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Abstract. Let R be a commutative ring and let M be an R-module. Let us denote the set of all
prime submodules ofM by Spec.M/. In this article, we explore more properties of strongly top
modules and investigate some conditions under which Spec.M/ is a spectral space.
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1. INTRODUCTION, ETC

Throughout this article, all rings are commutative with identity elements, and all
modules are unital left modules. N, Z, and Q will denote respectively the natural
numbers, the ring of integers and the field of quotients of Z. If N is a subset of an
R-module M , then N �M denotes N is an submodule of M .

LetM be an R-module. For any submodule N ofM , we denote the annihilator of
M=N by .N WM/, i.e. .N WM/D fr 2RjrM �N g. A submodule P ofM is called
prime if P ¤M and whenever r 2R and e 2M satisfy re 2 P , then r 2 .P WM/ or
e 2 P .

The set of all prime submodule of M is denoted by Spec.M/ (or X ). For any
ideal I ofR containing Ann.M/, I andR will denote I=Ann.M/ andR=Ann.M/,
respectively. Also the map  W Spec.M/! Spec.R/ given by P 7! .P WM/ is
called the natural map ofX . M is called primeful (resp. X -injective) if eitherM D 0
or M ¤ 0 and the natural map  is surjective (resp. if either X D¿ or X ¤¿ and
natural map  is injective). (See [3, 11] and [13].)

The Zariski topology on X is the topology � described by taking the set ˝ D
fV.N /jN is a submodule of M g as the set of closed sets of X , where V.N /D fP 2
X j.P WM/� .N WM/g [11].

The quasi-Zariski topology on X is described as follows: put V �.N / D fP 2
X jP � N g and ˝� D fV �.N /jN is a submodule of M g. Then there exists a topo-
logy �� on X having ˝� as the set of it’s closed subsets if and only if ˝� is closed
under the finite union. When this is the case, �� is called a quasi-Zariski topology on
X and M is called a top R-module [15].
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Let Y be a topological space. Y is irreducible if Y ¤¿ and for every decomposi-
tion Y DA1[A2 with closed subsets Ai � Y; i D 1;2, we have A1 D Y or A2 D Y .
A subset T of Y is irreducible if T is irreducible as a space with the relative topology.
For this to be so, it is necessary and sufficient that, for every pair of sets F , G which
are closed in Y and satisfy T �F [G, T �F or T �G. Let F be a closed subset of
Y . An element y 2 Y is called a generic point of Y if Y D cl.fyg/ (here for a subset
Z of Y , cl.Z/ denotes the topological closure of Z).

A topological space X is a spectral space if X is homeomorphic to Spec.S/
with the Zariski topology for some ring S . This concept plays an important role
in studying of algebraic properties of an R-module M when we a have a related
topology. For an example, when Spec.M/ is homeomorphic to Spec.S/, where
S is a commutative ring, we can transfer some of known topological properties of
Spec.S/ to Spec.M/ and then by using these properties explore some of algebraic
properties of M .

Spectral spaces have been characterized by M. Hochster as quasi-compact T0-
spaces X having a quasi-compact open base closed under finite intersection and each
irreducible closed subset of X has a generic point [9, p. 52, Proposition 4].

The concept of strongly top modules was introduced in [2] and some of its prop-
erties have been studied. In this article, we get more information about this class of
modules and explore some conditions under which Spec.M/ is a spectral space for
its Zariski or quasi-Zariski topology.

In the rest of this article, X will denote Spec.M/. Also the set of all maximal
submodules of M is denoted by Max.M/.

2. MAIN RESULTS

Definition 1 (Definition 3.1 in [1]). LetM be anR-module. M is called a strongly
top module if for every submodule N of M there exists an ideal I of R such that
V �.N /D V �.IM/.

Definition 2 (Definition 3.1 in [2]). LetM be anR-module. M is called a strongly
top module if M is a top module and �� D � .

