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1. INTRODUCTION

In this paper we are going to study the following reactidfiugion ratio dependent
predator prey model

N _ DlAN+aN(1—E)—ﬂ, xeQ, t>0,
ot K mP+ N
oP N (1.1
ﬁ:DZAP+P(_d+mP+N)’ XeQ, t>0,
subject to the Neumann boundary conditions
ON 0P

—=—=0, XeoQ, t>0,
o = an € >
and initial conditions
N(X0)=¢1(X) >0, P(x0)=¢2(x) >0, xeQ.

wherea, K, ¢, m, f, d are positive constants ad(x, t), P(x,t) represent the pop-
ulation density of prey and predatorxate Q and at timet respectively. The prey
grows with intrinsic growth rat@ and carrying capacitK in the absence of preda-
tion. The predator consumes the prey with functional respai Michaelis-Menten

type cuy/(m+ u), u = X/y and contributes to its growth with ratesy/(m + u). The
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constantd is the death rate of predator, abg > 0 are constants, = 1, 2; while A
denotes the Laplace operatortinc R", Q bounded and connected.

The motivation to consider the above described model conoes §rowing evi-
dence [1, 2,4, 7] that in some situations, specially whedati@s have to search for
food and therefore have to share or compete for food, a mitabkigeneral preda-
tor prey theory should be based on the so-called ratio-akgdrtheory, which can
be roughly stated as that tiper capitapredator growth rate should be a function
of the ratio of prey to predator abundance. This is suppdstedumerous field and
laboratory experiments and observations [2—4].

Hsu et al. in [11] perform a global analysis of the Michadllenten-type ratio-
dependent predator-prey system withoufudiion. Moreover, they discuss the main
differences between the classical predator-prey models aratilvdependent predator-
prey system. In particular they brought into discussionvilefi-known “paradox of
enrichment” or equivalently “the biological control paced’

In this paper we will study theffect of difusion on the stability of the equilibria in
a reaction-dtusion ratio-dependent predator-prey model and we explateruwvhich
parameter values Turing instability can occur giving ris@on-uniform stationary
solutions. Their stability is studied. Moreover, we giveamnprehensive description,
under which parameter values this pattern formation arisete concluding remark
we will discuss the dierences between the dynamics of this model and the classical
one.

2. PRELIMINARIES

For simplicity, we undimensionalize the system (1.1) witle scalingt — at,
N — N/K, P - mP/K. Then system (1.1) takes the form

N sNP
a—:dlAN+N(l—N)— , XeQ, t>0,
ot P+N 21
oP N (2.1)
— =d,AP + 6P |- Q
50 AP + 6 ( r+P+N)’ XeQ, t>0,
where
C f d D4 D>
=—, 6=—, r==, dh=—2 dp=—2.
ma a f 17 a 27 a

We will show that the reaction-flusion system (2.1) generates a dynamical sys-
tem and it is biologically well-posed on a suitable Banacicsp
Let us sefr = (F1, F2), U = (N, P) andD = diag [d1, do], where

sNP
N+ P’

F1(N, P) = N(L = N) - Fo(N, P) = 6P(—r ;

P+N)'
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Henceforth, considering also an initial condition, sys{@x) can be rewritten as

oU(x,t)
ot

&(x,t):o, XxXeo, t>0
an

=DAU(xt) + F(U), xeQ, t>0
(2.2)

U(x,0) = ¢(X), X € Q.

Let X be the Banach spacg x X, whereX; = C(ﬁ),i = 1,2. The norm onX is
defined bylg| = lp1] + lp2l. Let A% andAS be the diferential operatord®dN = d; AN

andAJP = d,AP, defined on the domair3(A?) andD(A2), respectively:
D(AY) = {N e CA(Q) nCHQ) : AN € C(Q), (;—N(x) =0, xe ag},
n
0 2 13y - A0 = OP
D(AP) = {P € CHQ)NCHQ) : APP € C(A), 7-(9 =0, xe a0,

The closuresAy of A,?l, and Ap of Ag in X; generate analytic semigroups of
bounded linear operatofBy(t) and Tp(t) for t > 0 such thatN(t) = Tn(t)¢1 and
P(t) = Tp(t)p, are solutions of the abstract lineaffdrential equations iiX; given
by

N’(t) = ANN(D), P'(t) = ApP(D).

An additional property of the semigroup is that for edckr 0, Tn(t) and Tp(t)
are compact operators. In the language of partifiedintial equationdN(x,t) =
[Tn®e1](X) andP(x,t) = [Tp(t)e2](X) are classical solutions of the initial boundary
value problem (2.2) witlr; = F» = 0.

