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Abstract. Inspired by the concept of integral type (Branciari type) contractive condition and
respective fixed point results, we derive some new common fixed point theorems for quadruple
self mappings satisfying a generalized W -contractive condition or a generalized �-contractive
condition of integral type, also using the notions of compatibility and subsequential continuity
(alternately subcompatibility and reciprocal continuity) in the frame of metric spaces. We furnish
some examples to illustrate the useability of our main results. Several results existing in the
literature are obtained as consequences of the main results. At the end of this article the existence
and uniqueness of solutions for certain systems of integral equations and functional equations
arising in dynamic programming are demonstrated with the help of the obtained results.
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1. INTRODUCTION

The Banach Contraction Principle is a very popular tools which is used to solve
existence problems in many branches of Mathematical Analysis and its applications.
It is no surprise that there is a great number of generalizations of this fundamental
theorem. They go in several directions—modifying the basic contractive condition
or changing the ambiental space. This celebrated theorem can be stated as follows.

Theorem 1 ([12]). Let .X;d/ be a complete metric space and T be a mapping of
X into itself satisfying:

d.T x;Ty/� kd.x;y/; 8x;y 2X;

where k is a constant in .0;1/. Then, T has a unique fixed point x� 2X .

Banach Contraction Principle provides a technique for solving a variety of applied
problems in mathematical sciences and engineering. Later, many authors have ex-
tended, generalized and improved Banach fixed point theorem in different ways (see
[22–26, 40, 47]).
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During the late 20th century, metrical common fixed point theory saw a trend of in-
vestigation which moved around commuting nature of two maps. Several conditions
were introduced, including weak commutativity (Sessa [52]), compatibility (Jungck
[33]), weak compatibility (Jungck and Rhoades [34]) and many others, and a lot of
respective common fixed point results were obtained. A survey of these notions and
relationship among them can be seen in [35].

We recall that two mappings A;S W X ! X are called weakly compatible if they
commute at their coincidence points, that is, ASx D SAx whenever Ax D Sx.

In the study of common fixed points of compatible-type mappings we often re-
quire assumption of completeness of the space or continuity of mappings involved
besides some contractive condition, but the study of common fixed points of non-
compatible mappings can be extended to the class of non-expansive or Lipschitz type
mapping pairs even without assuming the continuity of the mappings involved or the
completeness of the space. Aamri and El Moutawakil [1] generalized the concept
of non-compatibility by defining the notion of (E.A) property and proved common
fixed point theorems under strict contractive conditions. Although (E.A) property is
a generalization of the concept of non-compatible maps, yet it requires either com-
pleteness of the whole space or some of the range spaces or continuity of maps. After
that, Liu et al. [37] defined the notion of common property (E.A) for a hybrid pair of
single- and multi-valued mappings and proved some fixed point results under hybrid
contractive conditions.

Further, Al-Thagafi and Shahzad [3] introduced the notion of occasionally weakly
compatible mappings which is the most general among all the commutativity con-
cepts. However, in an interesting note, Djorić et al. [27] observed that the condition
of occasionally weak compatibility reduces to weak compatibility in the presence of
a unique point of coincidence (or a unique common fixed point) of the given pair of
mappings. Thus, no generalization can be obtained by replacing weak compatibility
with occasionally weak compatibility. In 2009 Bouhadjera and Godet-Thobie [17]
further enlarged the class of compatible (reciprocally continuous) pairs by introdu-
cing the concept of subcompatible (subsequential continuous) pair which is substan-
tially weaker than using compatibility (reciprocal continuity). Since then, Imdad et
al. [31], as well as Chauhan et al. [21] improved the results of [17] and showed that
these results can easily be recovered by replacing subcompatibility with compatibility
or subsequential continuity with reciprocal continuity.

On the other hand, Branciari [19] obtained a fixed point result for a single map-
ping satisfying an analogue of Banach’s contraction principle with an integral type
inequality. This celebrated theorem can be stated as follow.

Theorem 2. Let .X;d/ be a complete metric space, k 2 .0;1/, and let f WX!X

be a mapping such that for each x;y 2X ,Z d.fx;fy/

0

'.t/dt � k

Z d.x;y/

0

'.t/dt
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where ' W RC ! RC is a Lebesgue-integrable function which is summable (i.e.,
with finite integral) on each compact subset of Œ0;C1/, non-negative and such thatR �
0 '.t/dt > 0, for each � > 0. Then f has a unique fixed point a 2 X such that for

each x 2X , limn!1f nx D a:

Later, some interesting and rich fixed point theorems involving more general con-
tractive conditions of integral type were obtained in [2,5–11,28,48,50,51,53–55,57].
Recently, Chauhan et al. [20] studied integral type fixed point results for two pairs of
mappings which are non-commutative and non-continuous, and gave applications to
dynamic systems.

Inspired by the concept of integral type (Branciari type) conditions and notions
of compatibility and subsequential continuity (alternately subcompatibility and re-
ciprocal continuity), an attempt has been made in this article to prove fixed point
theorems for two pairs of self mappings under a new type of contractive conditions,
namely generalized W -contractive condition and generalized �-contractive condition
of integral type in the setting of metric spaces. Some examples are furnished to show
validity of hypothesis of results in dissimilar circumstances. Several results existing
in the literature are obtained as consequences of the main results. Our results im-
prove and generalize several comparable results in the existing literature. We wrap
up the paper with applications of our results to an existence result for certain system
of integral equations and solvability of certain system of functional equations arising
in dynamic programming.

2. PRELIMINARIES

Throughout the paper, N is the set of positive integers. To start with, we state the
following definitions.

Definition 1. Let A;S W X ! X be two self mappings of a metric space .X;d/.
The mappings A and S are said to be

(1) commuting if ASx D SAx, for all x 2X ;
(2) weakly commuting [52] if d.ASx;SAx/� d.Ax;Sx/, for all x 2X ;
(3) compatible [33] if lim

n!1
d.ASxn;SAxn/ D 0 whenever there exists a se-

quence fxng in X such that lim
n!1

Axn D lim
n!1

Sxn D ´, for some ´ 2X ;

(4) non-compatible [43] if there exists a sequence fxng inX such that lim
n!1

AxnD

lim
n!1

Sxn D ´, for some ´ 2 X and lim
n!1

d.ASxn;SAxn/ is either nonzero
or nonexistent;

(5) weakly compatible [34] if they commute at their coincidence points, i.e.,
ASuD SAu whenever AuD Su, for some u 2X ;

(6) occasionally weakly compatible [3] if and only if there is a point x 2X which
is a coincidence point of A and S at which A and S commute.
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Definition 2 ([41]). A pair .A;S/ of self mappings of a metric space .X;d/ is
called reciprocally continuous if for a sequence fxng in X , lim

n!1
ASxn D A´ and

lim
n!1

SAxn D S´, whenever lim
n!1

Axn D lim
n!1

Sxn D ´, for some ´ 2X .

It is easy to see that if two self mappings are continuous, then they are obviously
reciprocally continuous but the converse is not true [42, Example 2]. Moreover, in
the setting of common fixed point theorems for compatible pairs of self mappings
satisfying contractive conditions, continuity of one of the mappings implies their
reciprocal continuity but not conversely (see [41]).

Definition 3 ([1]). A pair .A;S/ of self mappings of a metric space .X;d/ is said
to satisfy the property (E.A) if there exist a sequence fxng in X and some ´ 2X such
that

lim
n!1

Axn D lim
n!1

Sxn D ´ 2X:

It can be noticed that any non-compatible self mappings of a metric space .X;d/
satisfy the property (E.A) but two mappings satisfying the property (E.A) need not
be non-compatible (see [29, Example 1]). Also, weak compatibility and the property
(E.A) are independent to each other (see [44, Examples 2.1-2.2]).

Definition 4 ([4]). Two pairs .A;S/ and .B;T / of self mappings of a metric space
.X;d/ are said to satisfy the common property (E.A), if there exist two sequences
fxng, fyng in X for some ´ in X and such that

lim
n!1

Axn D lim
n!1

Sxn D lim
n!1

Tyn D lim
n!1

Byn D ´:

Definition 5 ([17]). A pair .A;S/ of self mappings of a metric space .X;d/
is said to be subcompatible if there exists a sequence fxng such that lim

n!1
Axn D

lim
n!1

Sxn D ´, for some ´ 2X and lim
n!1

d.ASxn;SAxn/D 0.

A pair of non-compatible or subcompatible mapping satisfies the property (E.A).
Obviously, compatible mappings which satisfy the property (E.A) are subcompatible
but the converse statement does not hold in general (see [49, Example 2.3]). Two
occasionally weakly compatible mappings are subcompatible, however the converse
is not true in general (see [18, Example 1.2]).

