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Abstract. This work is devoted to the existence of positive solutions for an nth order p-Laplacian
boundary value problem with integral boundary conditions. The proof of the main result is based
on six functionals fixed point theorem. As an application, we give an example to illustrate the
obtained result.
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1. INTRODUCTION

The theory of boundary value problems with integral boundary conditions for
ordinary differential equations arises in different areas of applied mathematics and
physics. For example, heat conduction, chemical engineering, underground water
flow, thermo-elasticity, and plasma physics can be reduced to the nonlocal problems
with integral boundary conditions. For more information about the general theory of
integral equations and theirs relation with boundary value problems, we refer to the
books of Corduneanu [10] and Agarwal and O’Regan [1]. Moreover, boundary value
problems with integral boundary conditions constitute a very interesting and import-
ant class of problems. They include two, three, multipoint and nonlocal boundary
value problems as special cases. The existence and multiplicity of positive solutions
for such problems have received a great deal of attentions. To indentify a few, we
refer the reader to [2, 3, 9, 12, 14, 15] and references therein. On the other hand, there
are fewer results in the literature for higher-order differential equations with integral
boundary conditions, see [4–6, 13]. In particular, we would like to mention some
results of Boucherif [9] and Ahmad and Ntouyas [5].
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In [9], by means of the Krasnoselskii’s fixed point theorem, Boucherif investigated
the existence of positive solutions of following nonlocal second-order boundary value
problems with integral boundary conditions8̂̂̂̂

<̂
ˆ̂̂:
y00 D f .t;y.t//; 0 < t < 1;

y.0/�ay0.0/D

Z 1

0

g0.s/y.s/ds;

y.1/�by0.1/D

Z 1

0

g1.s/y.s/ds:

In [5], Ahmad and Ntouyas developed some existence results for the following nth
order boundary value problem with four-point nonlocal integral boundary conditions
by using Krasnoselskii’s fixed point theorem and Leray-Schauder degree theory8̂̂̂̂

<̂
ˆ̂̂:
x.n/.t/D f .t;x.t//; 0 < t < 1;

x.0/D ˛

Z �

0

x.s/ds; x0.0/D 0; x00.0/D 0; : : : ;x.n�2/.0/D 0;

x.1/D ˇ

Z 1

�

x.s/ds; 0 < � < � < 1:

Motivated by the results above, in this study, we consider the following nth order
p-Laplacian boundary value problem (BVP) with integral boundary conditions,8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�
�p

�
u.n�1/.t/

��0
Cq.t/f .t;u.t/;u0.t/;u00.t/; :::;u.n�3/.t//D 0; t 2 Œ0;1�;

au.n�3/.0/�bu.n�2/.0/D

Z 1

0

g1.s/u
.n�3/.s/ds;

cu.n�3/.1/Cdu.n�2/.1/D

Z 1

0

g2.s/u
.n�3/.s/ds;

u.n�1/.0/D 0;

u.j /.0/D 0; 0� j � n�4;
(1.1)

where n is an integer greater than 3; a;b;c;d are nonnegative real numbers, �p.s/ is

the p-Laplacian operator, i.e., �p.s/D jsjp�2s for p > 1; .�p/�1.s/D �q.s/;
1

p
C

1

q
D 1:

The following conditions are needed throughout the paper:

.C1/ acCad Cbc > 0;

.C2/ f 2 C.Œ0;1��Rn�2
C

;RC/, where RC D Œ0;C1/,

Rn�2
C
D

n�2‚ …„ ƒ
Œ0;C1/� � � �� Œ0;C1/;

.C3/ q; g1; g2 2 C.Œ0;1�;RC/:
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In this paper, utilizing the six functionals fixed point theorem [7], we get the ex-
istence of at least three positive solutions for the BVP .1:1/: The method used in
this study is new to the literature and so is the existence results to the nth order p-
Laplacian boundary value problems with integral boundary conditions.

This paper is organized as follows. In Section 2, we provide some definitions and
preliminary lemmas which are key tools for our main result. We give and prove our
main result in Section 3. In Section 4, we give an example to demonstrate our main
result. Lastly, some concluding remarks are given in Section 5.

2. PRELIMINARIES

In this section, we present auxiliary lemmas which will be used later.