Let7(t) : X — X be defined by (t) = Tn(t) x Tp(t). Then7 (t) is a semigroup
of operators onX generated by the operatoi = Ay x Ap defined onD(A) =
D(An) x D(Ap) andU(x,t) = [T (t)¢](X) is the solution of the linear system

ou
E(x,t):DAU(x,t), xeQ, t>0

(Z—U(x,t):o, XxedQ, t>0, UX0)=¢(X), xeQ.
n

Observe that the nonlinear terfis twice continuously dferentiable inU. There-
fore, we can define the map-1(¢)](X) = F(e(X)) which mapsX into itself and
equation (2.2) can be viewed as the abstract ordindfgrdntial equation ifX given
by

u'(t) = Aut) + F*(u(t)), u(0) = ¢. (2.3)
While a solutionu(t) de (2.3) can be obtained under the restriction that D(A),
a mild solution can be obtained for evegy € X by requiring only thatu(t) is a
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continuous solution of the following integral equation

t
u) =T+ [ T~ IF @SNds tel0.p), (2.4)
0
wheregB = 8(p) < . Restricting our attention to functionsin the set
XA:{goeX:go(x)eA, xeﬁ},

whereA = {U =(N,P)eR?2:N>0,P> O}, and taking into account the definition
of the functionsF;, we obtain that1(0, P) = 0 andF,(N,0) = 0 forU € A. Thus,
Corollary 3.2 from [16, p. 129] implies that the Nagumo cdiudi for the positive
invariance ofA is satisfied, i. e.,

lim hldist(A,U + hF(U)) =0, U €A. (2.5)

On the other hand, the direct application of the strong pai@maximum principle
can be used to show that the linear semigr@U(p) leavesX, positively invariant,
i. e.,

T({) Xy C Xy, t=0. (2.6)

Finally, conditions (2.5) and (2.6) together allow us tolgpfheorem 3.1 from [16,
p. 127], which gives us

Lemma 1. For eachy € X,, (2.1) has a unigue mild solution(t) = u(e,t) €
Xa and a classical solution [k t) = [u(t)](X). Moreover, the set Xis positively
invariant under the flow;(¢) = u(e, t) induced by2.1).

So, the model (2.1) is biologically well-posed and its ralevdynamic is concen-
trated inX,.

Finally, we are going to prove that all solutions of systeni)are bounded and
therefore defined for all> 0. Actually, from the following result by using the general
theory of infinite dynamical system it follows that the redatdynamic of the system
(2.1) is concentrated in a compact set of the spéce

Theorem 1. Let(N, P) be any solution 0f2.1). Then

=

lim supmaxN(x,t) <1, lim supmaxP(x,t) < = .
tooo  XEQ tooo  XEQ r

Proor. From the first equation of the system (2.1), it follows that

aa_|:| < chAN + N(L - N),

as longN is defined as a function aof
Let zbe the solution of the equation

Z(t) = z(t)(1 - z(t)), Z(0) = T%XN(X, 0).
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From the comparison principle, we obtai(x,t) < z(t). Now, taking into account
that for anye > 0 there exists @, > 0 such that(t) < 1 + € for anyt > T,, which in
turn implies thatN(x, t) is defined for alk > 0, and lim sup.,, Maxeco N(x,t) < 1.

Having in mind that for a givem > 0 there exists @, > 0 such thalN(x,t) < 1+e€
for anyx € Q andt > T,, and by using the second equation of (2.1), we get

P 1
(2')_t —d2AP < 6P(—r + %) =-0rP+6(1+e),

for anyx € Q andt > T..
Let z be the solution of the following initial value problem

Z(t) = —orz(t) + 6(1 + €), 2T, = m%xP(x, Te).
Xe
After a straightforward computation we get
1
2(t) < % FATHETET) (vt Ty,

Finally, by using the comparison principle we know tRgk, t) < z(t) as long as is
defined as a function df This, together with the previous inequality, implies that

. 1
lim supmaxP(x,1) < =,
tooo  XEQ r

which completes the proof. O

3. ANALYSIS OF THE MODEL WITHOUT DIFFUSION
In this section we will study the system (2.1) withouffdsion, i. e.,
N'(t) = Fa(N,P),  P'(t) = F2(N,P). (3.1)

In particular, we will focus our attention on the existenéegquilibria and their local
stability. This information will be crucial in the next sam where we study the
effect of the difusion parameters on the stability of the steady states.

