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Abstract. Tn this paper we are dealing with the problem of the existence of two divisors of (n% +
1)/2 whose sum is equal to §n + €, in the case when § and ¢ are even, or more precisely in the
case in which§ = e+2=0o0r2 (mod 4). We will completely solve the cases § = 2,6 = 4 and
e=0.
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1. INTRODUCTION

In [1], Ayad and Luca have proved that there does not exist an odd integer n > 1

and two positive divisors d1,ds of ”22"'1 such that d; + d> = n+ 1. In [2], Dujella
and Luca have dealt with a more general issue, where n + 1 was replaced with an
arbitrary linear polynomial 6n + €, where § > 0 and ¢ are given integers. The reason
that d and d5 are congruent to 1 modulo 4 comes from the fact that (n2 4 1)/2 is
odd and is a sum of two coprime squares ((n 4 1)/2)? + ((n —1)/2)?. Such numbers
have the property that all their prime factors are congruent to 1 modulo 4. Since
dy 4 dy = én + ¢, then there are two cases: it is either § = ¢ =1 (mod 2), or § =
e+2=0 or 2 (mod 4). In [2] authors have focused on the first case.

In this paper, we deal with the second case, the case where § =¢+2 =10 or 2
(mod 4). We completely solve cases when § = 2,5 = 4 and ¢ = 0. We prove that
there exist infinitely many positive odd integers n with the property that there exists a
pair of positive divisors d;,d» of ”22+1 such that dy +dp, =2n+efore =0 (mod 4)
and we prove an analoguos result for ¢ =2 (mod 4) and divisors dy,d» of ”22+ 1
such that dy + dp = 4n + ¢. In case when § > 6 is a positive integer of the form
8 =4k +2, k € N we prove that there does not exist an odd integer n such that
there exists a pair of divisors dj,d, of ”ZTH with the property di + d> = én. We
also prove that there exist infinitely many odd integers n with the property that there

. . e 2
exists a pair of positive divisors dy, d» of % such that dy + d> = 2n.
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2. THECASES =2

Theorem 1. [fe =0 (mod 4), then there exist infinitely many positive odd integers

. . . .. .. n2+1
n with the property that there exists a pair of positive divisors dy,d> of "5~ such
that dl +d2 =2n+e.

Proof. Let e =0 (mod 4). We want to find a positive odd integer n and positive
divisors dj,dy of "ZT'H such that dy +dp = 2n +¢. Let g = ged(dy,d»). We can
write dy = gdj,d> = gd,,. Since gd|d) =lcm(dy,d>) divides ”22+1, we conclude
that there exists a positive integer d such that

gn?+1)
2d '

didy =
From the identity
(dy—dv)? = (d1 + d2)* — 4d1da,

we can easily obtain

2
1
(dr—dy)? = (2n + e —4E2 D
2d
2
1
(dy—dy1)? = 4n? +4en —1—82—2%,

d(dr—d1)* = 4n?d +4den +&*d —2n*g —2g,
d(dr—di)? = (4d —2g)n* +4den +¢*d —2g,
d(4d —2g)(d> —dy)? (2.1)
= (4d —28)*n? +4(4d —2g)den + 4d>c* —8dg —2edyg + 4g°.
For X = (4d —2g)n+2de,Y = dp —dy, the equation (2.1) becomes
X2 —d(4d —2g)Y? = 8dg +2&%dg —4g>.
For g = 1 the previous equation becomes
X2-2dQ2d —1)Y? =8d +2¢%d — 4,
X2-2d2d -1)Y? =2d(4+ &%) —4. (2.2)
The equation (2.2) is a Pellian equation. The right-hand side of (2.2) is nonzero.

Our goal is to make the right-hand side of (2.2) a perfect square. That condition
can be satisfied by taking d = %82 - %8 + 1. With this choice of d, we get

1 1 1 2
2d(4+82)—4:2(§82—§8+ 1) 4+e?)—4= (5(82—284-4)) .
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Pellian equation (2.2) becomes
X?-2d@2d-1)Y?= (%(82—28—{-4))2. (2.3)
Now, like in [2], we are trying to solve (2.3). We let

1 1
X = E(82—28+4)U, Y = 5(82—28—{—4)1/.

The equation (2.3) becomes
U?-2d2d -1)V?=1. (2.4)

Equation (2.4) is a Pell equation which has infinitely many positive integer solu-
tions (U, V'), and consequently, there exist infinitely many positive integer solutions
(X,Y) of (2.3). The least positive integer solution of (2.4) can be found using the
continued fraction expansion of number /2d(2d —1).