Definition 1. Let B be a real Banach space. A nonempty closed convex set P � B
is called a cone if it satisfies the following two conditions:

.i/ x 2P ; �� 0 implies �x 2P I

.i i/ x 2P ; �x 2P implies x D 0:
Every cone P � B induces an ordering in B given by

x � y if and only if y�x 2P :

Definition 2. A map ˛ is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space B if

˛ WP ! Œ0;1/

is continuous and

˛ .txC .1� t /y/� t˛.x/C .1� t /˛.y/

for all x; y 2P and t 2 Œ0;1�: Similarly, we say the map ˇ is a nonnegative continu-
ous convex functional on a cone P of a real Banach space B if

ˇ WP ! Œ0;1/

is continuous and

ˇ .txC .1� t /y/� tˇ.x/C .1� t /ˇ.y/

for all x; y 2P and t 2 Œ0;1�:

Using the transformation

u.n�3/.t/D y.t/; (2.1)

and the boundary conditions u.j /.0/D 0; j D 0;1;2; :::;n�4; one can obtain that

u.j /.t/D

Z t

0

.t � r/n�4�j

.n�4�j /Š
y.r/dr; j D 0;1;2; :::;n�4:

Thus, under the transformation (2.1), we obtain the following BVP,
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8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�
�p .y

00.t//
�0
Cq.t/f

 
t;

Z t

0

.t � r/n�4

.n�4/Š
y.r/dr; : : : ;y.t/

!
D 0; t 2 Œ0;1�;

ay.0/�by0.0/D

Z 1

0

g1.s/y.s/ds;

cy.1/Cdy0.1/D

Z 1

0

g2.s/y.s/ds;

y00.0/D 0:

(2.2)

Note that, the nth order BVP (1.1) has a solution if and only if the second order
BVP (2.2) has a solution.

Set

4 WD

�

Z 1

0

g1.s/.bCas/ds ��

Z 1

0

g1.s/.d C c.1� s//ds

��

Z 1

0

g2.s/.bCas/ds �

Z 1

0

g2.s/.d C c.1� s//ds

; (2.3)

and

� WD ad CacCbc: (2.4)

Lemma 1. Let .C1/-.C3/ hold. Assume that 4¤ 0: Then y.t/ is a solution of
the BVP (2.2) if and only if y.t/ is a solution of the following integral equation

y.t/D

Z 1

0

G .t;s/�q

 Z s

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

CA.f;y/.bCat/CB.f;y/.d C c.1� t //; (2.5)

where

G .t;s/D
1

�

�
.bCas/.d C c.1� t // ; s � t;

.bCat/.d C c.1� s// ; t � s;
(2.6)

A.f;y/D
1

4

Z 1

0

g1.s/H.f;s/ds ��

Z 1

0

g1.s/.d C c.1� s//dsZ 1

0

g2.s/H.f;s/ds �

Z 1

0

g2.s/.d C c.1� s//ds

; (2.7)

B.f;y/D
1

4

�

Z 1

0

g1.s/.bCas/ds

Z 1

0

g1.s/H.f;s/ds

��

Z 1

0

g2.s/.bCas/ds

Z 1

0

g2.s/H.f;s/ds

; (2.8)
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and

H.f;s/D

Z 1

0

G .s;r/�q

 Z ´

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
d´: (2.9)

Proof. Let y satisfies the integral equation .2:5/; then we will show that y is a
solution of the BVP .2:2/: Since y satisfies equation .2:5/; then we have

y.t/D

Z 1

0

G .t;s/�q

 Z s

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

CA.f;y/.bCat/CB.f;y/.d C c.1� t //;

i.e.,

y.t/D

Z t

0

1

�
.bCas/.d C c.1� t //�q

 Z s

0
q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

C

Z 1

t

1

�
.bCat/.d C c.1� s//�q

 Z s

0
q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

CA.f;y/.bCat/CB.f;y/.d C c.1� t //;

y0.t/D�

Z t

0

c

�
.bCas/�q

 Z s

0
q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

C

Z 1

t

a

�
.d C c.1� s//�q

 Z s

0
q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

CA.f;y/a�B.f;y/c;

y00.t/

D
1

�
.�c.bCat/�a.d C c.1� t ///�q

 Z t

0
q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!