Remark 1. Definition 1 and Definition 2 are equivalent. This follows from the fact
that if N is a submodule of M , then by [11, Result 3], we have

V.N /D V..N WM/M/D V �..N WM/M/:

Remark 2 (Theorem 6.1 in [11]). Let M be an R-module. Then the following are
equivalent:

(a) .X;�/ is a T0 space;
(b) The natural map of X is injective;
(c) V.P / D V.Q/, that is, .P W M/ D .Q W M/ implies that P D Q for any

P;Q 2X ;
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(d) jSpecp.M/j � 1 for every p 2 Spec.R/.

Remark 3. (a) Let M be an R-module and p 2 Spec.R/. The saturation of a
submodule N with respect to p is the contraction of Np in M and denoted
by Sp.N /. It is known that

Sp.N /DN
ec
D fx 2M j tx 2N for some t 2R npg:

(b) Let M be an R-module and N �M . The radical of N , denoted by rad.N /,
is the intersection of all prime submodules of M containing N ; that is,
rad.N /D

T
P2V �.N/P ([14]).

(c) A topological space X is Noetherian provided that the open (respectively,
closed) subsets of X satisfy the ascending (respectively, descending) chain
condition ([4, p. 79, Exercises 5-12]).

Proposition 1. Let M be an strongly top module and  be the natural map of X .
Then

(a) .X;�/D .X;��/Š Im .
(b) If X is Noetherian, then X is a spectral space.

Proof. (a) By [15, Theorem 3.5] and Remark 2,  jIm is bijective. Also we have

 .V.N //D f.P WM/jP 2X;.P WM/� .N WM/g:

Now by [11, Proposition 3.1] and the above arguments,  is continuous and a closed
map. Consequently we have .X;�/D .X;��/Š Im .

(b) Let Y D V �.N / be an irreducible closed subset of X . Now by [6, Theorem
3.4], we have

V �.N /D V �.rad.N //D cl.frad.N /g/:

Hence Y has a generic point. Also X is Noetherian and it is a T0-space by [6, Pro-
position 3.8 (i)]. Hence it is a spectral space by [9, Pages 57 and 58]. �

An R- module M is said to be a weak multiplication module if either X D
Spec.M/D¿ orX ¤¿ and for every prime submodule P ofM , we have P D IM
for some ideal I of R (see [5]).

The following theorem extends [1, Proposition 3.5], [1, Corollary 3.6], [1, The-
orem 3.9 (1)], and [1, Theorem 3.9 (7)]. In fact, in part (a) of this theorem, we
withdraw the restrictions of finiteness and Noetherian property from [1, Proposition
3.5] and [1, Corollary 3.6], respectively. In part (b), we remove the conditions “ M
is primeful ” and “ R is a Noetherian ring ” in [1, Theorem 3.9 (1)] and instead of
them, we put the weaker conditions “ Im. / is closed in Spec.R/ ” and “ Spec.R/
is a Noetherian space ”. In part (c), we withdraw the condition “ R has Noetherian
spectrum ” from [1, Theorem 3.9 (7)] and put the weaker condition “ the intersection
of every infinite family of maximal ideals of R is zero ”.

Theorem 1. Let M be an R-module. Then we have the following.
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(a) Let .Mi /i2I be a family of R-modules and let M D ˚i2IMi . If M is an
strongly top R-module, then each Mi is an strongly top R-module.

(b) If M be an strongly top R-module and  be the natural map of X , then we
have
(i) If Im. / is closed in Spec.R/, then .X;�/ D .X;��/ is a spectral

space.
(ii) If Spec.R/ is Noetherian, then .X;�/D .X;��/ is a spectral space.

(c) Suppose R is a one dimensional integral domain such that the intersection of
every infinite family of its maximal ideals is zero. If M is a weak multiplica-
tion R-module, then M is a top module.

Proof. (a) Each Mi is a homomorphic image of M , hence it is strongly top
by [1, Proposition 3.3].

(b) (i) By Proposition 1, we have .X;�/D .X;��/Š Im. /. Now the claim
follows by [11, Theorem 6.7].