We can easily get /2d(2d —1) = [2d — 1;2,4d —2]. All positive solutions of
(2.4) are given by (Uy,, Vi) for some m > 0. The first few solutions are
(Uo. Vo) = (1,0),

(U1, 1) = (4d - 1,2),
(U2, V2) = (32d* —16d + 1,16d —4),
(U3, V3) = (256d% —192d? + 36d —1,128d% — 64d +6).....

Generally, solutions of (2.4) are generated by recursive expressions
Up=1, Uy=4d -1, Uyt =204d —1)Up4+1—Up,
V0=0, V1 =2, Vm+2=2(4d—1)Vm+1—Vm, m e |No. (2.5)

By induction on m, one gets that Uy, =1 (mod (4d —2)),m > 0. Indeed, Uy =
1=1 (mod (4d —2)), Uy =4d —1 =1 (mod (4d —2)). Assume that U, =
Upn—1 =1 (mod (4d —2)). For Up,+1 we get

Un+1=2@4d - 1)Uy, —Up—1=2—1=1 (mod (4d —2)).

Now, it remains to compute the corresponding values of n which arise from
X =(4d —2)n+2de and X = 1(e? —2¢+4)U. We obtain
_ 12 —2e+4U -2de
4d -2 '
We want the above number # to be a positive integer.

From d = %82 — %8 + 1, it follows 4d —2 = %82 —2e&+ 2. Note that ¢ is even.
So, congruences

1
5(82—28—|—4)U—2d8E4d+8—2—2d85 —(2d—-1)¢e=0 (mod (4d —2)),
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show us that all numbers n generated in the specified way are integers.

The first few values of number n, which we get from Uy, U,, Us, are

n=21(2-3e+6),
d =1,
dr = e>—2e+5.

n = 1(e*— 663 +20e% — 33 + 34),
dy =¢e>—2e+5,
dr = * — 683 + 1962 — 30e + 29.

n = 1(®— 10> 4 50e* — 148¢3 + 28162 — 323 + 198),
di = e*— 683 + 1962 — 30 + 29,
dr = % —108° +496* — 14263 + 26262 —292¢ + 169.

3. THECASE§ =4

Theorem 2. [fe =2 (mod 4), then there exist infinitely many positive odd integers
n2+1
2

n with the property that there exists a pair of positive divisors dy,d> of such

thatdi +dr, = 4n +«.

Proof. Proof of this theorem will be slightly different from the proof of Theorem
1. Instead of assuming that ¢ =2 (mod 4), we will distiguish two cases: in one case
we will be dealing with ¢ = 6 (mod 8) and we will apply strategies from [2] and
in the other case we will be dealing with ¢ =2 (mod 8) and we will use different
methods in obtaining results.

We start with the case when e = 6 (mod 8). We want to find odd positive integers n

and positive divisors dp,d, of ”22+1 such that dy +dy = 4n +¢.

Let g = ged(dy,d2), di = gdj,d> = gd), and d is a positive integer which satis-
fies the equation
g(n>+1)
did, = =———.
172 2d
From the identity
(d2—d1)? = (d1 + d2)* — 4d1da,
we obtain
g(n?+1)

(dy—d1)? = (4n+e)*> —4 ¥
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d(dr—d1)?* = (16d —2g)n* +8den + *d —2g,
d(16d —2g)(d» —d1)? (3.1)
= (16d —2g)*n> +8(16d —2g)den + 16d%c? —32dg —2e%dg + 4g>.
Let X = (16d —2g)n+4de, Y = dp —d;. Equation (3.1) becomes

X2 -2d(8d —g)Y? = 32dg +2%dg —4g°. (3.2)
For g = 1 the previous expression becomes
X2-2d@8d —1)Y?=2d(16+ %) —4. (3.3)

It is obvious that (3.3) is a Pellian equation. The right-hand side of (3.3) is nonzero.

Our goal is to make the right-hand side of (3.3) a perfect square. That condition
can be satisfied by taking d = 3%82 — %8 + %. With this choice for d, we get

32 8 8
So, Pellian equation (3.3) becomes

1 1 5 1 2
2d(16+82)—4=2(—82——8+—) (164¢2)—4 = (1(82—28—{-16)) .

2
X2-2d@8d—-1)Y? = (%(82—2s+ 16)) . (3.4)

Let
1 L)
X = Z(s —2e+16)W, Y = Z(e —2e+16)Z.
The equation (3.4) becomes
W2 -2d8d—1)Z?* =1. (3.5)

The equation (3.5) is a Pell equation which has infinitely many positive integer
solutions (W, Z), and consequently, there exist infinitely many positive integer solu-
tions (X, Y) of (3.4). The least positive integer solution of (3.5) can be found using
the continued fraction expansion of number /2d (84 —1).