D��q

 Z t

0
q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
;

So that �
�p
�
y00.t/

��0
Cq.t/f

 
t;

Z t

0

.t � r/n�4

.n�4/Š
y.r/dr; : : : ;y.t/

!
D 0;

and y00.0/D 0: Since

y.0/DZ 1

0

b

�
.d C c.1� s//�q

 Z s

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

CbA.f;y/C .d C c/B.f;y/;
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y0.0/DZ 1

0

a

�
.d C c.1� s//�q

 Z s

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

CaA.f;y/� cB.f;y/;

we have that

ay.0/�by0.0/D �B.f;y/ (2.10)

D

Z 1

0

g1.s/

�Z 1

0

G .s;´/

�q

 Z ´

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
d´

CA.f;y/.bCas/CB.f;y/.d C c.1� s//

�
ds:

Since

y.1/DZ 1

0

d

�
.bCas/�q

 Z s

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

C.bCa/A.f;y/CdB.f;y/;

y0.1/D

�

Z 1

0

c

�
.bCas/�q

 Z s

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
ds

CaA.f;y/� cB.f;y/;

we have that

cy.1/Cdy0.1/D �A.f;y/

D

Z 1

0

g2.s/

�Z 1

0

G .s;´/

�q

 Z ´

0

q.�/f

 
�;

Z �

0

.� � r/n�4

.n�4/Š
y.r/dr; : : : ;y.�/

!
d�

!
d´ (2.11)

CA.f;y/.bCas/CB.f;y/.d C c.1� s//

�
ds: (2.12)

From .2:5/; .2/ and .2:12/; we get that
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ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�
�

Z 1

0

g1.s/.bCas/ds

�
A.f;y/C

�
��

Z 1

0

g1.s/.d C c.1� s//ds/

�
B.f;y/

D

Z 1

0

g1.s/H.f;s/ds�
��

Z 1

0

g2.s/.bCas/ds

�
A.f;y/C

�
�

Z 1

0

g2.s/.d C c.1� s//ds

�
B.f;y/

D

Z 1

0

g2.s/H.f;s/ds;

which implies that A.f;y/ and B.f;y/ satisfy .2:7/ and .2:8/, respectively. Then
y.t/ satisfies all the conditions of (2.2), hence y(t) is a solution of (2.2).

Conversely, if y.t/ is a solution of the BVP (2.2), by integrating one can easily
show that y.t/ is in the form (2.5). �

Lemma 2. Let .C1/-.C3/ hold. Assume

.C4/ 4< 0; ��

Z 1

0

g2.s/.bCas/ds > 0; a�

Z 1

0

g1.s/ds > 0:

Then the solution y.t/ of the problem .2:2/ satisfies

y.t/� 0 for t 2 Œ0;1�:

Proof. It is an immediate consequence of the facts that G � 0 on Œ0;1�� Œ0;1� and
A.f;y/� 0; B.f;y/� 0: �

Lemma 3. Let .C1/-.C4/ hold. Assume that

.C5/ c�

Z 1

0

g2.s/ds < 0:

Then the solution y.t/ of the problem .2:2/ satisfies y0.t/� 0 for t 2 Œ0;1�:

Proof. Assume that the inequality y0.t/ < 0 holds. Since y0.t/ is nonincreasing
on Œ0;1�; one can verify that

y0.1/� y0.t/; t 2 Œ0;1�:

From the boundary conditions of the problem .2:2/; we have

�
c

d
y.1/C

1

d

Z 1

0

g2.s/y.s/ds � y
0.t/ < 0:

The last inequality yields

�cy.1/C

Z 1

0

g2.s/y.s/ds < 0:

Therefore, we obtain that�
c�

Z 1

0

g2.s/ds

�
y.1/ > 0:
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According to Lemma 2, we have that y.1/ � 0: So, c�
Z 1

0

g2.s/ds > 0: However,

this contradicts to condition .C5/: Consequently, y0.t/� 0 for t 2 Œ0;1�: �

Let the Banach space BD C.Œ0;1�/ be equipped with the norm kyk D max
t2Œ0;1�

y.t/,

and we define a cone P in B by

P D fy 2 B W y.t/ is nonnegative, nondecreasing and concave on Œ0;1�g :

Lemma 4. Let y 2P and k > 2 is a constant. Then,

min
t2Œ1=k;1�

y.t/�
1

k
kyk :

