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ON THE PRIME SPECTRUM OF MODULES
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Abstract. Let R be a commutative ring and let M be an R-module. Let us denote the set of all
prime submodules of M by Spec(M). In this article, we explore more properties of strongly top
modules and investigate some conditions under which Spec(M) is a spectral space.
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1. INTRODUCTION, ETC

Throughout this article, all rings are commutative with identity elements, and all
modules are unital left modules. N, Z, and Q will denote respectively the natural
numbers, the ring of integers and the field of quotients of Z. If N is a subset of an
R-module M, then N < M denotes N is an submodule of M.

Let M be an R-module. For any submodule N of M, we denote the annihilator of
M/N by (N :M),i.e. (N:M)={r e R|rM C N}. Asubmodule P of M is called
prime if P # M and whenever r € R and e € M satisfy re € P, thenr € (P : M) or
ecP.

The set of all prime submodule of M is denoted by Spec(M) (or X). For any
ideal I of R containing Ann(M), I and R will denote I/Ann(M) and R/Ann(M),
respectively. Also the map ¥ : Spec(M) — Spec(R) given by P +— (P : M) is
called the natural map of X. M is called primeful (resp. X -injective) if either M =0
or M # 0 and the natural map V is surjective (resp. if either X = @ or X # @ and
natural map ¥ is injective). (See [3,11] and [13].)

The Zariski topology on X is the topology t described by taking the set £2 =
{V(N)|N is a submodule of M} as the set of closed sets of X, where V(N) ={P €
X|(P:M)2(N:M)}[I1]

The quasi-Zariski topology on X is described as follows: put V*(N) = {P €
X|P 2D N}and 2% = {V*(N)|N is a submodule of M }. Then there exists a topo-
logy t* on X having £2* as the set of it’s closed subsets if and only if £2* is closed
under the finite union. When this is the case, t* is called a quasi-Zariski topology on
X and M is called a top R-module [15].
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Let Y be a topological space. Y is irreducible if Y # @ and for every decomposi-
tion Y = A; U A, with closed subsets A; CY,i =1,2, wehave A1 =Y ord, =Y.
A subset T' of Y is irreducible if T is irreducible as a space with the relative topology.
For this to be so, it is necessary and sufficient that, for every pair of sets ', G which
are closedin Y and satisfy 7 C FUG,T C ForT CG. Let F be aclosed subset of
Y. Anelement y € Y is called a generic point of Y if Y = ¢l({y}) (here for a subset
Z of Y, cl(Z) denotes the topological closure of Z).

A topological space X is a spectral space if X is homeomorphic to Spec(S)
with the Zariski topology for some ring S. This concept plays an important role
in studying of algebraic properties of an R-module M when we a have a related
topology. For an example, when Spec(M) is homeomorphic to Spec(S), where
S is a commutative ring, we can transfer some of known topological properties of
Spec(S) to Spec(M) and then by using these properties explore some of algebraic
properties of M.

Spectral spaces have been characterized by M. Hochster as quasi-compact Tp-
spaces X having a quasi-compact open base closed under finite intersection and each
irreducible closed subset of X has a generic point [9, p. 52, Proposition 4].

The concept of strongly top modules was introduced in [2] and some of its prop-
erties have been studied. In this article, we get more information about this class of
modules and explore some conditions under which Spec(M) is a spectral space for
its Zariski or quasi-Zariski topology.

In the rest of this article, X will denote Spec(M). Also the set of all maximal
submodules of M is denoted by Max(M).

2. MAIN RESULTS

Definition 1 (Definition 3.1in [1]). Let M be an R-module. M is called a strongly
top module if for every submodule N of M there exists an ideal / of R such that
V*(N)=V*(IM).

Definition 2 (Definition 3.1 in [2]). Let M be an R-module. M is called a strongly
top module if M is a top module and t* = 7.

Remark 1. Definition 1 and Definition 2 are equivalent. This follows from the fact
that if NV is a submodule of M, then by [1 1, Result 3], we have

V(N)= V(N : M)M)=V*(N : M)M).

Remark 2 (Theorem 6.1 in [11]). Let M be an R-module. Then the following are
equivalent:
(a) (X,7)isa Ty space;
(b) The natural map of X is injective;
() V(P)=V(Q), that is, (P : M) = (Q : M) implies that P = Q for any
P,QeX;
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(d) |Specp(M)| <1 forevery p € Spec(R).

Remark 3. (a) Let M be an R-module and p € Spec(R). The saturation of a
submodule N with respect to p is the contraction of N, in M and denoted
by S, (N). It is known that

Sp(N)=N® ={x e M|tx € N forsomet € R\ p}.