The equilibria of the system (3.1) are given by the solutibthe following equa-
tions

sP
N(l_N_ P+N)_O’ 5P(_r+ P+N)_

The system (3.1) has in the first quadrant the equilibriunmgaiQ 0) and (10) for
all values of the parameters. IfOr < 1 and O< s< 1/(1 -r), then (3.1) admits a
nontrivial equilibrium, which is given by

(N*,P") = (s(r -1)+1,

We point out that for = 1 we get thatil*, P*) = (1, 0).

L-r)[s(r-1)+ 1])‘
r
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Hereafter, we will assume that €) € D, whereD is the region given by

D:{(r,s):0<r<1, O<s< %}

In the system (3.1), the origin is a non-analytical compé&daequilibrium point.
The structure of a neighborhood of point @) in the first quadrant of the plang, {/)
and the asymptotes of trajectories fary — 0 depend on parameter values and
change in an essential way with a change of parameter (see [6]

A straightforward computation shows us that the equilioriooint (1 0) is locally
asymptotically stable far > 1, and unstable if & r < 1.

Linearizing the system (3.1) around the nontrivial equilitn (N*, P*), we obtain
that the characteristic equation is given by

A% — traceA 1 + detA = 0.

where
A_(s(l—rz)—l —sr? )
“\ o s(1-r?  —sr(l-rn))
Taking into account that Re < 0 if and only if traceA < 0 and def > 0, we get
that (N*, P*) is locally asymptotically stable if and onlyif s, 6 € Dg, whereDg is
the set determined by the following inequalities:

or 1
1 —— — . 2
O<r<l1, O<S<1—r2+1+r’ S<1—r’ 0>0 (3.2)
Let us setf(r) = (1 -r)"tand
ro 1
g95(N) = —+—

1+r 1-r2
whered is a positive parameter. We present on Fig. 1a and Fig. 1ketlierrs of the
asymptotic stability of the nontrivial equilibrium.

4. TURING INSTABILITY

It is obvious that the equilibria of the system (3.1) are 8ohs of (2.1). We shall
focus our attention on the nontrivial equilibriuby* = (N*, P*) of the system (3.1).
More concretely, in this section we will analyze the stapidif nontrivial steady-state
solutions of (2.1).

Definition 1 (see [14]) The equilibriumU* of (2.1) is said to be diusionally
(Turing) unstable if it is an asymptotically stable equiliton of (3.1) but it is unstable
with respect to (2.1).

The stability of a homogeneous stationary solutiginof (3.1) will be studied via
the linearized stability analysis (see, €. g., [10, pp. 88-SettingW = U — U* and



PATTERN FORMATION IN A REACTION-DIFFUSION MODEL 207

()

r 0 fo

I |

/<—l—| gs5(r)
|
|
|
|
|
|
|
|
|
|
|
|
:
1

(b)

Ficure 1. (@): R, the region of the local asymptotic stability for
0 < 6§ < 1; (b): R, the region of the local asymptotic stability for
o> 1

recalling thatA = F’(U*), as given previously, the linearized system of the reaetio
diffusion equation (2.1) around™ is given by
wW wW
66—,[ = DAW + AW (Z—(x,t)zo, XeoQ, t> 0. (4.2)
n

The trivial solution,W = 0, is asymptotically stable if and only if every solution
of (4.1) decays to zero ds— .
Let ¢j(x) denote thejth eigenfunction of the Laplacian operateA on Q with
no-flux boundary conditions. That is,
Agj+Ajp; =0, XeQ, nVe¢; =0, xe€ 0Q,
for scalarst; satisfying
02/10</11</12<....

The determination of the pairg 1j) is a standard problem (see, e. g., [9, pp. 205~
208]). The diferential operatorA, with no-flux boundary conditions, is self-adjoint
in Lo(Q), i. e.,

f—Alﬁl'lﬁde:f—Alﬁz'lﬁldX,
and itis easy to see tha’i2 !
) = I, IVo;l2dx
fgquzdx
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for all j > 1. We can suppose without loss of generality that¢higare normalized
so that|¢illL,) = 1. Moreover, the set a; forms an orthogonal basis fbp(Q) and
any function may be expanded as a Fourier series or eigaidorexpansion

u(x) = Z ujd;(X).
j=0
Using these preliminaries, we can solve (4.1) by expandingolutionW via

W(x 1) = > si(0)¢i(x) (4.2)
j=0

where eacts;(t) € R? Substituting (4.2) into (4.1) and equating the fiioéents at
every¢;, we have

de

i Bjsj,
whereB; is the matrix

B =A-4;D.
Now the trivial solutionW = 0 of (4.1) is asymptotically stable if and only if each
sj(t) decays to zero as— oo. This is equivalent to the condition that eaBhhas
two eigenvalues with negative real parts for pllThe eigenvalues of the matrB;
are given by
det|B; — ol | = ¢® - traceBjo + detB; = 0.