(ii) As Spec.R/ is Noetherian, Im. / is also Noetherian. Now the claim
follows from Proposition 1.

(c) Use the technique of [3, Theorem 3.18].
�

The following theorem extends [1, Theorem 3.9(3) ].

Theorem 2. Suppose R is a one dimensional integral domain such that the inter-
section of every infinite family of its maximal ideals is zero. If M is X -injective with
S0(0)� rad (0), then M is a top module.

Proof. If S0.0/ DM , then X D ¿ and there is nothing to prove. Otherwise, by
[12, Corollary 3.7], S0.0/ is a prime submodule so that S0.0/D rad.0/. Hence the
natural map f W Spec.M=S0.0//! Spec.M/ is a homeomorphism by [7, Proposi-
tion 1.4]. But by [3, Theorem 3.7 (a)] and [3, Theorem 3.15 (e)], M=S0.0/ is a weak
multiplication module. Now the result follows because by Theorem 1 (c), M=S0.0/
is a top module. �

Let M be an R-module. Then M is called a content module if for every x 2M ,
x 2 c.x/M , where c.x/ D

T
fI jI is an ideal of R such that x 2 IM g (see [13, p.

140]).
In below we generalize [1, Theorem 3.9(4)].

Theorem 3. Suppose R is a one dimensional integral domain and let M be a
content R-module. Then we have the following.

(a) If M is X -injective , then M is a top module.
(b) If M is X -injective and S0(0) � rad (0), then M is an strongly top module.

Furthermore, if Spec.R/ is Noetherian, then .X;��/ is spectral.
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Proof. (a) By [3, Theorem 3.21], we have

Spec.M/D fSp.pM/jp 2 V.Ann.M//;Sp.pM/¤M g D fS0.0/g[Max.M/;

where
Max.M/D fpM jp 2Max.R/;pM ¤M g:

Let N �M and let N ª S0.0/. Then

rad.N /D
\

N�P2Spec.M/

P D
\

N�P2Max.M/

P:

So by the above arguments, there is an index set I such that rad.N /D
T
i2I .piM/.

Since M is content module,

V �.N /D V �.rad.N //D V �.
\
i2I

.piM//D V..
\
i2I

piM/:

Now if N � S0.0/, then by [10, Lemma 2],

V �.N /D V �.rad.N //D V �.S0.0/\ .
\
i2I

.piM///

D V �.S0.0/\ ..
\
i2I

pi /M//

D V �.S0.0//[V �..
\
i2I

pi /M/

D V �.S0.0//[V..
\
i2I

pi /M/:

By the above arguments, it follows that M is a top module.
(b) By [3, Theorem 3.21],

Spec.M/D fS0.0/g[Max.M/ and Max.M/D fpM jp 2Max.R/;pM ¤M g:

Let N � M . If N � S0.0/, then V �.N / D V �.0/ D X . Otherwise, we have
rad.N /D

T
i2I .piM/ by [3, Theorem 3.21]. SinceM is content, by [11, Result 3]

we have

V �.N /D V �.rad.N //D V �.
\
i2I

.piM//D V..
\
i2I

pi /M/:

Hence M is an strongly top module. The second assertion follows from Theorem 1
(b). �

Theorem 4. If M is content weak multiplication, then M is an strongly top mod-
ule. Moreover, if Spec.R/ is Noetherian, then .X;��/ is a spectral space.
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Proof. Let N �M . Then we have

V �.N /D V �.rad.N //D V �.
\
N�P

P /:

Since M is a weak multiplication module, for each prime submodule P of M con-
taining N , there exists an ideal IP of R such that P D IPM . Hence since M is a
content module,

V �.N /D V �.
\
N�P

.IPM//D V �..
\
N�P

IP /M/:

This implies that M is an strongly top module. Since Spec.R/ is Noetherian, so is
Spec.R/. Hence by Theorem 1 (b), .X;��/ is a spectral space. �

Theorem 5. Let R be a one-dimensional integral domain and let M be an X -
injective R-module such that S0(0) � rad (0). If the intersection of every infinite
number of maximal submodules of M is zero, then M is strongly top and .X;��/ is
a spectral space.