Proof. Since y 2P we know that y.t/ is nondecreasing on Œ0;1�: So,
min

t2Œ1=k;1�
y.t/D y.1=k/ and kyk D max

t2Œ0;1�
y.t/D y.1/. Since y0.t/ is nonincreasing

on Œ0;1�; we have
y.1/�y.0/

1
�
y.1=k/�y.0/

1=k
;

i.e.,

y.1=k/�
1

k
y.1/C

�
1�

1

k

�
y.0/:

So, y.1=k/�
1

k
y.1/. The proof is completed. �

Note that by Lemmas 1 and 2, we know that if .C1/-.C4/ are satisfied, then the
solutions of the BVPs (1.1) and (2.2) are both positive. Therefore, we only need to
deal with the existence of the positive solutions of (2.2).

Define an operator T WP ! B by

Ty.t/D

Z 1

0

G .t;s/�q

�Z s

0

q.�/F.�;y.�//d�

�
ds

CA.F;y/.bCat/CB.F;y/.d C c.1� t //; (2.13)

where

F.t;y.t//D f

 
t;

Z t

0

.t � r/n�4

.n�4/Š
y.r/dr; :::;

Z t

0

y.r/dr;y.t/

!
;

and G; A.F;y/; B.F;y/ are respectively defined as in .2:6/, .2:7/; .2:8/.
By Lemmas 1, 2 and the definition of T , it is well known that the BVP (2.2) has

positive solution if and only the operator T has a fixed point.

Lemma 5. Let .C1/-.C5/ hold. Then T WP !P is completely continuous.
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Proof. For all y 2P ; Lemmas 1; 2; 3 and the definition of T , we have

.Ty/.t/� 0; .Ty/0.t/� 0; and .Ty/0.t/ is concave on Œ0;1�:

Then Ty 2P : So T is an operator from P to P : By Arzela-Ascoli theorem, one can
easily prove that operator T is completely continuous. �

3. MAIN RESULTS

We are now ready to apply the six functionals fixed point theorem [7] to the oper-
ator T in order to get sufficient conditions for the existence of at least three positive
solutions to the problem .1:1/.

Let ˛ be a nonnegative continuous concave functional on P ; and let ˇ be a non-
negative continuous convex functional on P I then for positive numbers r and R we
define the sets:

Q.ˇ;R/D fu 2P W ˇ.u/�Rg; (3.1)

Q.˛;ˇ;r;R/D fu 2P W r � ˛.u/ and ˇ.u/�Rg: (3.2)

Lemma 6. [7] Suppose P is a cone in a real Banach space B; ˛;  and � are
nonnegative continuous concave functionals on P ; ˇ; � and � are nonnegative con-
tinuous convex functionals on P , and there exist nonnegative numbers h; h0; r; r 0; R
and R0 such that

T WQ.ˇ;R/!P

is a completely continuous operator and

.a/ Q.ˇ;R/ is a bounded set,

.b/ Q.�;h/ and Q.˛;ˇ;r;R/ are disjoint subsets of Q.ˇ;R/,

.c/ fu 2P W �.u/ < r 0; r < ˛.u/; R0 <  .u/; and ˇ.u/ < Rg ¤¿;
.d/ fu 2P W h0 < �.u/ and �.u/ < hg ¤¿; and
.e/ fu 2P W h < �.u/ and ˛.u/ < rg ¤¿:

Let the following properties be satisfied:

.i/ ˛.T u/ > r; for all u 2P with ˛.u/D r; ˇ.u/�R; and r 0 < �.T u/;
.i i/ ˛.T u/ > r; for all u 2P with ˛.u/D r; ˇ.u/�R; and �.u/� r 0;
.i i i/ ˇ.T u/ < R; for all u 2P with r � ˛.u/; ˇ.u/DR; and  .T u/ < R0;
.iv/ ˇ.T u/ < R; for all u 2P with r � ˛.u/; ˇ.u/DR; and R0 �  .u/;
.v/ �.T u/ < h; for all u 2P with �.u/D h and �.T u/ < h0; and
.v/ �.T u/ < h; for all u 2P with �.u/D h and h0 � �.u/;

then T has at least three fixed points u1; u2 and u3 in Q.ˇ;R/ such that

�.u1/� h; r � ˛.u2/ with ˇ.u2/�R; and h < �.u3/ with ˛.u3/ < r:
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For the convenience, we take the notations