Definition 6 ([17]). A pair .A;S/ of self mappings of a metric space .X;d/ is
called subsequentially continuous if there exists a sequence fxng in X such that
lim
n!1

AxnD lim
n!1

SxnD ´, for some ´2X and lim
n!1

ASxnDA´ and lim
n!1

SAxnD

S´.

One can easily check that if two self mappings are continuous or reciprocally con-
tinuous, then they are naturally subsequentially continuous. However, there exist
subsequentially continuous pairs of mappings which are neither continuous nor re-
ciprocally continuous (see [18, Example 1.4]).
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3. COMMON FIXED POINT RESULTS UNDER W -WEAKLY CONTRACTIVE
CONDITION

The attempted improvements in this section are five-fold.
(i) The condition on containment of ranges amongst the involved mappings is re-

laxed.
(ii) Continuity requirements of all the involved mappings are completely relaxed.
(iii) The (E.A) property is replaced by compatible and subsequentially continuous

(alternately subcompatible and reciprocally continuous) property which are the most
general among all existing weak commutativity concepts.

(iv) The condition on completeness of the whole space is relaxed.
(v) A generalized W -weakly contractiveness is taken into consideration to derive

our results.
In what follows, we denote by 	 the collection of all functions W W Œ0;1/!

Œ0;1/ which are continuous and satisfy W.t/ < t , for all t > 0.
Also, we will denote by ˚ the set of functions ' W Œ0;C1/! Œ0;C1/ satisfying

the following conditions:

.'1/ ' is a Lebesgue integrable function on each compact subset of Œ0;C1/.

.'2/

Z "

0

'.s/ds > 0 for all " > 0.

In this section we state and prove the following theorem.

Theorem 3. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

For all x;y 2X , we define

�.x;y/

Dmax

(
d.Ax;Sx/;d.By;Ty/;d.Ty;Sx/; 1

2
Œd.Ax;Ty/Cd.By;Sx/�;

d.Ax;Sx/d.By;Ty/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ax;By/

)
:

We assume that, for all x;y 2X ,Z d.Ax;By/

0

'.t/dt �

Z �.x;y/

0

'.t/dt �W

 Z �.x;y//

0

'.t/dt

!
; (3.1)

where W 2 	 and ' 2 ˚ . Then A;B;S and T have a unique common fixed point in
X .

Proof. The proof of the theorem is divided into the following two parts:
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Part I: Since the pair .A;S/ (as well as .B;T /) is subsequentially continuous and
compatible, therefore there exists a sequence fxng in X such that

lim
n!1

Axn D lim
n!1

Sxn D �;

for some � 2X , and

lim
n!1

d.ASxn;SAxn/D d.A�;S�/D 0;

with A� D S�, whereas in respect to the pair .B;T /, there exists a sequence fyng in
X such that

lim
n!1

Byn D lim
n!1

Tyn D �;

for some � 2X , and

lim
n!1

d.BTyn;TByn/D d.B�;T �/D 0;

with B� D T �. Hence � is a coincidence point of the pair .A;S/, and � is a coincid-
ence point of the pair .B;T /.

Now we prove that � D �. By putting x D xn and y D yn in inequality (3.1), we
have Z d.Axn;Byn/

0

'.t/dt �

Z �.xn;yn/

0

'.t/dt �W

 Z �.xn;yn/

0

'.t/dt

!
(3.2)

where

�.xn;yn/Dmax(
d.Axn;Sxn/;d.Byn;Tyn/;d.Tyn;Sxn/;

1
2
Œd.Axn;Tyn/Cd.Byn;Sxn/�;

d.Axn;Sxn/d.Byn;Tyn/
1Cd.Tyn;Sxn/

; d.Axn;Tyn/d.Byn;Sxn/
1Cd.Tyn;Sxn/

; d.Axn;Tyn/d.Byn;Sxn/
1Cd.Axn;Byn/

)
:

Passing to the limit as n!1 in inequality (3.2), we haveZ d.�;�/

0

'.t/dt �

Z �.�;�/

0

'.t/dt �W

 Z �.�;�/

0

'.t/dt

!
;

where

�.�;�/Dmax
�
d.�;�/;d.�;�/;d.�;�/;

d2.�;�/

1Cd.�;�/
;
d2.�;�/

1Cd.�;�/

�
D d.�;�/:

ThereforeZ d.�;�/

0

'.t/dt �

Z d.�;�/

0

'.t/dt �W

 Z d.�;�/

0

'.t/dt

!
<

Z d.�;�/

0

'.t/dt
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which is a contradiction. Thus, we have � D � . Now we assert that A� D �. Putting
x D � and y D yn in inequality (3.1), we getZ d.A�;Byn/

0

'.t/dt �

Z �.�;yn/

0

'.t/dt �W

 Z �.�;yn/

0

'.t/dt

!
(3.3)

where

�.�;yn/

Dmax

(
d.A�;S�/;d.Byn;Tyn/;d.Tyn;S�/;

1
2
Œd.A�;Tyn/Cd.Byn;S�/�;

d.A�;S�/d.Byn;Tyn/
1Cd.Tyn;S�/

; d.A�;Tyn/d.Byn;S�/
1Cd.Tyn;S�/

; d.A�;Tyn/d.Byn;S�/
1Cd.A�;Byn/

)
:

Passing to the limit as n!1 in condition (3.3), we obtainZ d.A�;�/

0

'.t/dt �

Z �.�;�/

0

'.t/dt �W

 Z �.�;�/

0

'.t/dt

!
;

where

�.�;�/Dmax
�
d.�;A�/;d.A�;�/;

d2.A�;�/

1Cd.�;A�/
;
d2.A�;�/

1Cd.A�;�/

�
D d.A�;�/:

Therefore we getZ d.A�;�/

0

'.t/dt �

Z d.A´;´/

0

'.t/dt �W

 Z d.A´;´/

0

'.t/dt

!
<

Z d.A�;�/

0

'.t/dt;

which is a contradiction. Thus, we have A� D �. Therefore, A� D S� D �.
Now we show that B� D �. Putting x D xn and y D � in inequality (3.1), we haveZ d.Axn;B�/

0

'.t/dt �

Z �.xn;�/

0

'.t/dt �W

 Z �.xn;�/

0

'.t/dt

!
(3.4)

where

�.xn; �/Dmax(
d.Axn;Sxn/;d.B�;T �/;d.T �;Sxn/;

1
2
Œd.Axn;T �/Cd.B�;Sxn/�;

d.Axn;Sxn/d.B�;T �/
1Cd.T �;Sxn/

; d.Axn;T �/d.B�;Sxn/
1Cd.T �;Sxn/

; d.Axn;T �/d.B�;Sxn/
1Cd.Axn;B�/

:

)
:

Passing to the limit as n!1 in inequality (3.4), we haveZ d.�;B�/

0

'.t/dt �

Z �.�;�/

0

'.t/dt �W

 Z �.�;�/

0

'.t/dt

!
where

�.�;�/Dmax
�
d.B�;�/;d.�;B�/;

d2.�;T �/

1Cd.B�;�/
;
d2.�;T �/

1Cd.�;B�/

�
D d.�;B�/:
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Therefore we getZ d.�;B�/

0

'.t/dt �

Z d.�;B�/

0

'.t/dt �W

 Z d.�;B�/

0

'.t/dt

!
<

Z d.�;B�/

0

'.t/dt;

which is a contradiction. Thus, we get B� D S� D �. Therefore in all, � D A� D
S� D B� D T �, i.e., � is a common fixed point of A;B;S and T .

Finally, to prove the uniqueness of common fixed point, let �0 be another common
fixed point of A;B;S and T .