Proof. If S0.0/ D M , then X D ¿ and there is nothing to prove. Otherwise,
by [3, Theorem 3.21], we have Spec.M/ D fS0.0/g[Max.M/ and Max.M/ D

fpM jp 2Max.R/;pM ¤M g. Now letN �M . IfN D 0, then claim clear because
V �.N /D V �.0/D V �.0M/D Spec.M/. So we assume that N ¤ 0. We consider
two cases.

(1) N � S0.0/. In this case, we have V �.N /D V �.0/D V �.0M/D Spec.M/.
(2) N ª S0.0/. Then since N ¤ 0 and the intersection of every infinite num-

ber of maximal submodules of M is zero, rad.N / D
Tn
iD1.piM/, where piM 2

Max.M/ for each i .1� i � n/. Hence we have

V �.N /D V �.rad.N //D V �.

n\
iD1

.piM//:

Now we show that V �.
Tn
iD1.piM// D V �..

Tn
iD1pi /M/. Clearly,

V �.
Tn
iD1.piM// � V �..

Tn
iD1pi /M/. Too see this reverse inclusion, let

P 2 V �..
Tn
iD1pi /M/. If P D S0.0/, then .

Tn
iD1pi /M � S0.0/ implies thatTn

iD1pi � ..
Tn
iD1pi /M WM/ � .S0.0/ WM/ D 0. Thus, there exists j .1 � j �

n/ such that pj D 0, a contradiction. Hence we must have P D qM , where q 2
Max.R/. Then, similar the above arguments, there exists j .1 � j � n/ such that
q D pj . Therefore, P D qM D pjM 2 V �.

Tn
iD1.piM//. So we have

V �.N /D V �.

n\
iD1

.piM//D V �..

n\
iD1

pi /M/:

Hence M is strongly top so that � D ��. On the other hand, � D �� is a subset
of a finite complement topology. This implies that .X;��/ is Noetherian. Now by
Proposition 1, .X;��/D .X;�/ is spectral. �
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Theorem 6. If for each submodule N of M , rad.N / D
p
.N WM/M , then M

is an strongly top module. Moreover, if Spec.R/ is Noetherian , then .X;��/ is
spectral.

Proof. Let N �M . Then we have

V �.N /D V �.rad.N //D V �.
p
.N WM/M/

D V.
p
.N WM/M/D V.rad.N //D V.N /:

Hence M is an strongly top module. Now the result follows by using similar argu-
ments as in the proof of Theorem 4. �

Remark 4. Theorems 4, 5, and 6 improve respectively [1, Theorem 3.9(5)], [1,
Theorem 3.9(8)], and [1, Theorem 3.9(6)]. They show that the notion of ” top mod-
ules ” can be replaced by ” strongly top modules ” and the proofs can be shortened
considerably.

In below we generalize [1, Theorem 3.36].

Theorem 7. Let M be a primeful R-module. Then we have the following.
(a) If .X;�/ is discrete, then Spec.M/DMax.M/.
(b) If R is Noetherian and Spec.M/DMax.M/, then .X;�/ is a finite discrete

space.

Proof. (a) Since .X;�/ is discrete, it is a T1-space. Now by [3, Theorem 4.3], we
have Spec.M/DMax.M/.

(b) By [3, Theorem 4.3], Spec.R/DMax.R/. Hence R is Artinian. Now by [3,
Theorem 4.3], .X;�/ is a T0-space. Thus by Remark 2,M isX -injective. ButM is a
cyclic R-module and hence a cyclic R-module by [3, Remark 3.13] and [3, Theorem
3.15]. Also .Spec.M/;�/ is homoeomorphic to Spec.R/ by [11, Theorem 6.5(5)].
Hence X is a finite discrete space by [4, Chapter 8, Exe 2].

