for valuable discussions.

REFERENCES

[1] R. P. Agarwal, Z. Kadelburg, and S. Radenovié¢, “On coupled fixed point results in asymmetric
G-metric spaces,” J. Inequal. Appl., vol. 2013:528, pp. 1 — 12, 2013.

[2] T. V. An, N. V. Dung, and V. T. L. Hang, “A new approach to fixed point theorems on G-metric
spaces,” Topology Appl., vol. 160, pp. 1486 — 1493, 2013.

[3] M. Asadi, E. Karapinar, and P. Salimi, “A new approach to G-metric and related fixed point
theorems,” J. Inequal. Appl., vol. 2013:454, pp. 1 — 14, 2013.

[4] H. Aydi, M. Postolache, and W. Shatanawi, “Coupled fixed point results for (¥, ¢)-weakly con-
tractive mappings in ordered G-metric spaces,” Comput. Math. Appl., vol. 63, pp. 298 — 309,
2012.



422

(5]
(6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

[18]

N. V. DUNG

H. Aydi, W.Shatanawi, and C. Vetro, “On generalized weakly G-contraction mapping in G-metric
spaces,” Comput. Math. Appl., vol. 62, pp. 4222 — 4229, 2011.

L. B. Ciri¢, “A generalization of Banach’s contraction principle,” Proc. Amer. Math. Soc., vol. 45,
pp. 267 — 273, 1974.

L. Gholizadeh and E. Karapinar, “Remarks on contractive mappings via w-distance,” J. Inequal.
Appl., vol. 2013:457, pp. 1 — 15, 2013.

M. Jleli and B. Samet, “Remarks on G-metric spaces and fixed point theorems,” Fixed Point
Theory Appl., vol. 2012:201, pp. 1 — 10, 2012.

Z. Kadelburg, H. K. Nashine, and S. Radenovi¢, “Common coupled fixed point results in partially
ordered G-metric spaces,” Bull. Math. Anal. Appl., vol. 2, no. 2, pp. 51 — 63, 2012.

E. Karapinar and R. P. Agarwal, “Further remarks on G-metric spaces,” Fixed Point Theory Appl.,
vol. 2013:154, pp. 1 — 14, 2013.

P. Kumam, N. V. Dung, and K. Sitthithakerngkiet, “A generalization of ¢iri¢ fixed point theorem,”
Filomat, 2014, accepted.

Z. Mustafa, H. Aydi, and E. Karapinar, “On common fixed points in G-metric spaces using (e.a)
property,” Comput. Math. Appl., vol. 64, pp. 1944 — 1956, 2012.

Z. Mustafa and B. Sims, “A new approach to generalized metric spaces,” J. Nonlinear Convex
Anal., vol. 7, no. 2, pp. 289 — 297, 2006.

H. K. Nashine, Z. Kadelburg, and S. Radenovié, “Coincidence and fixed point results under gener-
alized weakly contractive condition in partially ordered G-metric spaces,” Filomat, vol. 27, no. 7,
pp. 1333 — 1343, 2013.

S. Radenovi¢, “Remarks on some recent coupled coincidence point results in symmetric G-metric
spaces,’ J. Oper., vol. 2013, pp. 1 — 8, 2013.

V. C. Raji¢, “Some remarks on G-metric spaces and fixed point theorems,” Int. J. Anal. Appl.,
vol. 5, no. 1, pp. 102 — 114, 2014.

B. Samet, C. Vetro, and E. Vetro, “Remarks on G-metric spaces,” Int. J. Anal., vol. 2013, pp. 1 —
6, 2013.

S.Z. Wang, B. Y. Li, Z. M. Gao, and K. Iseki, “Some fixed point theorems for expansion map-
pings,” Math. Japonica., vol. 29, pp. 631 — 636, 1984.

Author’s address

N. V. Dung

Dong Thap University, Faculty of Mathematics and Information Technology Teacher Education,
783 Pham Huu Lau St., Cao Lanh City, Dong Thap Province, Viet Nam

E-mail address: nvdung@dthu.edu.vn