Hereafter, we are going to assume that parameiars € Dg; i. €. 1, S, 6 belong to
the region where the nontrivial equilibriubh* of the system (3.1) is asymptotically
stable. Now we shall study the stability Of with respect to the system (2.1) in the
(di, d) plane.

Taking into account that, s, § € D, it follows that traceA < 0 and def > O.
Therefore, tracBj = traceA — 1j(d; + d2) < 0, due tod; > 0, ) =0,1,2,..., and
di, d» > 0. Henceforth, for the Turing instability to occur, it shdlde satisfied that
detB; < 0, for somej > 1, where deBj = (A11 — 1jd1)(Az2 — 1) — A12A21.

For fixed let us denote the hyperbola in thah (d,) plane by

H, : (Ady — Ar1)(Ad2 — Axp) — AgpArg = 0.

We know thatAy; = —6r(1 —r) < 0 on the admissible region. Hence, the location
of the graph of the hyperbold, on the €1, do)-plane is dictated by the sign 81 =
s(1 - r?) — 1. A straightforward computation gives us that the graptefftinction
h(r) = 1/(1-r?) lies strictly below the boundary of the region of asymputatiability
for anyés > 0, see Fig. 2a and Fig. 2h.

Let us suppose thak;; < 0. In this case d&; > 0 for anyj > 0 andd; > O,
d> > 0. We disregard this situation because we are looking foditions of the
Turing instability, see Fig. 3a. Assuming that; > 0, we obtain that there exist
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g5(r)

\]

Ficure 2. (a): 0< 6 < 1;(b):6 > 1.

positive parameterd; andd, whereU* is diffusionally unstable. That region is
depicted on Fig. 3b.

From Fig. 3b, it follows that the set ofl{, d,) € R? satisfying that deB; < O for
somej € N consists of all points which are above the graph of the hygard,, .
Clearly, for eachj € N this set is nonempty and therefore we can always choose
(di, dp) € R? in such a way that* is diffusionally unstable. Let us fis, > 0. Since
1j > w0 asj — oo, then there exists e N such thatdy = 944 < d,. Therefore,
the point (I, d2) belongs to the hyperbold,, , where

da = A1 d> — detA
AT Atz — Az

Moreover, if 0 < di < da, then @i, dy) will lie above the graph oH,, and the
homogeneous steady-state solutidh= (N*, P*) will be diffusionally unstable. We
can also remark that d, — oo, we have

A11 b — detA JAVE

— % _—

Ak(Akd2 — Az2) Ak

5. PATTERN FORMATION

In this section we shall show how thefldision-driven instability phenomenon
gives rise to nonhomogeneous steady-state solutions Dft(iat bifurcate from the
uniform stationary solution. For this purpose, we start tityaducing a definition.
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Ficure 3. (a): R, the stability region forA;1 < 0,r1,s,6 € Dg, and
A > 0; (b): Ry, the stability region, an&,, the instability region for
A11>0,1,56 € Ds, anda > 0.
Consider the following reaction4usion system
U U
Ei’)_t = DAU + F(U), (;—(x,t) =0, XeoQ, t>0 (5.1)
n

whereU € R?, D is a 2x 2 nonnegative diagonal matrix arfel : R> — R? is
a smooth function, wheré&/on denotes the normal derivate. Assume thdtis an
uniform stationary solution of (5.1), i. &,(U*) = 0.

Definition 2. We say thatJ* undergoes a Turing bifurcation ag € (0, ) if the
solutionU* changes its stability aty and in some neighborhood gf there exists a
one-parameter family of nonconstant stationary solutiosystems (5.1).

Now we use Theorem 13.5 from [17] for to determine the nonhgenmeous sta-
tionary solutions of (5.1), in this case taftgas bifurcation parameter.

Theorem 2. Letvik andwvy be the eigenvectors ofiBorresponding to the eigen-
valuesAiyk and Ay, respectively. Assume that
() rsseD,i=12
(2) v = (2) and vy is not parallel to(%),
(3) 0<dy < D*,where D = A]_]_/lk_l.
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Then there exists a& N such that at
g = Ao d; — detA
A(Akdy — A1)
the uniform steady-state solution*df (5.1) undergoes the Turing bifurcation.