We can easily get

V2d(8d —1)=[4d —1;1,2,1,8d —2].

All positive solutions of (3.5) are given by (W, Z,,) for some m > 0. The first few
solutions are
(Wo,Zo) = (1,0),
(W1,Zy) = (16d —1.4),
(Wa,Z5) = (512d% —64d +1,1284 —8),.....
Generally, solutions of (3.5) are generated by recursive expressions

Wo=1, Wi=16d—1, Wyt =2(16d —1)Wy,11— Wy,
Zo = 0, Zl = 4, Zm+2 = 2(16d — I)Zm+1 —Zm, m e |N().
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By induction on m, one gets that Wj,, =1 (mod (16d —2)),m > 0. Indeed, Wy
1=1 (mod (16d —2)), Wy = 16d —1 =1 (mod (16d —2)). Assume that W,
Win—1 =1 (mod (16d —2)). For Wy, +1 we get

Wins1 = 2(16d — D)Wy — W1 =2—1=1 (mod (16d —2)).

Now, it remains to compute the corresponding values of # which arise from
X =(16d —2)n+4deand X = %(82 —2e+16)W. We obtain
1(e2 =26+ 16)W —4ds
B 16d —2

We want to prove that number 7 is a positive integer.

From d = %sz — %8 + %,it follows 84 — 1 = %82 —¢&+ 4. Number % is an odd
integer. Thus, the congruences

1
(& =26+ 16W —dde = 8d—1+%—4de = (8d—1)(1—§) —0
(mod (16d —2))

show us that all numbers n generated in the specified way are integers.

The first few values of number n, which we get from Wy, W,, W3, are

n=3(e>—3e+18),
di =1
dr = 2 —2e+17.

n = g(e*— 683+ 442 — 1056 + 322),
d] =82—28+17,
dy = e* — 663 + 432 —102¢ + 305.

n = (e — 108> 4 86s* —388¢> + 1529¢% — 31556 + 5778),
dy = e* — 683 + 4362 — 102¢ + 305,
dr = % — 106> + 85e* — 382¢3 + 14862 — 3052¢ + 5473.

Now, we deal with the case when ¢ =2 (mod 8). Let e = 8k +2, k € Ny. For
g= %82 +4 and g = dy, the equation (3.2) becomes

2d —1

X2-2d@8d—g)Y? = e* +8¢2(2d — 1)+ 64(2d —1).
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The right-hand side of the equation will be a perfect square if 2d — 1 is a perfect

square. Motivated by the experimental data, we take
1 1 7 5 41
P2 —

d=——¢"— £+ .
512 64 64 16 32

We get
2d —1 = 16k* +8k> +1 = (4k> +1)%.

So, the equation (3.2) becomes

2
X?-2d(8d —g)Y? = (3%(82 + 16)(82—4e+20)) . (3.6)

We consider the corresponding Pell equation
U?-2d@8d —g)V?=1. (3.7)

Let (Uy, Vo) be the least positive integer solution of (3.7). That equation has infinitely
many solutions. From (3.7) we get that

U?=1 (mod (16d —2g)).

We deal with the case where g = dy = %82 + 4 and from the experimental data we
can set

d2 =d12—16kd1, k e N().
For Y = dy —dq we get

1, )2 1, gt &3 112
Y = 2 +4) —(2e-3) 1 +4)=———+ —8e+28.

From (3.6), we obtain:

(24 16)(e° — 166 + 140e* — 768¢> + 312062 — 8704¢ + 14400)

X
2048
We claim that X satisfies the congruence
X =4de (mod (16d —2g)). (3.8)
Indeed,
16d —2 g 83+582 5_|_25
— e — — —5¢ —,
£ 3 1 2
4 /3 2 4 3 2
e e 5¢ 25\ (&% ¢ 13 9¢
X—-4dde=|—=—-——+—-5+—||——"+—F——F+9]).
¢ (32 sty ng2)(64 8 " 16 4+)
From n = 1}55;4_‘;2, we get

4 3 2
e e 13¢ 9¢
- — = 4+ 9=64k*+28k> +7,
n i 8+16 4+ + +
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and we see that n is an odd integer. Thus, if we define

(€2 4+ 16)(® — 16> + 140s* — 7683 + 31202 — 8704 + 14400)
2048 ’

(Xo.Y0) = (

1
E(eZJr 16)(82—88+28)),

we see that (Xg, Yp) is a solution of (3.6) which satisfies the congruence (3.8). We
have proved that for every e =2 (mod 8) there exists at least one odd integer » which
satisfies the conditions of Theorem 2. Our goal is to prove that there exist infinitely
many such integers n that satisfy the properties of Theorem 2.