Putting x D � and y D �0 in inequality (3.1), we haveZ d.�;� 0/

0

'.t/dt D

Z d.A�;B� 0/

0

'.t/dt �

Z �.�;� 0/

0

'.t/dt �W

 Z �.�;� 0//

0

'.t/dt

!
;

where

�.�;�0/

Dmax

(
d.A�;S�/;d.B�0;T �0/;d.T �0;S�/; 1

2
Œd.A�;T �0/Cd.B�0;S�/�;

d.A�;S�/d.B� 0;T � 0/
1Cd.T � 0;S�/

; d.A�;T �
0/d.B� 0;S�/

1Cd.T � 0;S�/
; d.A�;T �

0/d.B� 0;S�/
1Cd.A�;B� 0/

)
Dmax

n
d.�0; �/;d.�;�0/; d

2.�;� 0/
1Cd.� 0;�/

; d
2.�;� 0/

1Cd.�;� 0/

o
D d.�0; �/:

ThereforeZ d.�;� 0/

0

'.t/dt �

Z d.�;� 0/

0

'.t/dt �W

 Z d.�;� 0//

0

'.t/dt

!
<

Z d.�;� 0/

0

'.t/dt

which is a contradiction. Hence � D �0.jn
Part II: Since the pair .A;S/ (as well as .B;T /) is subcompatible and reciprocally

continuous, therefore there exists a sequence fxng in X such that

lim
n!1

Axn D lim
n!1

Sxn D �;

for some � 2X , and

lim
n!1

d.ASxn;SAxn/D d.A�;S�/D 0;

whereas in respect to the pair .B;T /, there exists a sequence fyng in X such that

lim
n!1

Byn D lim
n!1

Tyn D �;

for some � 2X , and

lim
n!1

d.BTyn;TByn/D d.B�;T �/D 0:
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Therefore, A� D S� and B� D T � , i.e., � is a coincidence point of the pair .A;S/
whereas � is a coincidence point of the pair .B;T /. The rest of the proof can be
completed on the lines of Part I. �

3.1. Consequences

Some integral versions of well known results in the literature can be obtained as
particular cases of our Theorem 3. For example, we state the following corollaries.

Corollary 1. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

We assume that, for all x;y 2X ,Z d.Ax;By/

0

'.t/dt �

Z maxfd.Ax;Sx/;d.By;Ty/;d.Ty;Sx/; 1
2
Œd.Ax;Ty/Cd.By;Sx/�g

0

'.t/dt

�W

 Z maxfd.Ax;Sx/;d.By;Ty/;d.Ty;Sx/; 1
2
Œd.Ax;Ty/Cd.By;Sx/�g

0

'.t/dt

!
;

where W 2 	 and ' 2 ˚ . Then A;B;S and T have a unique common fixed point in
X .

Corollary 2. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

We assume that, for all x;y 2X ,Z d.Ax;By/

0

'.t/dt �

Z d.Ty;Sx/

0

'.t/dt �W

 Z d.Ty;Sx/

0

'.t/dt

!
;

where W 2 	 and ' 2 ˚ . Then A;B;S and T have a unique common fixed point in
X .

If W.t/D .1�k/t for k 2 .0;1/ in Theorem 3, we have following result:

Corollary 3. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.



330 H. K. NASHINE

For all x;y 2X , we define

�.x;y/

Dmax

(
d.Ax;Sx/;d.By;Ty/;d.Ty;Sx/; 1

2
Œd.Ax;Ty/Cd.By;Sx/�;

d.Ax;Sx/d.By;Ty/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ax;By/

)
:

We assume that, for all x;y 2X ,Z d.Ax;By/

0

'.t/dt � k

Z �.x;y/

0

'.t/dt

where k 2 .0;1/ and ' 2 ˚ . Then A;B;S and T have a unique common fixed point
in X .

If we take '.t/D 1 for all t in Theorem 3, we get the following consequences:

Corollary 4. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

For all x;y 2X , we define

�.x;y/

Dmax

(
d.Ax;Sx/;d.By;Ty/;d.Ty;Sx/; 1

2
Œd.Ax;Ty/Cd.By;Sx/�;

d.Ax;Sx/d.By;Ty/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ax;By/

)
:

We assume that, for all x;y 2X ,

d.Ax;By/��.x;y/�W.�.x;y//

where W 2 	 . Then A;B;S and T have a unique common fixed point in X .

Corollary 5. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

We assume that, for all x;y 2X ,

d.Ax;By/

�max
�
d.Ax;Sx/;d.By;Ty/;d.Ty;Sx/;

1

2
Œd.Ax;Ty/Cd.By;Sx/�

�
�W

�
max

�
d.Ax;Sx/;d.By;Ty/;d.Ty;Sx/;

1

2
Œd.Ax;Ty/Cd.By;Sx/�

��
where W 2 	 . Then A;B;S and T have a unique common fixed point in X .
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Corollary 6. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

We assume that, for all x;y 2X ,

d.Ax;By/� d.Ty;Sx/�W.d.Ty;Sx//

where W 2 	 . Then A;B;S and T have a unique common fixed point in X .

If W.t/D .1�k/t for k 2 .0;1/ in Corollary 4, we have the following result:

Corollary 7. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

We assume that, for all x;y 2X ,

d.Ax;By/

� kmax

(
d.Ax;Sx/;d.By;Ty/;d.Ty;Sx/; 1

2
Œd.Ax;Ty/Cd.By;Sx/�;

d.Ax;Sx/d.By;Ty/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ax;By/

)
where k 2 .0;1/. Then A;B;S and T have a unique common fixed point in X .

3.2. Illustrative examples

Now we furnish examples demonstrating the validity of the hypotheses and degree
of generality of our results over some recently established results.

In the examples, we show the importance of each condition or property of Theorem
3 required for getting coincidence (common fixed) point of the mappings.

Example 1. Let X D Œ0;1/ and d be the usual metric on X . Set A D B and
S D T . Define self mappings A and S by

Ax D

�
x2; if x 2 Œ0;1/;
2x�1; if x 2 Œ1;1/; Sx D

�
3x�2; if x 2 Œ0;1/;
xC3; if x 2 Œ1;1/.

Consider the sequence fxng D
˚
1� 1

n

	
n2N

in X . Then

lim
n!1

Axn D lim
n!1

�
1�

1

n

�2
D 1D lim

n!1
Sxn D lim

n!1
3

�
1�

1

n

�
�2

Also,

lim
n!1

ASxn D lim
n!1

A

�
1�

3

n

�
D lim
n!1

�
1�

3

n

�2
D 1D A.0/;
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lim
n!1

SAxn D lim
n!1

S

�
1�

1

n

�2
D lim
n!1

3

�
1�

1

n

�2
�2D 1¤ S.1/;

but
lim
n!1

d.ASxn;SAxn/D 0:

Thus, the pair .A;S/ is compatible but neither subsequentially continuous nor re-
ciprocally continuous. By routine calculation we can check that the condition (3.1)
is not satisfied. Therefore Theorem 3 cannot be used to prove the existence of co-
incidence point of A and S . Note that this example cannot be covered by those
fixed point theorems which involve compatibility and reciprocal continuity both or
by involving conditions on completeness (or closedness) of underlying space (or sub-
spaces). Also, in this example neither X is complete nor any range-space is closed,
since A.X/D Œ0;1/[ Œ1;1/ and S.X/D Œ�2;1/[ Œ4;1/.

Example 2. Let X D Œ0;1/ and d be the usual metric on X . Set A D B and
S D T . Define the self mappings A and S by

Ax D

�
2; if x 2 Œ0;3/;
x; if x 2 Œ3;1/; Sx D

�
2x�4; if x 2 Œ0;3�;
3; if x 2 .3;1/.

Consider the sequence fxng D
˚
3C 1

n

	
n2N

in X . Then

lim
n!1

Axn D lim
n!1

�
3C

1

n

�
D 3D lim

n!1
Sxn D lim

n!1
3:

Also,

lim
n!1

ASxn D lim
n!1

A3D 3D A.3/; lim
n!1

SAxn D lim
n!1

S

�
3C

1

n

�
D 3¤ S.3/;

but
lim
n!1

d.ASxn;SAxn/D 0:

Thus, the pair .A;S/ is compatible but not reciprocally continuous.
Consider another sequence fxng D

˚
3� 1

n

	
n2N

in X . Then

lim
n!1

Axn D lim
n!1

�
3�

1

n

�
D 2 lim

n!1
Sxn D lim

n!1
2

�
3�

1

n

�
�4D 2:

Next,

lim
n!1

ASxn D lim
n!1

A

�
3�

1

n

�
D 2D A.2/;

lim
n!1

SAxn D lim
n!1

S2D 0¤ S.2/;

and
lim
n!1

d.ASxn;SAxn/¤ 0:

Thus, the pair .A;S/ is subsequentially continuous but not compatible. By routine
calculation we can check that the condition (3.1) is not satisfied. Therefore Theorem
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3 do not imply the existence of coincidence point of A and S . It is noted that this ex-
ample cannot be covered by those fixed point theorems which involve compatibility
and reciprocal continuity both or by involving conditions on completeness (or closed-
ness) of underlying space (or subspaces). Also, in this example neitherX is complete
nor any range-space are closed, sinceA.X/D f2g[ Œ3;1/ and S.X/D Œ�4;2�[f3g.

Example 3. Let X D Œ0;1/ and d be the usual metric on X . Set A D B and
S D T . Define self mappings A and S by

Ax D

�
x
6
; if x 2 Œ0;2�;

2x�2; if x 2 .2;1/; Sx D

�
x
4
; if x 2 Œ0;2�;

3x�4; if x 2 .2;1/.