AD
1

4

Z 1

0

g1.s/

 Z 1

0

G.s;r/�q

�Z r

0

q.�/d�

�
dr

!
ds ��

Z 1

0

g1.s/.dCc.1� s//dsZ 1

0

g2.s/

 Z 1

0

G.s;r/�q

�Z r

0

q.�/d�

�
dr

!
ds �

Z 1

0

g2.s/.dCc.1� s//ds

;

B D
1

4

�

Z 1

0

g1.s/.bCas/ds

Z 1

0

g1.s/

 Z 1

0

G.s;r/�q

�Z r

0

q.�/d�

�
dr

!
ds

��

Z 1

0

g2.s/.bCas/ds

Z 1

0

g2.s/

 Z 1

0

G.s;r/�q

�Z r

0

q.�/d�

�
dr

!
ds

;

�D

Z 1

1=k

G.1=k;s/�q

�Z s

1=k

q.�/d�

�
ds;

˝ D

Z 1

0

G.1;s/�q

�Z s

0

q.�/d�

�
dsC .bCa/ACdB;

Œ0;2R�n�2 D

n�2‚ …„ ƒ
Œ0;2R�� � � �� Œ0;2R� :

Define the concave functionals ˛;  and � by

˛.y/D min
t2Œ1=k;1�

y.t/D y.1=k/;

 .y/D �.y/D

Z 1

1=k

ky.s/ds;

and the convex functionals �; ˇ and � by

�.y/D max
t2Œ0;1�

y.t/D y.1/;

ˇ.y/D �.y/D

Z 1

0

y.s/ds:

Theorem 1. Assume .C1/-.C5/ hold. If there exist positive real numbers r and

R with r < min
�

R

k2C1
;
�

˝
R

�
< kr; and suppose that f satisfies the following

conditions

.C6/ f .x1;x2;x3; : : : ;xn�1/ < �p

�
R

˝

�
for all

.x1;x2;x3; : : : ;xn�1/ 2 Œ0;1� �Œ0;2R�
n�2;

.C7/ f .x1;x2;x3; : : : ;xn�1/ < �p

� r

k˝

�
for all

.x1;x2;x3; : : : ;xn�1/ 2 Œ0;1� �

�
0;
2r

k

�n�2
;
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.C8/ f .x1;x2;x3; : : : ;xn�1/ > �p

� r
�

�
for all

.x1;x2;x3; : : : ;xn�1/ 2

�
1

k
;1

�
� Œ0;kr�n�3� Œr;kr� :

Then the nth order p-Laplacian BVP (1.1) has at least three positive solutions.

Proof. Let R0 D
R

k2C1
; r 0 D kr; l D

r

k
and l 0 D

l

k2C1
: By Lemma 5, we have

that

T WQ.ˇ;R/!P

is completely continuous. Applying a standard calculus argument, we have that the
set Q.ˇ;R/ is bounded, since if y 2Q.ˇ;R/; then y0 is nonincreasing, and hence

y.1/�y.0/

2
�

Z 1

0

y.s/ds �R:

Also, it can easily be shown that
R0Ckr

2
2
˚
y 2P W �.y/ < r 0; r < ˛.y/; R0 <  .y/; and ˇ.y/ < R

	
;

l

k
2
˚
y 2P W l 0 < �.y/ and �.y/ < l

	
; and

rC l

2
2 fy 2P W l < �.y/ and ˛.y/ < rg ;

and hence the sets are nonempty. Moreover, if y 2Q.�; l/; then we have

y.1/�y.0/

2
�

Z 1

0

y.s/ds � l;

and since y.t/ is concave on Œ0;1�; one can easily obtain that y.t/� ty.1/; t 2 Œ0;1�:

Integrating the last inequality from 0 to 1, we get
Z 1

0

y.s/ds�

Z 1

0

sy.1/dsD
1

2
y.1/:

Then we get

y.1/� 2

Z 1

0

y.s/ds; (3.3)

and hence

˛.y/D y.1=k/� y.1/� 2l < 2
r

k
< r:

Therefore, y …Q.˛;ˇ;r;R/: Thus, the set conditions .a/; .b/; .c/; .d/ and .e/ of
Lemma 6 are fulfilled. Now we verify the functional conditions.