If (X0, Yp) is a solution of (3.6), solutions of (3.6) are also

2i
(X;,Y:) = (Xo +/2d(8d —g)YO) (Ug +/2d(8d —g)VO) L i=0,1,2,...
(3.9)
From the equation (3.9), we get

X; =UZ ' Xo=Xg=4de (mod (16d —2g)).

So, there are infinitely many solutions (X;,Y;) of (3.6) that satisfy the congruence
(3.8). Therefore, by
i X i— 4de
"= 16d—2¢°
we get infinitely many integers n with the required properties. It is easy to see that
number 7 defined in this way is odd. Indeed, we have 16d —2g =2 (mod 4), Xo =2
(mod 4), and since (3.7) implies that Uy is odd and Vj is even, we get from (3.8) that

Xi—4de=X; =UZXo=Xo=2 (mod 4),
so n is odd. O

4. THE CASEe =0

Proposition 1. There exist infinitely many positive odd integers n with the property

that there exists a pair of positive divisors dy,d» of ”22+ L such that dy + dy = 2n.
These solutions satisfy gcd(dy,d2) = 1 and d1dr = 'ﬂTH

Proof. We want to find a positive odd integer n and positive divisors dy,d» of
”22—“ such that dy +dp = 2n. Let g = ged(dy,d2). Then g|(2n) and g|(n? + 1)
which implies that g|((2n)? + 4) so we can conclude that g|4. Because g is the
greatest common divisor of dy,d» and d, d» are odd numbers, we can also conclude
that g is an odd number. So, g = 1. Like we did in the proofs of the previous
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o . . . 2
theorems, we define a positive integer d which satisfies the equation dyd, = %
From the identity
(d2—d1)? = (d1 + d2)* — 4d1da,
we can easily obtain

2
(o —diy? = @y 2D,

d(dy—dy1)? = 4n%d —2n% —2.
Let dy —dj =2y, so we get
(4d —2)n* —4dy? =2,
2d — )n? —2dy?* = 1. 4.1)
‘We will use the next lemma, which is Criterion 1 from [3] to check if there exists

a solution for (4.1).

Lemma 1. Leta > 1, b be positive integers such that gcd(a,b) =1 and D = ab is
not a perfect square. Moreover, let (ug,vg) denote the least positive integer solution
of the Pell equation

u?—Dv?=1.
Then equation ax®> —by? = 1 has a solution in positive integers x,y if and only if

2al(uo+1) and 2b|(ug—1).

We want to solve the Pell equation
U?-2dQ2d-1)V? =1, 4.2)

wheren = U, y = V. The continued fraction expansion of the number /2d(2d — 1)
is already known from Theorem 1 where we have obtained

V2d2d —1)=[2d —1;2,4d —2].

The least positive integer solution of the Pell equation (4.2) is (4d —1,2). In
our case, we want to find solutions of (4.1), so we apply Lemma 1 which gives us
conditions that have to be fulfilled. It has to be that

2(2d —1)|4d and 4d|(4d —2),

which is not true for d € N. So, for Pellian equation (4.1) there are no integer solu-
tions (n,y) when a = 2d —1 > 1. Finally, we have to check the remaining case for
a = 1, which is the case that is not included in Lemma 1.

Ifa=2d—-1=1,thend = 1. From (4.1) and d = 1, we get the Pell equation
n?—2y% =1, (4.3)
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which has infinitely many solutions n = Uy,, y = V;,, m € Ng where
Up=1, Uy =3, Upt2 =6Up+1—Un,

Vo=0, Vi =2, Vipya =6Viutr1—Vim, m € No.
The first few values (U;, V;) are

(Uo, Vo) = (1,0), (U1, V1) = (3,2), (Uz,V2) = (17,12), (U3, V3) = (99,70),....

From those solutions we can easily generate (n,d1,d>)
(n,dy,d2) = (3,1,5), (17,5,29), (99,29,169),....

We have proved that there exist infinitely many odd positive integers n with the

property that there exists a pair of positive divisors dy, d of ”22"' L suchthatdy +d, =
2n. We have also proved that g = 1 and d = 1, so we conclude that numbers d; and

. 2
d> are coprime and that d1d, = % ]

Theorem 3. Let § > 6 be a positive integer such that § = 4k + 2,k € N. Then
there does not exist a positive odd integer n with the property that there exists a pair

of positive divisors dy,d> of ”2;'1 such that dy + dp = én.