Proor. Hereafter, the role of the spaewill be played by
2 2. OW
X=4We C(Q,R%) xC(Q,R?) : G_(X’t) =0, t>0xe0Q
n

with the supremum norm involving the first and second derieat andy = C(Q, R?)
with the usual supremum norm. However, when choosing thepadeZ, we shall
use the orthogonality induced by the scalar product

VW) = fQ (VI OIWA() + Va()Wa(x))dx

whereV = (V1, Vo) y W = (W, W,).
SettingW = U — U*, whereU* is a nontrivial homogeneous steady-state solution
of (5.1), we get

W
W, = DAW + AW + G(W), ‘2—n(x,t)=o, t>0, xe€dQ, (5.2

whereA is the Jacobian matrix df in U* andG(W) = F(U* + W) — AW.
For any nonhomogeneous stationary solutibof (5.1),W = U — U* satisfies the
elliptic equation

oW
DAW + AW + G(W) = 0, a—n(x,t)zo, t>0Xe Q. (5.3)

Taking into account this observation, define the functfionR x X — Y and linear
operatorLy considered in Theorem 13.5 of [17] as followigdy, W) = DAW + AW+

G(W) and
of(ds, 0)
ow -’
whered; is the difusion codficient of the susceptible class. The spectrum of the
linear operatot g is given by the eigenvalues; of the matrices

Lo = Dof(ds,0) =

Bj =A—/1jD

evaluated atl, = d;, wherei = 1,2, andj = 0,1,2,.... Since O< d; < D*, there
exists a uniqué € N such that g, d;) belongs to the hyperbold,, .
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Ficure 4. Turing Bifurcation. Wherd; < D*, the uniform steady-
state solutior* of (5.1) undergoes a Turing bifurcationgt= d;

In other words, deB; > O for j # k and deB; = 0 just for j = k. Therefore, for
i=12andj=0,1,2,...,k-1,k+1,... all eigenvaluesl;; have negative real parts.
For j = k, one eigenvalue, sali, is zero and the other one is negative, igy,< 0.

Sincewvy is the eigenvector oBy corresponding to the zero eigenvaliig, the
eigenfunction of the linear operathg corresponding talyx = 0 is given byyy =
v1k@x(X) which is a non-uniform stationary solution of the lineadzsystem (4.1),
i e,

DAY (X) + Ayk(X) = 0, aa—f]k(x) =0, xe Q.

Therefore, the null subspad¥Lg) of the operatoD, f(d, 0) is one-dimensional,
spanned byy,. Because of the orthogonality of the systeip(x), n = 0,1,2,...
obtained by solving the eigenvalue problem

Aq)n(x) + /lnq)n(x) = 0, X e Q,
nVo,(x) =0, XxeadQ.

The rangeR(Lo) of this operator is given by the relation

R(Lo) = {U € [C(Q,R)]? : the Fourier expansion &
does not contain the term,(X)} U {va®@n(X)},
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and has codimension one. So conditions (i) and (ii) of Th@ot8.5 from [17] are
satisfied. It still remains to verify condition (iii). Let

o (of
L]_ = D]_sz(d*,O) = % (m) (d*,O)

ThenL, = (§$) and
A O
Ly = (0 0) vik®n(X) = —4n (%) Dn(X),
with & # 0, and(%) not being parallel tary. Then,Liyax ¢ R(Lo) and condition
(i) of Theorem 13.5 from [17] is satisfied. So, by choosifig R(L) we conclude
that there exists @ > 0 and aC? curve @, ¢) : (—y,y) — R x Z with d(0) = d; and
¢(0) = 0 such that
W(x, 5) = su®@n(X) + Sp(X, 9)
is a solution of the elliptic equation (5.3) with = d(s), s € (-y,y). Finally, taking
into account thatv = U — U*, we obtain

U(x, 5) = U* + supe®n(X) + O(s%)

are non-uniform stationary solutions of (5.1) with= d(s), ands € (-, y).
Therefore, at, = d, the uniform steady-state solutidh* undergoes a Turing
bifurcation.
m|

6. SIABILITY OF BIFURCATING SOLUTION

In this section we will study the stability of the one paraeneiamily of non-
uniform stationary solutiotJ (X, s) of the system (2.1) that arise from the bifurcation
of the homogeneous steady sthite