Claim 1: ˛.Ty/ > r; for all y 2Q.˛;ˇ;r;R/ with ˛.y/D r and r 0 < �.Ty/:
Let y 2Q.˛;ˇ;r;R/ with ˛.y/D r and r 0 < �.Ty/: Then by Lemma 4; we have

˛.Ty/D min
t2Œ1=k;1�

Ty.t/D Ty.1=k/�
1

k
Ty.1/D

1

k
�.Ty/ >

r 0

k
D r:
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Claim 2: ˛.Ty/ > r; for all y 2 fy 2Q.˛;ˇ;r;R/ W �.y/� r 0g with ˛.y/D r:
Let y 2 fy 2Q.˛;ˇ;r;R/ W �.y/� r 0g ; with ˛.y/D r: Since

�.y/ D max
t2Œ0;1�

y.t/ D kyk � r 0 D kr and ˛.y/ D min
t2Œ1=k;1�

y.t/ D y.1=k/ D r , we

have r � y.t/� kr; for t 2 Œ1=k;1�: It is clear thatZ t

0

.t � r/n�4

.n�4/Š
y.r/dr �

Z t

0

.t � r/n�5

.n�5/Š
y.r/dr � :::�

Z t

0

y.r/dr

� y.t/� kyk ; t 2 Œ0;1�: (3.4)

So, from .3:4/ we get 
t;

Z t

0

.t � r/n�4

.n�4/Š
y.r/dr;

Z t

0

.t � r/n�5

.n�5/Š
y.r/dr; :::;y.t/

!

2

�
1

k
;1

�
� Œ0;kr�n�3� Œr;kr� :

which implies .C8/ holds. Then one has

˛.Ty/D Ty.1=k/�

Z 1

0

G .1=k;s/�q

�Z s

0

q.�/F.�;y.�//d�

�
ds

�

Z 1

1=k

G .1=k;s/�q

�Z s

1=k

q.�/F.�;y.�//d�

�
ds

>
r

�

Z 1

1=k

G .1=k;s/�q

�Z s

1=k

q.�/d�

�
ds

D r:

Claim 3: ˇ.Ty/ < R; for all y 2Q.˛;ˇ;r;R/ with ˇ.y/DR and  .Ty/ < R0:
Since

R0 >  .Ty/D

Z 1

1=k

kTy.s/ds

and Z 1=k

0

Ty.s/ds �
1

k�1

Z 1

1=k

Ty.s/ds;

we have
R0

k
>

Z 1

1=k

Ty.s/ds:

Therefore,

ˇ.Ty/D

Z 1=k

0

Ty.s/dsC

Z 1

1=k

Ty.s/ds <
R0

k�1
D

R

.k2C1/.k�1/
< R:
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Note that it can be also verified that �.Ty/ < l for all y 2Q.�; l/; with �.y/D l
and �.Ty/ < l 0 respectively replacing R and R0 by l and l 0 in Claim 3.

Claim 4: ˇ.Ty/ < R; for all y 2 fy 2Q.˛;ˇ;r;R/ WR0 �  .y/g with ˇ.y/DR:

Let y 2 fy 2Q.˛;ˇ;r;R/ WR0 �  .y/gwith ˇ.y/DR: Thus, .y/�R0D
R

k2C1
;

and by .3:3/ and ˇ.y/DR we have

0� y.t/� 2R; t 2 Œ0;1�:

Hence by .3:4/; we get 
t;

Z t

0

.t � r/n�4

.n�4/Š
y.r/dr; : : : ;y.t/

!
2 Œ0;1�� Œ0;2R�n�2 :

Then, by assumption .C6/, we obtain that

ˇ.Ty/D

Z 1

0

Ty.s/ds

� Ty.1/D

Z 1

0

G .1;s/�q

�Z s

0

q.�/F.�;y.�//d�

�
ds

CA.F;y/.bCa/CB.F;y/d

<
R

˝

�Z 1

0

G .1;s/�q

�Z s

0

q.�/d�

�
dsCA.bCa/CBd

�
DR:

Note that Claim 4 can be used to verify that �.Ty/ < l , for all y 2 fy 2Q.�; l/ W l 0

� �.y/g ; with �.y/D l respectively replacing R and R0 by l and l 0. Thus, all condi-
tions of Lemma 6 are satisfied.