Consider the sequence fxng D
˚
1
n

	
n2N

in X . Then

lim
n!1

Axn D lim
n!1

�
1

6n

�
D 0; lim

n!1
Sxn D lim

n!1

�
1

4n

�
D 0:

Also,

lim
n!1

ASxn D lim
n!1

A

�
1

4n

�
D lim
n!1

�
1

24n

�
D 0D A.0/;

lim
n!1

SAxn D lim
n!1

S

�
1

6n

�
D lim
n!1

�
1

24n

�
D 0D S.0/;

and
lim
n!1

d.ASxn;SAxn/D 0:

Consider another sequence fxng D
˚
2C 1

n

	
n2N

in X . Then

lim
n!1

Axn D lim
n!1

2

�
2C

1

n

�
�2D 2D lim

n!1

�
4C

4

n
�2

�
D 2D lim

n!1
Sxn:

Also,

lim
n!1

ASxn D lim
n!1

A

�
2C

3

n

�
D lim
n!1

2

�
2C

3

n
�2

�
D 2¤ A.2/;

lim
n!1

SAxn D lim
n!1

S

�
2C

2

n

�
D lim
n!1

�
6C

6

n
�4

�
D 2¤ S.2/;

but lim
n!1

d.ASxn;SAxn/ D 0. Thus, the pair .A;S/ is compatible as well as sub-
sequentially continuous but not reciprocally continuous. By Theorem 3, A and S
have a coincidence point; here uD 0 is a coincidence point of A and S . It is noted
by routine calculation that condition (3.1) is satisfied for W.t/ D 2t

3
and '.s/ D 1.

Thus, all the conditions of Theorem 3 (also of Corollary 4) are satisfied and 0 is a
unique common fixed point of the pairs .A;S/ and .B;T /.

Now, we support the uniqueness of the common fixed point of the pairs .A;S/
and .B;T / of Theorem 3 by the following example. Note that inequality (3.1) is
necessary to prove the existence and uniqueness of the pairs .A;S/ and .B;T /.
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Example 4. Let X D f0;1;2;3; : : :g and consider the metric d WX �X ! X given
by

d.x;y/D

�
0; if x D yI
maxfx;yg; if x ¤ y:

Define A;B;S;T WX !X by

Ax D

(
0; if x D 0;
2xC1; if x ¤ 0;

Bx D

(
0; if x D 0;
2xC2; if x ¤ 0;

and

Sx D

(
0; if x D 0;
4xC4; if x ¤ 0;

T x D

(
0; if x D 0;
4xC2; if x ¤ 0;

Also, define ';W W Œ0;C1/! Œ0;C1/ by '.t/D 2t and W.t/D
p
t . Then:

(1) The pairs .A;S/ and .B;T / are compatible and subsequentially continuous.
(2) ' is a Lebesgue-integrable function which is summable, nonnegative and

such that
R �
0 '.t/dt > 0 for all � > 0.

(3) W 2 	 .
(4) For any x;y 2X , we haveZ d.Ax;By/

0

'.t/dt �

Z �.x;y/

0

'.t/dt �W

 Z �.x;y/

0

'.t/dt

!
;

where

�.x;y/

Dmax

(
d.Ax;Sx/;d.By;Ty/;d.Ty;Sx/; 1

2
Œd.Ax;Ty/Cd.By;Sx/�;

d.Ax;Sx/d.By;Ty/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ty;Sx/

; d.Ax;Ty/d.By;Sx/
1Cd.Ax;By/

)
:

Proof. To prove (1), take xn D 0 for all but finitely many n. Then Axn D 0 and
Sxn D 0 for all but finitely many n. Hence, d.Axn;0/! 0 and d.Sxn;0/! 0 as
n!C1; that is, lim

n!C1
AxnD 0 and lim

n!C1
SxnD 0. Also lim

n!C1
SAxnD 0D S0

and lim
n!C1

ASxn D 0D A0.

The pair .A;S/ is compatible and subsequentially continuous. Similarly, we can
show that the pair .B;T / is compatible and subsequentially continuous. The proof
of (2) and (3) is clear. To prove (4), given x;y 2 X , we divide the proof into the
following cases:

Case 1: Let x D y D 0. Here Ax D By D Sx D Ty D 0. Thus condition (4)
holds trivially.
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Case 2. Let x D 0 and y ¤ 0. Here Ax D 0;By D 2yC2;Sx D 0;Ty D 4yC2.
Thus d.Ax;By/D 2yC2 and d.Sx;Ty/D 4yC2. ThereforeZ d.Ax;By/

0

'.t/dt D

Z 2yC2

0

.2t/dt D .2yC2/2 � .4yC2/2� .4yC2/

D d2.Sx;Ty/�d.Sx;Ty/� Œ�.x;y/�2��.x;y/

D

Z �.x;y/

0

2t dt �W

 Z �.x;y/

0

2t dt

!

D

Z �.x;y/

0

'.t/dt �W

 Z �.x;y/

0

'.t/dt

!
:

Case 3. Let x ¤ 0 and y D 0. Here Ax D 2xC1;By D 0;Sx D 4xC4;Ty D 0.
Thus d.Ax;By/D 2xC1 and d.Sx;Ty/D 4xC4. ThereforeZ d.Ax;By/

0

'.t/dt D

Z 2xC1

0

.2t/dt D .2xC1/2 � .4xC4/2� .4xC4/

D d2.Sx;Ty/�d.Sx;Ty/� Œ�.x;y/�2��.x;y/

D

Z �.x;y/

0

2t dt �W

 Z �.x;y/

0

2t dt

!

D

Z �.x;y/

0

'.t/dt �W

 Z �.x;y/

0

'.t/dt

!
:

Case 4. Let x > y > 0.
� If x D 2yC 1, that is y D x�1

2
, then Ax D 2xC 1;By D xC 1;Sx D 4xC 4,

and Ty D 2x. Thus d.Ax;By/D 2xC1 and d.Sx;Ty/D 4xC4. ThereforeZ d.Ax;By/

0

'.t/dt D

Z 2xC1

0

.2t/dt D .2xC1/2 � .4xC4/2� .4xC4/

D d2.Sx;Ty/�d.Sx;Ty/� Œ�.x;y/�2��.x;y/

D

Z �.x;y/

0

2t dt �W

 Z �.x;y/

0

2t dt

!

D

Z �.x;y/

0

'.t/dt �W

 Z �.x;y/

0

'.t/dt

!
:

� If x > 2yC 1, then Ax D 2xC 1;By D xC 1;Sx D 4xC 4, and Ty D 2x.
Thus d.Ax;By/D 2xC1 and d.Sx;Ty/D 4xC4. Therefore as before we get the
conclusion.

Case 5. Let y > x > 0. If yD 2xC2, that is xD y�2
2

, thenAxD y�1;ByD yC
1;Sx D 2y, and Ty D 4yC 2. Thus d.Ax;By/D yC 1 and d.Sx;Ty/D 4xC 2.
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ThereforeZ d.Ax;By/

0

'.t/dt D

Z yC1

0

.2t/dt D .yC1/2 � .4xC2/2� .4xC2/

D d2.Sx;Ty/�d.Sx;Ty/� Œ�.x;y/�2��.x;y/

D

Z �.x;y/

0

2t dt �W

 Z �.x;y/

0

2t dt

!

D

Z �.x;y/

0

'.t/dt �W

 Z �.x;y/

0

'.t/dt

!
:

Thus in all cases contractive condition (3.1) is satisfied. Hence, all the hypotheses
of Theorem 3 are satisfied and 0 is a unique common fixed point of the pairs .A;S/
and .B;T /. Note that all the involved mappings are discontinuous at their unique
common fixed point. �

4. COMMON FIXED POINT RESULTS UNDER GENERALIZED �-CONTRACTIVE
CONDITIONS

In this section we prove our results by taking into consideration different contract-
ive condition, namely the one known as generalized �-contractive condition.

In what follows, we denote

˚1

D

8<: � W .RC/9! RC W � is upper semicontinuous and nondecreasing in
each coordinate variable and �1.t/Dmaxf�.t; t; t; t; t; t; t; t;0; /;

�.0;0; t;0; t; t; t;0; t/g< t

9=;
and

˚2 D

�
� W .RC/7! RC W � is upper semicontinuous and nondecreasing

in each coordinate variable and �2.t/D �.t; t; t; t; t; t; t / < t

�
:

Theorem 4. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

If there exists � 2 ˚1 such that Z d.Ax;By/

0

'.t/dt (4.1)
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� �

0BBBBB@
R d.Ax;Sx/
0 '.t/dt;

R d.By;Ty/
0 '.t/dt;

R d.Sx;Ty/
0 '.t/dt;R 1

2
Œd.Ax;Sx/Cd.By;Ty/�

0 '.t/dt;
R 1

2
Œd.Ax;Sx/Cd.Sx;Ty/�

0 '.t/dt;R 1
2
Œd.By;Ty/Cd.Sx;Ty/�

0 '.t/dt;
R 1

2
Œd.Ax;Ty/Cd.By;Sx/�

0 '.t/dt;R d.Ax;Sx/d.By;Ty/
1Cd.Ax;By/

0 '.t/dt;
R d.Ax;Ty/d.By;Sx/

1Cd.Ax;By/

0 '.t/dt

1CCCCCA
for all x;y 2 X and some ' 2 ˚ , then A;B;S and T have a unique common fixed
point in X .