We showed thatlyk is aL;-simple eigenvalue oko, wherel; = D1D,f(d3,0)
andLy = D, f(d;, 0). On the other hand, fde¢| and|g small enough, the operators
D2f(d; + &,0) andD2f(d(s), spk + s¢(x, s)) are close tdo. Applying Lemma 13.7
of [17], we obtain that there exist functions

d— (e(d),vc(d), s+ (1(9), ¥n(9))

defined on neighborhoods df and O, respectively, such that

D2 f(d, O)yrc(d) = o(d)yrc(d),
D2f(d(s), sk + sp(X 9)¥n(S) = n(9n(S),

and

(o(d3), ¥re(d3)) = (0, y) = ((0). ¥(0)).
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Note that the functions
n(s) = n(D2f(d(s), spk + sp(x, 9))),
Yu(S) = Yn(D2f(d(9), spk + sp(X, 9))),
o(d) = n(D2f(d, 0)), ¥c(d) = yp(D2f(d,0))

given by Lemma 13.7 of [17] are smooth functions.
The following result is the Crandall-Rabinowitz Theorerti@lfrom [8, p. 165].

Theorem 3. Let the assumptions of Theorem 13.51f] hold, and let the func-
tionso(d) andz(s) be defined as above. Thef{d;) # 0, and if;(s) # O for s close
to O, then

sd (s)o’(d)
m———==—
50 7(s)
First we determine’(d). It is known thaip(d) satisfies the equation
0(dy) — traceByo(dy) + detBy = 0.

Differentiating implicitly the former equation with respecikg we have
AAq1 — 22d1 — Ao(do)

20(dy) — traceBy

(6.1)

o' (db) =

Evaluating ad}, we obtain

AZd1 — AAq1 _ Al - Aag)
traceA — Ax(dy + dj)  traceA — A(dy + d)’

SinceAq; > 0 and O< d; < A4 L, we see thatd; — Aj1 < 0 and tracé\ — Ay (dy +
d;) < 0. Therefore,

o'(d;) =

o (d) > 0.

Proposition. Let (d(s), U(x, s)) be the one parameter family of bifurcating solu-
tions given by the formula

U(x, ) = W* + supe®n(X) + O().

Assume that the conditions of Theorem 2 are satisfi€@) & 0, and that the eigen-
valuesn(s) of the nonhomogeneous steady state bifurcating from thiealrivalue
A1k = 0 are non-zero for small # 0. Then if ds) < d; the corresponding solution
U(x, s) is stable and if ¢s) > d3, the corresponding solution (&, s) is unstable.

Proor. We know that’(d3) > 0. Let us determine the sign g(s). Sinced’(0) #
0, we may assume thdt(0) > 0. Then by continuity we have thdt(s) > 0 for |g
small enough. Therefore, using (6.1), it follows théd) < 0 for s> 0 small enough,
which in turn implies that the bifurcating solution is asytjrally stable. For small
s < 0, n(s) > 0. Hence, the bifurcating nonhomogeneous stationary isalis
unstable.
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The cased(s) < 0 can be analyzed similarly . This completes the proof of our
claim. O

7. DiscussIioN

In this paper, we discussed the main mathematical featuhéisited by the reaction-
diffusion system (1.1). More concretely, we showed that whagn= S(1 - r?) —1is
positive, a nontrivial geotemporal dynamics of the reactidgfusion ratio-dependent
predator-prey model (1.1) can be obtained. In the case wher@< d; < Aq1/4;,
we showed that for a wide range of parameter values dfs@hin codficientsd; and
d,, see Fig. 3b, the nonlinear system (1.1) can exhibit stagdéadly heterogeneous
solutions which arise from Turing bifurcations. It is woghinting out that a Turing
bifurcation can not occur for a largeffiisive codficient of the prey, nevertheless the
diffusive codicient of the predator can be large enough.

The existence of this pattern formation for system (1.1)ghthat the reaction-
diffusion ratio-dependent predator-prey model exhibits featwhich were not pos-
sible for the classical model. More specifically, one carvslimat for a classical
Lotka—\Volterra prey-predator system witHfdision on a finite domain and zero flux,
boundary condition cannot give rise to temporally or spigtiahomogeneous solu-
tions asymptotically as— oo.

In conclusion, we note that the mathematical analysis ofeh@dl) shows how a
reaction-dffusion ratio-dependent predator-prey model can stabliatsyits growth
around either spatially homogeneous or heterogeneousis@uhrough a Turing
instability mechanism.
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