�

It is well known that if R is a PID and Max.R/ is not finite, then the intersection
every infinite number of maximal ideals of R is zero. Now it is natural to ask the
following question: Is the same true when R is a one dimensional integral domain
with infinite maximal ideals? In below, we show that this true when Spec.R/ is a
Noetherian space. Although this is not a simple fact, it used by some authors without
giving any proof.

Theorem 8. (a) Let I be an ideal of R and let k;n 2N. Then .
p
I W ak/D

.
p
I W an/.

(b) Let I be an ideal of R and let a 2 R, n 2 N. Then
p
I D

q
.
p
I W an/\q

h
p
I ;ani.
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(c) Suppose Spec.R/ is a Noetherian topological space. Then for every ideal I
of R,

p
I has a primary decomposition.

(d) Suppose R is a one dimensional integral domain and Spec.R/ is a Noeth-
erian topological space. Then the intersection of every infinite number of
maximal ideals is zero.

Proof. (a) It is clear.

(b) Let f 2
q
.
p
I W an/\

q
h
p
I ;ani. Then there ism 2N such that f m 2 .

p
I W

an/\h
p
I ;ani. It follows that f m D gCxan for some g 2

p
I and x 2 R and we

also get anf m 2
p
I . Hence anf m D angCxa2n. This implies that xa2n 2

p
I

and so x 2 .
p
I W an/ by part (a). Thus xan 2

p
I . It follows that f 2

p
I . The

reverse inclusion is clear.
(c) Set ˙ D

f
p
I jI is a proper ideals of R and

p
I doesn’t have any primary decompositiong:

Since Spec.R/ is Noetherian, the radicals of ideals satisfy the a.c.c. condition. So
˙ has a maximal member,

p
I0 say. Thus

p
I0 … Spec.R/. In other words,

9a;b 2R s.t. ab 2
p
I0 and a …

p
I0 and b …

p
I0:

By part (b) we have
p
I0 D

p
.
p
I0 W b/\

p
h
p
I0;bi. Further,

p
I0 ¨

p
.
p
I0 W b/

and
p
I0 ¨

p
h
p
I0;bi. Since

p
.
p
I0 W b/ and

p
h
p
I0;bi have primary decomposi-

tions by hypothesis,
p
I0 has a primary decomposition, a contradiction.

(d) Since R is one dimensional integral domain, Spec.R/D f0g[Max.R/. Sup-
pose fmigi2I is an infinite family of maximal ideals of R such that

T
i2I mi ¤ 0. By

part (c),
pT

i2I mi has a primary decomposition. Hences\
i2I

mi D

n\
jD1

m0j ; m0j 2Max.R/:

This implies that fmigi2I is a finite family, a contradiction. So the proof is compe-
leted. �

Example 1. We show that ZŒi
p
5� is a one dimensional Noetherian integral domain

which has infinite number of maximal ideals and it is not a PID. To see this, let
� WZŒX�!ZŒi

p
5� be the natural epimorphism given by p.x/ 7! p.i

p
5/. by using

[8] or [16], one can see that

Spec.ZŒX�/D fhpi;hf i;hq;gijp and q are prime numbers, f is a primary

irreducible polynomial in QŒX�, and g is an irreducible polynomial in ZqŒX�g:

Now we have ker� D hX2C5i. A simple verification shows that

Spec.ZŒi
p
5�/D f0g[Max.ZŒi

p
5�/



ON THE PRIME SPECTRUM OF MODULES 1241

D f0g[fhq;g.
p
�5/ij hq;gi 2 Spec.ZŒX�/ and X2C5 2 hq;gig:

Further ZŒi
p
5� contains a finite number elements which are invertible by [17, p.

38]. So ZŒi
p
5� is a Noetherian one dimensional integral domain with infinite number

of maximal ideals. Hence the intersection of every infinite number of maximal ideals
of ZŒi

p
5� is zero by Theorem 8 (c). Note that ZŒi

p
5� is not a PID by [17, p. 38].
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