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Abstract. In this paper, when approximating a continuos non-negative function on the unit in-
terval, we present an alternative way to the classical Bernstein polynomials. Our new operators
become nonlinear, however, for some classes of functions, they provide better error estimations
than the Bernstein polynomials. Furthermore, we obtain a simultaneous approximation result for
these operators.
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1. INTRODUCTION

Polynomials appear in a wide variety of areas of mathematics and science. We
often need polynomials rather than more complicated functions as they are simply
defined, can be calculated on computer systems and represent a tremendous variety
of functions. However, sometimes it may be needed to modify polynomials in order
to get a more efficient approximation. This paper concerns with the modification of
the classical sequence of Bernstein polynomials (see [1]) which is one of the most
widely used tools in approximation theory and numerical analysis. We show that our
modified operators become nonlinear with respect to a given function, however, for
some classes of functions, they provide better error estimations than the Bernstein
polynomials. More precisely, we introduce the following operators:
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where f is a non-negative function on Œ0;1�; x 2 Œ0;1�; n 2 N and ˛ > 0: Observe
that

Ln;˛.f Ix/D
�
Bn
�
f ˛Ix

��1=˛
;

where Bn denotes the classical Bernstein polynomials. We refer [2] for detailed
investigations on the Bernstein polynomials. Observe that Ln;1.f Ix/ D Bn .f;x/.
From (1.1), we see that operators Ln;˛ are positive but nonlinear, and also preserve
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the positive constant functions. If e˛.x/D x˛ .˛ > 0/; then Ln; 1
˛

preserves e˛, i.e.,
we get

Ln; 1
˛
.e˛Ix/D e˛.x/D x

˛:

One can also check that

Ln;˛.f I0/D f .0/ and Ln;˛.f I1/D f .1/ for any ˛ > 0:

If 0� k � f �K on Œ0;1� for some constants k and K; then it is clear that

k � Ln;˛.f /�K on Œ0;1�:

Using Hölder’s inequality, we also get

Ln; 1
˛
.f Ix/� Bn .f;x/� Ln;˛.f Ix/ for any ˛ � 1: (1.2)

For a fixed ˛ > 0; if f ˛ is monotonically increasing or decreasing on Œ0;1�; then
so are all Ln;˛.f /.

2. APPROXIMATION PROPERTIES OF NONLINEAR BERNSTEIN-TYPE OPERATORS

Now, by C .Œ0;1�; Œ0;C1//we denote the class of all non-negative and continuous
functions on Œ0;1�.

Theorem 1. For any f 2 C .Œ0;1�; Œ0;C1// and ˛ > 0; we have Ln;˛ .f /� f

on Œ0;1�; where the symbol � denotes the uniform convergence.

Proof. Let f 2C .Œ0;1�; Œ0;C1// and ˛ >0. Assuming 0� f �K on the interval
Œ0;1� define the function g W Œ0;K˛�! Œ0;K� by g.y/D y1=˛. Then, by the uniform
continuity of g on Œ0;K˛� and the uniform convergence Bn .f ˛/ to f ˛ on Œ0;1�; we
observe that g ıBn.f ˛/ is uniformly convergent to g ıf ˛ on the interval Œ0;1�: This
means that Ln;˛ .f /� f on Œ0;1�: �

In Figure 1, it is indicated an approximation to the function

f .x/D
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2
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2
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5�x

2

�
by means of the operators Ln;3.f Ix/ for nD 15;30;50;100; respectively.

On the other hand, it follows from the general Leibniz rule
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FIGURE 1. Approximation to f .x/ D 1
2
C

1
2

cos
�
5�x
2

�
by

Ln;3.f Ix/ for nD 15;30;50;100, respectively.

where, as usual, f .k/D
dkf

dxk
. Now using this, we obtain the following simultaneous

approximation result for Ln;˛.f /.

Theorem 2. If ˛D 1=m; m 2N, then, we get
n
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.f /
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� f .k/ on Œ0;1� for

every f 2 C k .Œ0;1�; Œ0;C1// with k � nm:

Proof. First observe that Ln; 1
m
.f Ix/ is a polynomial with degree � nm: Then,

for each k � nm, we may write thatn
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Since fBn .f /g.k/ � f .k/ on Œ0;1�; we see thatn
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�
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which completes the proof. �

Here, we give the following conjecture:

Conjecture 1. For any ˛ > 0 and f 2C k .Œ0;1�; Œ0;C1// ; fLn;˛.f /g.k/ � f .k/

on Œ0;1�:

We also get the following approximation results.

Theorem 3. If ˛ D 1=m; m 2 N, then, we get, for every n 2 N and
f 2 C .Œ0;1�; Œ0;C1// ; thatLn; 1

m
.f /�f

� 5
4
mK

m�1
m !

�
f 1=m;

1
p
n

�
;

where K WD kf k and ! denotes the classical modulus of continuity of f .