Proof. Suppose on the contrary that this is not so and let the number § be the
smallest positive integer § = 4k +2, k € N for which there exists an odd integer
n and a pair of positive divisors dq,d, of ”2% such that d; +dy = én. Let g =
ged(dy,da) > 1. Since dy = gd|, d, = gdj, it follows that g|(n? + 1) and g|(5n)
and we conclude that g|((6n)? 4 §2), which implies that g|§2. This means that g and
§ have a common prime factor p. Let di = pd{,d» = pd;,§ = pé”. Then, we have
pd{ + pd) = pé§"n, so we can conclude d{ + dj = §"n where d{’,d} are divisors
of ”ZT'H It is clear that §” < § and if it also satisfies §” # 2, the existence of the
number §” contradicts the minimality of 8. So, if §” # 2, then we must have g = 1.

If §” = 2, it follows from Proposition 1 that ged(d}’,d)) =1 and d{d}) = n22+1.

But, ged(d1,d>) = pd}'d} should be a divisor of ”2% which is not possible because
p > 1. So, in this case we also conclude that g = 1.
From the identity

(da—d1)* = (d1 + d2)? —4drda,
and using g = 1, we obtain

2
(o —diy? = o 2",

d(dz—dl)z = 827’12(1 —2n2—2,
d(dr —d1)? = (d§* —2)n* -2.
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In the equation
(6%2d —2)n? —d(dr —dy)?* =2,
we set (dp —dy) = 2y (number dy — dj is an even number because dp,d, are odd
integers), and we get
(8%d —2)n?* —4dy?* =2.
If we divide both sides of the above equation by 2, then it becomes
(2d(2k +1)?> = 1)n? —2dy* = 1.

Now, if we define §' = % =2k + 1, we get

(28"%d —1)n? —2dy®> = 1. (4.4)

We will prove by applying Lemma 1 that the above Pell equation (4.4) has no solu-
tions.

To be able to apply Lemma 1, we have to deal with an equation of the form
x2—Dy?=1.

We have a = 2d8> —1, a > 1 (because §' > 3) and D = ab = 2d(28'*’d — 1) is
not a perfect square because 2d(28'>d — 1) =2 (mod 4). We need to find the least
positive integer solution of the equation

u?—2d28%d —1)v? =1. (4.5)

For that purpose we find the continued fraction expansion of the number

J2d(282d —1), § > 3.
\2d(28%d —1) = [ag;ay,az,...,a;_1,2a9],

where we calculate numbers a; recursively

2
| si+ao _ _d—=siyy
aj = : » Si+1 = aili —Si, li41 = -

4 1

We know that

In our case, we obtain

ao = [/2d(282d —1)] =2d8§ —1, so=0, to = I;

s1=2d8 -1, 1 =4d8' —2d -1, a1 =1;
sp =2d8 —=2d, t, =2d, a, =28 —2;
s3=2d8' —2d, 3 =4d5§' -2d -1, a3z =1;
S4:2d8/—1, t4 =1, a4:2(2d8’—1):2a0.

J2d(282d —1) = [2d§' —1:1,28' —2,1,2(2d 8’ — 1)].

We get
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Now, we can find the least positive integer solution of the equation (4.5). Because
the length of the period of the expansion is [ = 4, the least positive integer solution
of (4.5) is (p3,q3), where numbers p;,q;, i =0,1,2,3 are calculated recursively
po =dao, p1=aoar+1, px=agpk-1+ pk—2,
g0 =1, q1 =a1, qk = axqk—1 +qk—, k =2,3.
We obtain
(Po.q0) = (2d8'—1,1), (p1,q1) =(2d8', 1), (p2.q2) = (48%d —2d 8 —1,28'~1),
(p3.q3) = (48%d —1,28).
So, the least positive integer solution is (p3,g3) = (19, vo) = (48">d —1,28’) and we
apply Lemma 1.

In our case we have a = 28'?d —1, b = 2d. From Lemma | we get
(48%d —2)|48"d, 4d|(48"%d —2).

We can easily see that 4d |(48’>d —2) if and only if 4d |2 which is not possible be-
cause d € N. So, the equation (4.4) has no solutions. We have proved that there does
not exist a positive odd integer n with the property that there exists a pair of positive

divisors d,do of "22+1 such that d| 4+ do = 8n. O
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