Proof. Suppose the pair .A;S/ (as well as .B;T /) is subsequentially continuous
and compatible. Then there exists a sequence fxng in X such that

lim
n!1

Axn D lim
n!1

Sxn D u;

for some u 2X , and

lim
n!1

d.Axn;Syn/D d.Au;Su/D 0;

with AuD Su, whereas in respect to the pair .B;T /, there exists a sequence fyng in
X such that

lim
n!1

Byn D lim
n!1

Tyn D w;

for some w 2X , and

lim
n!1

d.Byn;Tyn/D d.Bw;Tw/D 0;

with Bw D Tw. Hence, u is a coincidence point of the pair .A;S/, whereas w is a
coincidence point of the pair .B;T /.

Now we assert that uDw. To accomplish this, using inequality (4.1) with xD xn,
y D yn, we haveZ d.Axn;Byn/

0

'.t/dt (4.2)

� �

0BBBBB@
R d.Axn;Sxn/
0 '.t/dt;

R d.Byn;Tyn/
0 '.t/dt;

R d.Sxn;Tyn/
0 '.t/dt;R 1

2
Œd.Axn;Sxn/Cd.Byn;Tyn/�

0 '.t/dt;
R 1

2
Œd.Axn;Sxn/Cd.Sxn;Tyn/�

0 '.t/dt;R 1
2
Œd.Byn;Tyn/Cd.Sxn;Tyn/�

0 '.t/dt;
R 1

2
Œd.Axn;Tyn/Cd.Byn;Sxn/�

0 '.t/dt;R d.Axn;Sxn/d.Byn;Tyn/
1Cd.Axn;Byn/

0 '.t/dt;
R d.Axn;Tyn/d.Byn;Sxn/

1Cd.Axn;Byn/

0 '.t/dt

1CCCCCA :
Passing to the limit as n!1 in inequality (4.2), we getZ d.u;w/

0

'.t/dt � �

0@ 0;0;
R d.u;w/
0 '.t/dt;0;

R 1
2
d.u;w/

0 '.t/dt;R 1
2
d.u;w/

0 '.t/dt;
R d.u;w/
0 '.t/dt;0;

R d2.u;w/
1Cd.u;w/

0 '.t/dt

1A
� �

 
0;0;

R d.u;w/
0 '.t/dt;0;

R d.u;w/
0 '.t/dt;R d.u;w/�

0 '.t/dt;
R d.u;w/
0 '.t/dt;0;

R d.u;w/
0 '.t/dt

!
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D �1

 Z d.u;w/

0

'.t/dt

!
<

Z d.u;w/

0

'.t/dt

a contradiction, so we have Z d.´;w/

0

'.t/dt D 0

Hence, uD w. Now we prove that AuD u. Putting x D u and y D yn in inequality
(4.1), we obtain

(4.3)Z d.Au;Byn/

0

'.t/dt

� �

0BBBBB@
R d.Au;Su/
0 '.t/dt;

R d.Byn;Tyn/
0 '.t/dt;

R d.Su;Tyn/
0 '.t/dt;R 1

2
Œd.Au;Su/Cd.Byn;Tyn/�

0 '.t/dt;
R 1

2
Œd.Au;Su/Cd.Su;Tyn/�

0 '.t/dt;R 1
2
Œd.Byn;Tyn/Cd.Su;Tyn/�

0 '.t/dt;
R 1

2
Œd.Au;Tyn/Cd.Byn;Su/�

0 '.t/dt;R d.Au;Su/d.Byn;Tyn/
1Cd.Au;Byn/

0 '.t/dt;
R d.Au;Tyn/d.Byn;Su/

1Cd.Au;Byn/

0 '.t/dt

1CCCCCA :
Passing to the limit as n!1 in inequality (4.3), we getZ d.Au;u/

0

'.t/dt

� �

0@ 0;0;
R d.Au;´/
0 '.t/dt;0;

R 1
2
d.Au;u/

0 '.t/dt;
R 1

2
d.Au;u/

0 '.t/dt;R d.Au;u/
0 '.t/dt;0;

R d2.Au;u/
1Cd.Au;u/

0 '.t/dt

1A
� �

 
0;0;

R d.Au;u/
0 '.t/dt;0;

R d.Au;u/
0 '.t/dt;

R d.Au;u/
0 '.t/dt;R d.Au;u/

0 '.t/dt;0;
R d.Au;u/
0 '.t/dt

!

D �1

 Z d.Au;u/

0

'.t/dt

!
<

Z d.Au;u/

0

'.t/dt

a contradiction, so we have Z d.Au;u/

0

'.t/dt D 0

and so AuD u. Therefore, AuD SuD u. Now we assert that BuD u. To accom-
plish this, on using inequality (4.1) with x D xn, y D u, we haveZ d.Axn;Bu/

0

'.t/dt (4.4)
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� �

0BBBBB@
R d.Axn;Sxn/
0 '.t/dt;

R d.Bu;T u/
0 '.t/dt;

R d.Sxn;T u/
0 '.t/dt;R 1

2
Œd.Axn;Sxn/Cd.Bu;T u/�

0 '.t/dt;
R 1

2
Œd.Axn;Sxn/Cd.Sxn;T u/�

0 '.t/dt;R 1
2
Œd.Bu;T u/Cd.Sxn;T u/�

0 '.t/dt;
R 1

2
Œd.Axn;T u/Cd.Bu;Sxn/�

0 '.t/dt;R d.Axn;Sxn/d.Bu;T u/
1Cd.Axn;Bu/

0 '.t/dt;
R d.Axn;T u/d.Bu;Sxn/

1Cd.Axn;Bu/

0 '.t/dt

1CCCCCA :
Passing to the limit as n!1 in inequality (4.4), we getZ d.u;Bu/

0

'.t/dt

� �

0@ 0;0;
R d.u;Bu/
0 '.t/dt;0;

R 1
2
d.u;Bu/

0 '.t/dt;
R 1

2
d.u;Bu/

0 '.t/dt;R d.Bu;u/
0 '.t/dt;0;

R d2.Bu;u/
1Cd.Bu;u/

0 '.t/dt

1A
� �

 
0;0;

R d.u;Bu/
0 '.t/dt;0;

R d.u;Bu/
0 '.t/dt;

R d.u;Bu/
0 '.t/dt;R d.Bu;u/

0 '.t/dt;0;
R d.Bu;u/
0 '.t/dt

!

� �1

 Z d.Bu;u/

0

'.t/dt

!
<

Z d.Bu;u/

0

'.t/dt

which is a contradiction, so we haveZ d.´;B´/

0

'.t/dt D 0:

Thus B´D S´D ´. Therefore in all, ´DA´D S´DB´D T ´, i.e., ´ is a common
fixed point of A;B;S and T . The uniqueness of common fixed point is an easy
consequence of inequality (4.1).

The proof is similar if we assume that .A;S/ (as well as .B;T /) is subcompatible
and reciprocally continuous. This completes the proof of the theorem. �

Now we state the following theorem whose proof is similar to the one of Theorem
4.

Theorem 5. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

If there exists � 2 ˚2 such that Z d.Ax;By/

0

'.t/dt (4.5)
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� �

0BB@
R d.Ax;Sx/
0 '.t/dt;

R d.By;Ty/
0 '.t/dt;

R d.Sx;Ty/
0 '.t/dt;R 1

2
Œd.Ax;Sx/Cd.By;Ty/�

0 '.t/dt;
R 1

2
Œd.Ax;Sx/Cd.Sx;Ty/�

0 '.t/dt;R 1
2
Œd.By;Ty/Cd.Sx;Ty/�

0 '.t/dt;
R 1

2
Œd.Ax;Ty/Cd.By;Sx/�

0 '.t/dt

1CCA
for all x;y 2 X and some ' 2 ˚ , then A;B;S and T have a unique common fixed
point in X .

4.1. Consequences

In this section we derive some consequences of Theorem 4 and Theorem 5.
If '.t/D 1 for all t in Theorem 4 then we get the following natural result.