Benefiting from Claims 1-4 together with Lemma 6, we get that the operator T
has at least three fixed points which are positive solutions y1; y2 and y3 belonging
to Q.ˇ;R/ of (2.2) such that

�.y1/� l; r � ˛.y2/ with ˇ.y2/�R; and l < �.y3/ with ˛.y3/ < r;

i.e.,Z 1

0

y1.s/ds � l; r � min
t2Œ1=k;1�

y2.t/ with
Z 1

0

y2.s/ds �R;

l <

Z 1

0

y3.s/ds with min
t2Œ1=k;1�

y3.t/ < r:

Then the nth order p-Laplacian BVP (1.1) has at least three positive solutions

ui .t/D

Z t

0

.t � r/n�4

.n�4/Š
yi .r/dr .i D 1;2;3/;



394 ILKAY YASLAN KARACA AND FATMA TOKMAK FEN

such that

u1.t/�
l

.n�4/Š
; u2.t/�

R

.n�4/Š
for t 2 Œ0;1�;

u2.t/�
r.t �1=k/.n�3/

.n�3/Š
; t � 1=k: (3.5)

The proof is completed. �

Remark 1. In the main result, we used the six functionals fixed point theorem
[7], which is a generalization of Leggett-Williams [11] and the five functionals fixed
point theorems [8]. The conditions of the six functionals fixed point theorem are
more strict than the conditions of the others, and at the same time the result of the
former exhibits better estimations for the fixed points. For this reason, Theorem
1 provides the estimations (3.5), which can not be obtained by the applications of
Leggett-Williams and the five functionals fixed point theorems. This is the main
difference of our result compared to the aforementioned theorems.

4. AN EXAMPLE

Example 1. Let us consider the following BVP8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�
� 3

2
.u.4/.t//

�0
Cf .t;u.t/;u0.t/;u00.t//D 0; t 2 Œ0;1�;

3u00.0/�u.3/.0/D

Z 1

0

u00.s/ds;

u00.1/Cu.3/.1/D

Z 1

0

2u00.s/ds;

u.0/D u0.0/D u00.0/D u.4/.0/D 0;

(4.1)

where

f .x1;x2;x3;x4/D8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

t2

100
C0:4; .x1;x2;x3;x4/ 2 Œ0;1��

�
0;
8

3

�3
;

t2

100
C8:7x4�22:8; .x1;x2;x3;x4/ 2 Œ0;1�� Œ0;4�

2�

�
8

3
;4

�
;

t2

100
C12; .x1;x2;x3;x4/ 2 Œ0;1��R2

C
� .4;1/ :

By simple calculation, we get �D 7; 4D�
7

2
; AD

31

21
; B D

31

42
and

G.t;s/D

8<: .1C3s/.2� t /=7; s � t;

.1C3t/.2� s/=7; t � s:
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For k D 3; one can obtain that �D
8

243
and ˝ D

571

84
. It is clear that .C1/-.C5/

are satisfied. Moreover, taking r D 4 and RD 1000; it is easy to check that

4D r <min
�

R

k2C1
;
�

˝
R

�
Dmin

�
100;

224000

46251

�
< kr D 12:

Now, let us show that conditions .C6/-.C8/ are satisfied:

f .x1;x2;x3;x4/� 12:01 < �p

�
R

˝

�
� 12:1289

for .x1;x2;x3;x4/ 2 Œ0;1�� Œ0;2000�3 ;

f .x1;x2;x3;x4/� 0:41 < �p

� r

k˝

�
� 0:4428

for .x1;x2;x3;x4/ 2 Œ0;1��
�
0;
8

3

�3
;

f .x1;x2;x3;x4/� 12:0011 > �p

� r
�

�
� 11:0227

for .x1;x2;x3;x4/ 2
�
1

3
;1

�
� Œ0;12�2� Œ4;12� :

So, all conditions of Theorem 1 hold. Thus, according to Theorem 1, the BVP
(4.1) has at least three positive solutions that belong to Q.ˇ;1000/:

5. CONCLUSION

In this paper, by applying the six functionals fixed point theorem [7], which is a
generalization of the five functionals fixed point theorem [8] and Leggett-Williams
fixed point theorem [11], we investigate the existence of at least three positive solu-
tions for the nth order p-Laplacian BVP with integral boundary conditions. We
provide an example to support the theoretical result. In the future, we plan to study
the existence of positive solutions for nth order multipoint BVPs with p-Laplacian
as well as the one with impulsive effects.
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