(b) Let M be an R-module and N < M. The radical of N, denoted by rad(N),
is the intersection of all prime submodules of M containing N; that is,
rad(N) = (pey«) P ([14]).

(c) A topological space X is Noetherian provided that the open (respectively,
closed) subsets of X satisfy the ascending (respectively, descending) chain
condition ([4, p. 79, Exercises 5-12]).

Proposition 1. Let M be an strongly top module and  be the natural map of X .
Then
(@) (X,7)=X,t*) = Imy.
(b) If X is Noetherian, then X is a spectral space.

Proof. (a) By [15, Theorem 3.5] and Remark 2, ¥ |,y is bijective. Also we have
Y(V(N) ={P:M)|PeX,(P:M)D(N:M)}.

Now by [11, Proposition 3.1] and the above arguments, ¥ is continuous and a closed
map. Consequently we have (X, 1) = (X,t*) = Imy.
(b) Let Y = V*(N) be an irreducible closed subset of X. Now by [0, Theorem
3.4], we have
V*(N)=V*(rad(N)) = cl({rad(N)}).
Hence Y has a generic point. Also X is Noetherian and it is a Ty-space by [0, Pro-
position 3.8 (i)]. Hence it is a spectral space by [9, Pages 57 and 58]. U

An R- module M is said to be a weak multiplication module if either X =
Spec(M) = @ or X # & and for every prime submodule P of M, we have P = I M
for some ideal I of R (see [5]).

The following theorem extends [1, Proposition 3.5], [1, Corollary 3.6], [1, The-
orem 3.9 (1)], and [!, Theorem 3.9 (7)]. In fact, in part (a) of this theorem, we
withdraw the restrictions of finiteness and Noetherian property from [ !, Proposition
3.5] and [, Corollary 3.6], respectively. In part (b), we remove the conditions “ M
is primeful ” and “ R is a Noetherian ring ” in [1, Theorem 3.9 (1)] and instead of
them, we put the weaker conditions “ Im () is closed in Spec(R) ” and “ Spec(R)
is a Noetherian space . In part (c), we withdraw the condition “ R has Noetherian
spectrum ” from [ 1, Theorem 3.9 (7)] and put the weaker condition * the intersection
of every infinite family of maximal ideals of R is zero ”.

Theorem 1. Let M be an R-module. Then we have the following.
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(a) Let (M;)jcr be a family of R-modules and let M = @jcyM;. If M is an
strongly top R-module, then each M; is an strongly top R-module.

(b) If M be an strongly top R-module and ' be the natural map of X, then we
have

() If Im(y) is closed in Spec(R), then (X,t) = (X,t*) is a spectral
space.

(ii) If Spec(R) is Noetherian, then (X,7) = (X,t*) is a spectral space.

(c) Suppose R is a one dimensional integral domain such that the intersection of
every infinite family of its maximal ideals is zero. If M is a weak multiplica-
tion R-module, then M is a top module.

Proof. (a) Each M; is a homomorphic image of M, hence it is strongly top
by [, Proposition 3.3].
(b) (i) By Proposition 1, we have (X,7) = (X,t*) == Im(y). Now the claim
follows by [1 1, Theorem 6.7].
(ii) As Spec(R) is Noetherian, Im () is also Noetherian. Now the claim
follows from Proposition 1.
(c) Use the technique of [3, Theorem 3.18].

The following theorem extends [, Theorem 3.9(3) ].

Theorem 2. Suppose R is a one dimensional integral domain such that the inter-
section of every infinite family of its maximal ideals is zero. If M is X -injective with
So(0) C rad(0), then M is a top module.

Proof. 1If So(0) = M, then X = @ and there is nothing to prove. Otherwise, by
[12, Corollary 3.7], So(0) is a prime submodule so that S¢(0) = rad(0). Hence the
natural map f : Spec(M/So(0)) — Spec(M) is a homeomorphism by [7, Proposi-
tion 1.4]. But by [3, Theorem 3.7 (a)] and [3, Theorem 3.15 (e)], M/So(0) is a weak
multiplication module. Now the result follows because by Theorem 1 (c), M/So(0)
is a top module. O

Let M be an R-module. Then M is called a content module if for every x € M,
x € c(x)M, where c(x) = (\{I|I is an ideal of R such that x € IM} (see [13, p.
140]).

In below we generalize [ 1, Theorem 3.9(4)].

Theorem 3. Suppose R is a one dimensional integral domain and let M be a
content R-module. Then we have the following.
(a) If M is X -injective , then M is a top module.
() If M is X -injective and So(0) < rad(0), then M is an strongly top module.
Furthermore, if Spec(R) is Noetherian, then (X,t*) is spectral.
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Proof. (a) By [3, Theorem 3.21], we have
Spec(M) ={Sp(pM)|p € V(Ann(M)), Sp(pM) # M} ={So(0)} U Max(M),
where
Max(M)={pM|p € Max(R), pM # M}.
Let N <M andlet N £ Sp(0). Then

rad(N) = N P= N P.