Corollary 8. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

If there exists � 2 ˚1 such that

d.Ax;By/

� �

0B@ d.Ax;Sx/;d.By;Ty/;d.Sx;Ty/; 1
2
Œd.Ax;Sx/Cd.By;Ty/�;

1
2
Œd.Ax;Sx/Cd.Sx;Ty/�; 1

2
Œd.By;Ty/Cd.Sx;Ty/�;

1
2
Œd.Ax;Ty/Cd.By;Sx/�; d.Ax;Sx/d.By;Ty/

1Cd.Ax;By/
; d.Ax;Ty/d.By;Sx/

1Cd.Ax;By/

1CA
for all x;y 2X , then A;B;S and T have a unique common fixed point in X .

If we consider '.t/D 1 for all t in Theorem 5, we obtain the following corollary:

Corollary 9. Let A;B;S;T W X ! X be four self mappings of a metric space
.X;d/. If the pairs .A;S/ and .B;T / are compatible and subsequentially continuous
(alternately subcompatible and reciprocally continuous), then

(1) the pair .A;S/ has a coincidence point,
(2) the pair .B;T / has a coincidence point.

If there exists � 2 ˚2 such that

d.Ax;By/

� �

0@ d.Ax;Sx/;d.By;Ty/;d.Sx;Ty/; 1
2
Œd.Ax;Sx/Cd.By;Ty/�;

1
2
Œd.Ax;Sx/Cd.Sx;Ty/�; 1

2
Œd.By;Ty/Cd.Sx;Ty/�;

1
2
Œd.Ax;Ty/Cd.By;Sx/�

1A
for all x;y 2X , then A;B;S and T have a unique common fixed point in X .

Remark 1. Theorems 3–5 extend the results of Altun and Türkoǧlu [7,8], Aliouche
[6], Rhoades [48], Li et al. [36] for single-valued mappings, whereas the conditions
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on completeness of the underlying subspaces and containment of ranges amongst
involved mappings are relaxed.

On choosing A;B;S and T suitably in Theorems 3–5 and Corollaries 4–9, we can
deduce several corollaries for three and two self mappings.

4.2. Illustrative examples

In what follows, we support the result of Theorem 5 by an example, inspired by
[56].

Example 5. Let X D f0;1;2;3; : : :g and consider the metric d WX �X ! X given
by

d.x;y/D

�
0; if x D yI
xCy; if x ¤ y:

Define A;B;S;T WX !X by

Ax D

(
0; if x D 0;
xC1; if x ¤ 0;

Bx D

(
0; if x D 0;
xC2; if x ¤ 0;

and

Sx D

(
0; if x D 0;
2xC2; if x ¤ 0;

T x D

(
0; if x D 0;
2xC1; if x ¤ 0;

Also, define ' W Œ0;C1/! Œ0;C1/ by '.t/D tet C t . Then:
(1) The pairs .A;S/ and .B;T / are compatible and subsequentially continuous.
(2) ' is a Lebesgue-integrable function which is summable, nonnegative and

such that
R �
0 '.t/dt > 0 for all � > 0.

(3) For any x;y 2X , we haveZ d.Ax;By/

0

'.t/dt � e�1
Z �.x;y/

0

'.t/dt;

where

�.x;y/

Dmax

8<:
d.Ax;Sx/;d.By;Ty/;d.Sx;Ty/; 1

2
Œd.Ax;Sx/Cd.By;Ty/�;

1
2
Œd.Ax;Sx/Cd.Sx;Ty/�; 1

2
Œd.By;Ty/Cd.Sx;Ty/�;

1
2
Œd.Ax;Ty/Cd.By;Sx/�

9=; :
Proof. We can prove (1) as in Example 4. The proof of (2) is clear. To prove (3),

given x;y 2X , with x � y and divide the proof into the following cases:
Case 1: x D y D 0. Here Ax D By D Sx D Ty D 0. ThusZ d.Ax;Ay/

0

'.t/dt � e�1
Z �.x;y/

0

'.t/dt:
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Case 2. y D 0 and x > 0. Then we have Ax D xC1, By D 0, Sx D 2xC2 and
Ty D 0. Consequently, we obtain

d.Ax;By/D d.xC1;0/D xC1

and

�.x;y/

Dmax

8<:
d.Ax;Sx/;d.By;Ty/;d.Sx;Ty/; 1

2
Œd.Ax;Sx/Cd.By;Ty/�;

1
2
Œd.Ax;Sx/Cd.Sx;Ty/�; 1

2
Œd.By;Ty/Cd.Sx;Ty/�;

1
2
Œd.Ax;Ty/Cd.By;Sx/�

9=;
Dmax8<:

d.xC1;2xC2/;d.B0;T 0/;d.2xC2;0/; 1
2
Œd.xC1;2xC2/Cd.0;0/�;

1
2
Œd.xC1;2xC2/Cd.2xC2;0/�; 1

2
Œd.0;0/Cd.xC1;0/�;

1
2
Œd.xC1;0/Cd.0;2xC2/�

9=;
D 3xC3:

It follows thatZ d.Ax;By/

0

'.t/dt D

Z xC1

0

.tet C t /dt D

Z xC1

0

.tet /dt D .xC1/exC1

� e�1.3xC3/e3xC3 D e�1�.x;y/� e�.x;y/

D e�1
Z �.x;y/

0

'.t/dt:

Case 3. Suppose x > y > 0. We need to consider the following subcases:
� If xD yC1, or equivalently yD x�1, then we have d.Ax;By/D d.Ax;B.x�

1//D d.xC1;xC1/D 0.
� If x >yC1, then we haveAxD xC1,ByD yC2, SxD 2xC2 and TyD 2yC

1. Now, if x D 2y, then d.Ax;By/ D d.A.2y/;By/ D d.2yC 1;yC 2/ D 3yC 3
and

�.x;y/

Dmax

8<:
d.Ax;Sx/;d.By;Ty/;d.Sx;Ty/; 1

2
Œd.Ax;Sx/Cd.By;Ty/�;

1
2
Œd.Ax;Sx/Cd.Sx;Ty/�; 1

2
Œd.By;Ty/Cd.Sx;Ty/�;

1
2
Œd.Ax;Ty/Cd.By;Sx/�

9=;

Dmax

8̂̂̂̂
<̂
ˆ̂̂:
d.2yC1;4yC2/;d.yC2;2yC1/;d.4yC2;2yC1/;

1
2
Œd.2yC1;4yC2/Cd.yC2C2yC1/�;
1
2
Œd.2yC1;4yC2/Cd.4yC2;2yC1/�;

1
2
Œd.yC2C2yC1/Cd.4yC2;2yC1/�;
1
2
Œd.2yC1;2yC1/Cd.yC2;4yC2/�

9>>>>=>>>>;
D 6yC3:
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Thus we getZ d.Ax;By/

0

'.t/dt D

Z 3yC3

0

.tet C t /dt D

Z 3yC3

0

.tet /dt D .3xC3/e3yC3

� e�1.6yC3/e6yC3 D e�1�.x;y/� e�.x;y/

D e�1
Z �.x;y/

0

'.t/dt:

� On the other hand, if x < 2y then d.Ax;By/D d.xC1;yC2/D xCyC3 and

�.x;y/

Dmax

8<:
d.Ax;Sx/;d.By;Ty/;d.Sx;Ty/; 1

2
Œd.Ax;Sx/Cd.By;Ty/�;

1
2
Œd.Ax;Sx/Cd.Sx;Ty/�; 1

2
Œd.By;Ty/Cd.Sx;Ty/�;

1
2
Œd.Ax;Ty/Cd.By;Sx/�

9=;

Dmax

8̂̂̂̂
<̂
ˆ̂̂:
d.xC1;2xC2/;d.yC2;2yC1/;d.2xC2;2yC1/;

1
2
Œd.xC1;2xC2/Cd.yC2;2yC1/�;

1
2
Œd.xC1;2xC2/Cd.2xC2;2yC1/�;
1
2
Œd.yC2;2yC1/Cd.2xC2;2yC1/�;
1
2
Œd.xC1;2yC1/Cd.yC2;2xC2/�

9>>>>=>>>>;
D 2xC2yC3:

Thus we getZ d.Ax;By/

0

'.t/dt D

Z xCyC3

0

.tet C t /dt D

Z xCyC3

0

.tet /dt D .3xC3/exCyC3

� e�1.2xC2yC3/e2xC2yC3 D e�1�.x;y/� e�.x;y/

D e�1
Z �.x;y/

0

'.t/dt:

� Finally, if x > 2y, then d.Ax;By/D d.xC1;yC2/D xCyC3 and

�.x;y/

Dmax

8<:
d.Ax;Sx/;d.By;Ty/;d.Sx;Ty/; 1

2
Œd.Ax;Sx/Cd.By;Ty/�;