Proof. Using the identity

um�vm D .u�v/.um�1Cum�2vC :::Cuvm�2Cvm�1/; (2.1)

we see thatˇ̌̌
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Since 0� f .x/�K for every x 2 Œ0;1�; we obtain thatˇ̌̌
Ln; 1

m
.f Ix/�f .x/

ˇ̌̌
�mK

m�1
m
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:

Now taking supremum over x 2 Œ0;1� and also using the approximation order of the
classical Bernstein polynomials for the function f 1=m; the proof is completed. �
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Theorem 4. If ˛ D m; m 2 N, then, we get, for every n 2 N and
f 2 C .Œ0;1�; Œ0;C1// for which kf k � k > 0; that

kLn;m.f /�f k �
5

4mk
m�1
m

!

�
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1
p
n

�
:

Proof. In (2.1) if we replace u and v with u1=m and v1=m; respectively, then we
have
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:

Using the last equality, we see that
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whence the result. �

Thus, the following open problem arises.

Open Problem. As in Theorems 3 and 4; can we get an approximation order for
any ˛ > 0 ‹

The next result is useful when approximating a function f for which f 1=˛ .˛ � 1/
is convex.

Theorem 5. If ˛ � 1 and f 2 C .Œ0;1�; Œ0;C1// such that f 1=˛ is convex on
Œ0;1�; then the error estimate

ˇ̌̌
Ln; 1

˛
.f Ix/�f .x/

ˇ̌̌
is better than jBn.f Ix/�f .x/j :

Proof. It is well-known that if f 1=˛ is convex, then Bn.f 1=˛/ is also convex, and
Bn.f

1=˛Ix/ � f 1=˛.x/ for every x 2 Œ0;1� (see, for instance, [3]). Thus, we get
Ln; 1

˛
.f Ix/� f .xP/: Furthermore, it follows from (1.2) that

f .x/� Ln; 1
˛
.f Ix/� Bn.f Ix/ for any ˛ � 1;

whence the result. �
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FIGURE 2. Approximation to f .x/ D x6 by L4; 1
˛
.f Ix/ for ˛ D

1; 4
3
;2;3;6; respectively.

In Figure 2, taking nD 4 and ˛D 1;
4

3
;2;3;6; respectively, we graph L4; 1

˛
.f / for

the function f .x/D x6. Then, we observe that

f .x/D x6 D L4; 1
6
.f Ix/ < L4; 1

3
.f Ix/

< L4; 1
2
.f Ix/ < L4; 3

4
.f Ix/

< L4;1.f Ix/D B4.f Ix/:

Thus, in this example, for fixed x;n; we see that Ln;˛.f Ix/ is getting close to

f .x/D x6 as ˛ goes to
1

6
. Notice that f 1=˛ is convex for 0 < ˛ � 6 and concave for

˛ > 6:

Similar result also holds for the approximation to concave functions.

Theorem 6. If ˛� 1 and f 2C .Œ0;1�; Œ0;C1// such that f ˛ is concave on Œ0;1�;
then the error estimate jLn;˛.f Ix/�f .x/j is better than jBn.f Ix/�f .x/j :

We get from Theorem 6 and Figure 3 that, for nD 7;

f .x/D sin1=4.�x/ > L7;4.f Ix/

> L7;3.f Ix/ > L7;2.f Ix/

> L7;1.f Ix/D B7.f Ix/:

After Theorems 5 and 6, the following problem arises:

Open Problem. Is there any other class of functions satisfying a better error es-
timation as in Theorems 5 and 6 ?
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FIGURE 3. Approximation to f .x/D sin1=4.�x/ byL7;˛.f Ix/ for
˛ D 1;2;3;4, respectively.

3. EXTENSION TO THE MULTIVARIATE CASE

Our idea can be applied to the multivariate Bernstein polynomials in the following
way. We first consider the standard unit simplex in Rm .m 2N/ W

Sm D f.x1; :::;xm/ W 0� xi � 1 .i D 1; :::;m/ and x1C�� �Cxm � 1g :

Now, instead of Cartesian coordinates, we denote barycentric coordinates by a bold-
face symbol:

xD .x0;x1; :::;xm/ with x0 WD 1�x1�x2�� � ��xm:

Then, using the multi-index notations

xk
D x

k0
0 x

k1
1 � � �x

km
m ;

jkj D k0Ck1C�� �Ckm; 
n

k

!
D

nŠ

k0Šk1Š � � �kmŠ
;

for x 2 RmC1 and kD.k0;k1; :::;km/ 2NmC1
0 , we define the following (nonlinear)

multivariate operators:

Ln;˛.f Ix/D

8<:X
jkjDn

 
n

k

!
xkf ˛

�
k
n

�9=;
1=˛

; (3.1)

where f W Sm! Œ0;C1/ is a function; n 2N and ˛ > 0.
In this case, as in Theorem 1, one can get the next result, immediately.
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Theorem 7. For any f 2 C .Sm; Œ0;C1// and ˛ > 0; we have Ln;˛ .f Ix/ �
f .x/ on Sm:

The bivariate version of (3.1) with Cartesian coordinates may be written as fol-
lows:

Ln;˛.f Ix;y/D

8<:
nX
kD0

n�kX
jD0

nŠxjyk.1�x�y/n�j�k

j ŠkŠ.n�j �k/Š
f ˛

�
j

n
;
k

n

�9=;
1=˛

where .x;y/ 2 S2; n 2N, ˛ > 0 and f 2 C .S2; Œ0;C1//.
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