NCPeSpec(M) NCPeMax(M)

So by the above arguments, there is an index set I such that rad(N) = (), ¢;(pi M).
Since M is content module,

VE(N) = V*(rad(N)) = V*(((piM)) = V([ ") piM).
iel iel

Now if N C Sy(0), then by [10, Lemma 2],

V*(N) = V*(rad(N)) = V*(So(0) N ([ )(piM)))
iel
=V*(So(0) N ([ ) pi)M))
iel
= V*(So@)UV*(((") p)M)
iel
= V*(So(@) UV(([ ) pi)M).
iel
By the above arguments, it follows that M is a top module.
(b) By [3, Theorem 3.21],

Spec(M)={So(0)}UMax(M)and Max(M)={pM|p € Max(R), pM # M}.

Let N <M. If N C S¢(0), then V*(N) = V*(0) = X. Otherwise, we have
rad(N) = ();ey(pi M) by [3, Theorem 3.21]. Since M is content, by [1 I, Result 3]
we have

VE(N) = V*(rad(N)) = V*(((piM)) = V([ pi)M).
iel iel
Hence M is an strongly top module. The second assertion follows from Theorem 1
(b). O

Theorem 4. If M is content weak multiplication, then M is an strongly top mod-
ule. Moreover, if Spec(R) is Noetherian, then (X,t*) is a spectral space.
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Proof. Let N < M. Then we have

V*(N)=V*(rad(N)) =V*([) P).
N<P
Since M is a weak multiplication module, for each prime submodule P of M con-
taining N, there exists an ideal /p of R such that P = Ip M. Hence since M is a
content module,

VEN)=V*(() dpM) =V*(([) Ip)M).
N<P N<P
This implies that M is an strongly top module. Since Spec(R) is Noetherian, so is
Spec(R). Hence by Theorem 1 (b), (X, *) is a spectral space. O

Theorem 5. Let R be a one-dimensional integral domain and let M be an X -
injective R-module such that So(0) C rad(0). If the intersection of every infinite
number of maximal submodules of M is zero, then M is strongly top and (X,t*) is
a spectral space.

Proof. If So(0) = M, then X = @ and there is nothing to prove. Otherwise,
by [3, Theorem 3.21], we have Spec(M) = {So(0)} U Max(M) and Max(M) =
{pM|p e Max(R), pM # M}. Nowlet N < M. If N =0, then claim clear because
V*(N)=V*0)=V*(0M) = Spec(M). So we assume that N # 0. We consider
two cases.

(1) N C S¢(0). In this case, we have V*(N) = V*(0) = V*(OM) = Spec(M).

(2) N € So(0). Then since N # 0 and the intersection of every infinite num-
ber of maximal submodules of M is zero, rad(N) = (\'—,(pi M), where p;M €
Max(M) foreach i (1 <i <n). Hence we have

n
VEN) = V*(rad(N)) = V*([ ) (pi M)).
i=1
Now we show that V*(N/_,(piM)) = V(' pi)M). Clearly,
V(= (piM)) € V*((N7=1 pi)M). Too see this reverse inclusion, let
P e V*((Niz; pi)M). If P = So(0), then (()'—, pi)M < So(0) implies that
Niz12i € (=, pi)M : M) C (So(0) : M) = 0. Thus, there exists j (1 <j <
n) such that p; = 0, a contradiction. Hence we must have P = gM, where q €
Max(R). Then, similar the above arguments, there exists j (1 < j < n) such that
g = pj. Therefore, P = qM = p;M € V*(("'_;(pi M)). So we have

n n
VEN) = V(i M) =V*(([) pi)M).
i=1 i=1
Hence M is strongly top so that t = t*. On the other hand, t = t* is a subset
of a finite complement topology. This implies that (X, t*) is Noetherian. Now by
Proposition 1, (X,t*) = (X, 1) is spectral. O
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Theorem 6. If for each submodule N of M, rad(N) = /(N : MM, then M
is an strongly top module. Moreover, if Spec(R) is Noetherian , then (X,t*) is
spectral.

Proof. Let N < M. Then we have

V*(N) = V*(rad(N)) = V*(/(N : M\)M)
=V(/(N: M)M) = V(rad(N)) = V(N).

Hence M is an strongly top module. Now the result follows by using similar argu-
ments as in the proof of Theorem 4. 0

Remark 4. Theorems 4, 5, and 6 improve respectively [1, Theorem 3.9(5)], [,
Theorem 3.9(8)], and [ 1, Theorem 3.9(6)]. They show that the notion of ” top mod-
ules ” can be replaced by ” strongly top modules ” and the proofs can be shortened
considerably.