1
2
Œd.Ax;Sx/Cd.Sx;Ty/�; 1

2
Œd.By;Ty/Cd.Sx;Ty/�;

1
2
Œd.Ax;Ty/Cd.By;Sx/�

9=;

Dmax

8̂̂̂̂
<̂
ˆ̂̂:
d.xC1;2xC2/;d.yC2;2yC1/;d.2xC2;2yC1/;

1
2
Œd.xC1;2xC2/Cd.yC2;2yC1/�;

1
2
Œd.xC1;2xC2/Cd.2xC2;2yC1/�;
1
2
Œd.yC2;2yC1/Cd.2xC2;2yC1/�;
1
2
Œd.xC1;2yC1/Cd.yC2;2xC2/�

9>>>>=>>>>;
D 3xC3:
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Therefore, we haveZ d.Ax;By/

0

'.t/dt D

Z xCyC3

0

.tet C t /dt D

Z xCyC3

0

.tet /dt D .xCyC3/exCyC3

� e�1.3xC3/e3xC3 D e�1�.x;y/� e�.x;y/

D e�1
Z �.x;y/g

0

'.t/dt:

Case 4. Assume xD y > 0. Consequently, we get d.Ax;Bx/D d.xC1;xC2/D
2xC3 and

�.x;y/

Dmax

8<:
d.Ax;Sx/;d.By;Ty/;d.Sx;Ty/; 1

2
Œd.Ax;Sx/Cd.By;Ty/�;

1
2
Œd.Ax;Sx/Cd.Sx;Ty/�; 1

2
Œd.By;Ty/Cd.Sx;Ty/�;

1
2
Œd.Ax;Ty/Cd.By;Sx/�

9=;

Dmax

8̂̂̂̂
<̂
ˆ̂̂:
d.xC1;2xC2/;d.xC2;2xC1/;d.2xC2;2xC1/;

1
2
Œd.xC1;2xC2/Cd.xC2;2xC1/�;

1
2
Œd.xC1;2xC2/Cd.2xC2;2xC1/�

1
2
Œd.xC2;2xC1/Cd.2xC2;2xC1/�;
1
2
Œd.xC1;2xC1/Cd.xC2;2xC2/�g

9>>>>=>>>>;
D 4xC3:

Therefore, we haveZ d.Ax;By/

0

'.t/dt D

Z 2xC3

0

.tet C t /dt D

Z 2xC3

0

.tet /dt D .2xC3/e2xC3

� e�1.4xC3/e4xC3 D e�1�.x;y/� e�.x;y/

D e�1
Z �.x;y/g

0

'.t/dt:

If we define a function �2 W Œ0;C1/! Œ0;C1/ by �2.t/ D e�1t , for all t � 0,
then clearly �2 2 ˚ . Thus, in all possible cases, the contractive condition (4.5) is
satisfied. Hence, all the hypotheses of Theorem 5 are satisfied in this example and
0 is a unique common fixed point of the pairs .A;S/ and .B;T /. Note that all the
involved mappings are discontinuous at their unique common fixed point. �

Remark 2. Example 5 can also be used to illustrate Theorem 4.

5. AN APPLICATION TO SYSTEMS OF INTEGRAL EQUATIONS

Consider the following system of integral equations:

u.t/D

Z T

0

K1.t; s;u.s//dsCg.t/;
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u.t/D

Z T

0

K2.t; s;u.s//dsCg.t/; (5.1)

u.t/D

Z T

0

K3.t; s;u.s//dsCg.t/;

t 2 I D Œ0;T �, where T > 0. The purpose of this section is to give an existence
theorem for a solution of the system (5.1) using Corollary 9.

Consider the set

C.I / WD fu W I ! R j u is continuous on I g;

and define d W C.I /�C.I /! R by:

d.u;v/Dmax
t2I
ju.t/�v.t/j; 8u;v 2 C.I /:

Then .C.I /;d/ is a complete metric space. Define, further, mappings Ti W C.I /!
C.I / by

Tix.t/D

Z T

0

Ki .t; s;x.s// dsCg.t/; t 2 I; i 2 f1;2;3g: (5.2)

Consider the following conditions:
(i) K1;K2;K3 W I �I �R! R and g W I ! R are continuous,
(ii) there exists a continuous function G W I �I ! RC such that

jK1.t; s;u.t//�K2.t; s;v.t//j �G.t;s/

�

0BBBB@
jT1u.t/�T3u.t/j ; jT2v.t/�T3v.t/j ; jT3u.t/�T3v.t/j ;

1
2
ŒjT1u.t/�T3u.t/jC jT2v.t/�T3v.t/j� ;

1
2
ŒjT1u.t/�T3u.t/jC jT3u.t/�T3v.t/j� ;

1
2
ŒjT2v.t/�T3v.t/jC jT3u.t/�T3v.t/j� ;
1
2
ŒjT1u.t/�T3v.t/jC jT2v.t/�T3u.t/j�

1CCCCA
for all u;v 2 C.I /, and all s; t 2 I ,

(iii) max
t2I

Z T

0

G.t;s/ds < 1.

(iv) there exists fhng 2 C.I / such that limn!1A1hn D limn!1A2hn D h� 2
C.I / and
lim
n!1

sup
x2I

jA1A2hn�A2A1hnj D 0,

(v) there exists fkng 2 C.I / such that limn!1T1kn D limn!1T2kn D k� 2

C.I / and
lim
n!1

sup
x2I

jT1T2hn�T2T1knj D 0.

We will prove the following result.

Theorem 6. Suppose that the hypotheses (i)–(v) hold. Then the system 5.1 has a
unique solution x� 2 C.I /.
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Proof. Since Ki and g, for i D 1;2;3 are continuous, then also the operators Ti
from equation (5.2) are continuous and so reciprocally continuous. By hypothesis
(iv) and (v) the pairs .T1;T3/ and .T2;T3/ are subcompatible with respect to T3.
Now, for all u;v 2 C.I /, by (ii) and (iii), we have:

jT1u.t/�T2v.t/j

�

Z T

0

jK1.t; s;u.s//�K2.t; s;v.s//jds

�

Z T

0

G.t;s/ds

��

0BBBB@
jT1u.t/�T3u.t/j ; jT2v.t/�T3v.t/j ; jT3u.t/�T3v.t/j ;

1
2
ŒjT1u.t/�T3u.t/jC jT2v.t/�T3v.t/j� ;

1
2
ŒjT1u.t/�T3u.t/jC jT3u.t/�T3v.t/j� ;

1
2
ŒjT2v.t/�T3v.t/jC jT3u.t/�T3v.t/j� ;
1
2
ŒjT1u.t/�T3v.t/jC jT2v.t/�T3u.t/j�

1CCCCA :
On routine calculations, we get

d.T1u;T2v/

� �

0@ d.T1u;T3u/;d.T2v;T3v/;d.T3u;T3v/;
1
2
Œd.T1u;T3u/Cd.T2v;T3v/� ;

1
2
Œd.T1u;T3u/Cd.T3u;T3v/� ;

1
2
Œd.T2v;T3v/Cd.T3u;T3v/� ;

1
2
Œd.T1u;T3v/Cd.T2v;T3u/�

1A :
Then, putting AD T1, B D T2 and S D T D T3, Corollary 9 is applicable in the case
X D C.I /, and so T1;T2 and T3 have a unique common fixed point. Then, there
exists a unique x� 2 C.I /, a common fixed point of T and S , that is x� is a unique
solution to (5.1). �

6. APPLICATIONS TO EXISTENCE THEOREMS FOR FUNCTIONAL EQUATIONS
ARISING IN DYNAMIC PROGRAMMING

The existence, uniqueness, and iterative approximations of solutions for several
classes of functional equations arising in dynamic programming were studied by a
lot of researchers. Bellman [14] first studied the existence of solutions for some
classes of functional equations arising in dynamic programming. Bellman and Lee
[15] pointed out that the basic form of the functional equations in dynamic program-
ming is as follows:

q.x/D sup
y2D

fG.x;y;q.�.x;y///g; x 2W;

where � WW �D!W , g WW �D! R, G WW �D�R! R are mappings while
W � U is a state space, D � V is a decision space and U as well as V are Banach
spaces.
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In 1984, Bhakta and Mitra [16] obtained some existence theorem for the following
functional equation which arises in multistage decision process related to dynamic
programming

q.x/D sup
y2D

fg.x;y/CG.x;y;q.�.x;y///g; x 2W;

where � WW �D!W , g WW �D! R, G WW �D�R! R are mappings while
W � U is a state space, D � V is a decision space and U as well as V are Banach
spaces.

Thereafter a lot of work has been done in this direction and existence and unique-
ness results were obtained for solutions and common solutions of some functional
equations and systems of functional equations in dynamic programming with the use
of fixed point results. For details see [13,32,38,39,45,46] and the references therein.

Let U and V be Banach spaces, W � U be a state space and D � V be a decision
space. Now, by using the fixed point results obtained in the previous section, we study
the solvability of the following system of functional equations arising in dynamic
programming:8̂<̂

:
Fi .x/D sup

y2D

fg.x;y/CHi .x;y;Fi .�.x;y///g; x 2W; i D 1;2;

Gi .x/D sup
y2D

fg.x;y/CKi .x;y;Gi .�.x;y///g; x 2W; i D 1;2;
(6.1)

where � WW �D!W , g WW �D! R, Hi ;Ki WW �D�R! R.
Let C.W / denote the space of all continuous real-valued functions onW . Clearly,

this space endowed with the metric given by

d.h;k/D sup
x2W

jh.x/�k.x/j; for all h;k 2 C.W /

is a complete metric space.
We will prove the following result.

Theorem 7. LetHi ;Ki WW �D�R! R, for i D 1;2, be four bounded functions
and let Ai ;Ti W C.W /! C.W /, for i D 1;2, be four operators defined by

Aih.x/D sup
y2D

fg.x;y/CHi .x;y;h.�.x;y///g; i D 1;2; (6.2)

Tik.x/D sup
y2D

fg.x;y/CKi .x;y;k.�.x;y///g; i D 1;2; (6.3)

for all h;k 2 C.W / and x 2W . Assume that the following conditions hold:
(i) there exists fhng 2 C.W / such that limn!1A1hn D limn!1A2hn D h� 2
C.W / and limn!1 supx2W jA1A2hn�A2A1hnj D 0,

(ii) there exists fkng 2 C.W / such that limn!1T1kn D limn!1T2kn D k� 2
C.W / and
limn!1 supx2W jT1T2hn�T2T1knj D 0,



348 H. K. NASHINE

(iii) Z jH1.x;y;h.�.x;y///�K1.x;y;k.�.x;y///j

0

'.s/ds

�

Z �.h;k/

0

'.t/dt �W

 Z �.h;k/

0

'.t/dt

!
; (6.4)

where

�.h;k/Dmax8<:
jA1h�A2hj; jT1k�T2kj; jT2k�A2kj;

1
2
ŒjA1h�T2kjC jT1k�A2kj�;

jA1k�A2kjjT1k�T2kj
1CjT2k�A2hj

; jA1h�T2kjjT1k�A2hj
1CjT2k�A2hj

; jA1h�T2kjjT1k�A2hj
1CjA1h�T1kj

9=;
where h;k 2 C.W /, x 2 W , y 2 D, W 2 	 and ' W RC ! RC is a non-negative
summable Lebesgue integrable function such thatZ �

0

'.s/ds > 0;

for each � > 0. Then the system of functional equations (6.1) has a unique bounded
solution.

Proof. Notice that the system of functional equations (6.1) has a unique
bounded solution if and only if the operators (6.2) and (6.3) have a unique common
fixed point. Now, since H1;H2;K1 and K2 are bounded, there exists a positive
number � such that

supfjHi .x;y;´/j; jKi .x;y;´/j W .x;y;´/ 2W �D�R; i D 1;2g ��:

By using a property from the integration theory [30, Theorem 12.34], and the proper-
ties of ', we conclude that for each positive number ", there exists a positive number
ı."/ such that Z

�

'.s/ds � "; (6.5)

for all � � Œ0;2�� with m.� /� ı."/, where m.� / is the Lebesgue measure of � .
Let x 2W and h1;h2 2 C.W /, then there exist y1;y2 2D such that

A1h1.x/ < g.x;y1/CH1.x;y1;h1.�.x;y1///C ı."/; (6.6)

T1h2.x/ < g.x;y2/CK1.x;y2;h2.�.x;y2///C ı."/; (6.7)

A1h1.x/� g.x;y2/CH1.x;y2;h1.�.x;y2///; (6.8)

T1h2.x/� g.x;y1/CK1.x;y1;h2.�.x;y1///: (6.9)

Then from (6.6) and (6.9), it follows easily that

A1h1.x/�T1h2.x/ < H1.x;y1;h1.�.x;y1///�K1.x;y1;h2.�.x;y1///C ı."/
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� jH1.x;y1;h1.�.x;y1///�K1.x;y1;h2.�.x;y1///jC ı."/:

Hence we get

A1h1.x/�T1h2.x/ (6.10)

< jH1.x;y1;h1.�.x;y1///�K1.x;y1;h2.�.x;y1///jC ı."/:

Similarly, from (6.7) and (6.8) we obtain

T1h2.x/�A1h1.x/ (6.11)

< jK1.x;y2;h2.�.x;y2///�H1.x;y2;h1.�.x;y2///jC ı."/:

Therefore, from (6.10) and (6.11) we have

jA1h1.x/�T1h2.x/j (6.12)

< jH1.x;y1;h1.�.x;y1///�K1.x;y1;h2.�.x;y1///jC ı."/:

In view of (7), (6.5) and (6.12), it follows easily thatZ jA1h1.x/�T1h2.x/j

0

'.s/ds �

Z �.h1;h2/

0

'.t/dt �W

 Z �.h1;h2/

0

'.t/dt

!
C "

where

�.h1;h2/

Dmax

8̂<̂
:

jA1h1�A2h1j; jT1h2�T2h2j; jT2h2�A2h2j;
1
2
ŒjA1h1�T2h2jC jT1h2�A2h2j�;

jA1h2�A2h2jjT1h2�T2h2j

1CjT2h2�A2h1j
;

jA1h1�T2h2jjT1h2�A2h1j

1CjT2h2�A2h1j
; jA1h1�T2h2jjT1h2�A2h1j

1CjA1h1�T1h2j

9>=>; :
Since the above inequality is true for any x 2W and " > 0 is taken arbitrary, then we
deduce easily thatZ d.A1h1;T1h2/

0

'.s/ds �

Z �d .h1;h2/

0

'.t/dt �W

 Z �d .h1;h2/

0

'.t/dt

!
;

where

�d .h1;h2/

Dmax

8̂<̂
:

d.A1h1;A2h1/;d.T1h2;T2h2/;d.T2h2;A2h2/;
1
2
Œd.A1h1;T2h2/Cd.T1h2;A2h2/�;

d.A1h2;A2h2/d.T1h2;T2h2/
1Cd.T2h2;A2h1/

;
d.A1h1;T2h2//d.T1h2;A2h1/

1Cd.T2h2;A2h1/
; d.A1h1;T2h2/d.T1h2;A2h1/

1Cd.A1h1;T1h2/

9>=>; :
Next, since Hi and Ki , for i D 1;2, are continuous, the operators (6.2) and (6.3) are
also continuous and so reciprocally continuous. Also, by conditions (i) and (ii), the
pairs .A1;A2/ and .T1;T2/ are subcompatible. Thus all the hypotheses of Theorem
3 are satisfied. Consequently, the operators (6.2) and (6.3) have a unique common
fixed point, that is, the system of functional equations (6.1) has a unique bounded
solution. �



350 H. K. NASHINE

ACKNOWLEDGEMENT

The author would like to thank the editor and anonymous reviewers for their con-
structive comments, which contributed to improve the presentation of the paper.

REFERENCES

[1] M. Aamri and D. Moutawakil, “Some new common fixed point theorems under strict contractive
conditions,” J. Math. Anal. Appl., vol. 270, no. 1, pp. 181–188, 2002.

[2] M. Abbas and B. Rhoades, “Common fixed point theorems for hybrid pairs of occasionally weakly
compatible mappings satisfying generalized contractive condition of integral type,” Fixed Point
Theory Appl., vol. Article ID 54101, pp. 1–9, 2007.

[3] M. A. Al-Thagafi and N. Shahzad, “Generalized I -nonexpansive selfmaps and invariant approx-
imations,” Acta Math. Sinica (Eng. Ser.), vol. 24, no. 5, pp. 867–876, 2008.

[4] J. Ali and M. Imdad, “An implicit function implies several contraction conditions,” Sarajevo J.
Math., vol. 4, no. 2, pp. 269–285, 2008.

[5] A. Aliouche, “A common fixed point theorem for weakly compatible mappings in symmetric
spaces satisfying a contractive condition of integral type,” J. Math. Anal. Appl., vol. 322, no. 2,
pp. 796–802, 2006.

[6] A. Aliouche, “Common fixed point theorems of Gregus type for weakly compatible mappings
satisfying generalized contractive conditions,” J. Math. Anal. Appl., vol. 341, no. 21, pp. 707–719,
2008.
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