In below we generalize [ |, Theorem 3.36].

Theorem 7. Let M be a primeful R-module. Then we have the following.
(a) If (X,7) is discrete, then Spec(M) = Max(M).
(b) If R is Noetherian and Spec(M) = Max (M), then (X, ) is a finite discrete
space.

Proof. (a) Since (X, t) is discrete, it is a T7-space. Now by [3, Theorem 4.3], we
have Spec(M) = Max(M).

(b) By [3, Theorem 4.3], Spec(R) = Max(R). Hence R is Artinian. Now by [3,
Theorem 4.3], (X, 7) is a Tp-space. Thus by Remark 2, M is X -injective. But M is a
cyclic R-module and hence a cyclic R-module by [3, Remark 3.13] and [3, Theorem
3.15]. Also (Spec(M),t) is homoeomorphic to Spec(R) by [I 1, Theorem 6.5(5)].
Hence X is a finite discrete space by [4, Chapter 8, Exe 2].

O

It is well known that if R is a PID and Max (R) is not finite, then the intersection
every infinite number of maximal ideals of R is zero. Now it is natural to ask the
following question: Is the same true when R is a one dimensional integral domain
with infinite maximal ideals? In below, we show that this true when Spec(R) is a
Noetherian space. Although this is not a simple fact, it used by some authors without
giving any proof.

Theorem 8. (a) Let I be an ideal of R and let k,n € N. Then (/1 : a¥) =
(VT :a™).
(b) Let I be an ideal of R and let a € R, n € N. Then /I = \/(v/T :a")N

(VT,am).
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(¢) Suppose Spec(R) is a Noetherian topological space. Then for every ideal 1
of R, /I has a primary decomposition.

(d) Suppose R is a one dimensional integral domain and Spec(R) is a Noeth-
erian topological space. Then the intersection of every infinite number of
maximal ideals is zero.

Proof. (a) Itis clear.

(b)Let f € \/(ﬁ:a”)ﬂ \/(ﬁ,a”). Then there is m € N such that f™ e (/1 :
a™ N (T,a"). Tt follows that f™ = g 4+ xa” for some g € /I and x € R and we
also get a” f™ e /1. Hence a” f™ = a”g + xa?". This implies that xa?" € /T
and so x € (+/I : a™) by part (a). Thus xa” € /1. It follows that f € ~/I. The

reverse inclusion is clear.
(c) Set X' =

{\/7 | I is a proper ideals of R and VT doesn’t have any primary decomposition}.

Since Spec(R) is Noetherian, the radicals of ideals satisfy the a.c.c. condition. So
X has a maximal member, +//¢ say. Thus /1o ¢ Spec(R). In other words,

EIa,beRs.t.abe\/I—oandaq_f\/I_oandbgé\/l—o.

By part (b) we have /To = +/(v/To : b) N v/ (/To.b). Further, /To S v/(+/To : b)
and /To S v/ (v/To.b). Since v/(/To : b) and v/ (/Ty,b) have primary decomposi-
tions by hypothesis, 4/I has a primary decomposition, a contradiction.

(d) Since R is one dimensional integral domain, Spec(R) = {0} U Max(R). Sup-
pose {m; }; ey is an infinite family of maximal ideals of R such that ();; m; # 0. By

part (¢), v/( ;e Mi has a primary decomposition. Hence

n
ﬂmi = ﬂm; m'; € Max(R).
iel j=1

This implies that {m; };cs is a finite family, a contradiction. So the proof is compe-
leted. g

Example 1. We show that Z[i /5] is a one dimensional Noetherian integral domain
which has infinite number of maximal ideals and it is not a PID. To see this, let
¢ : Z[X] — Z[i /5] be the natural epimorphism given by p(x) — p(i v/5). by using
[8] or [16], one can see that

Spec(Z[X]) ={{p),(f).{q,g)| p and q are prime numbers, f is a primary

irreducible polynomial in Q[X], and g is an irreducible polynomial in Z 4[X]}.

Now we have ker¢ = (X2 +5). A simple verification shows that

Spec(Z[i v/5]) = {0} U Max(Z[i v/5))
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= {0} U{(q.8(~V=5))|{q.8) € Spec(Z[X]) and X* +5 € (q.g)}.

Further Z[i +/5] contains a finite number elements which are invertible by [17, p.
38]. So Z[i v/5] is a Noetherian one dimensional integral domain with infinite number
of maximal ideals. Hence the intersection of every infinite number of maximal ideals
of Z[i /5] is zero by Theorem 8 (c). Note that Z[i /5] is not a PID by [17, p. 38].
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