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Asstract. We discuss the singular fiiérential equationg(x’))’ = f(t, x, X) to-
gether with the nonlocal boundary conditions mdg : t € [0,T]} = A, x(0) =

X(T). Here,g € CO(R) is an increasing and odd function, whereas the negative

f satisfying the local Caraffodory conditions on [0'] x R x (R \ {0}) may be
singular at the value 0 of its second phase variablefaadR. An existence result

for the above boundary value problem is proved by the regularization and sequen-
tial techniques. The proofs use the Leray—Schauder degree principle and the Vitali
convergence theorem.
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1. INTRODUCTION

LETT BE A POSITIVE NUMBER, J = [0, T], and letA € R. Consider the boundary
value problem
(g(xX[®)) = f(t. x(V), X (1)), (1.1
x(0)=x(T), maxx():teJ}=A (1.2)
Here,g € CO(R) is an increasing and odd function, and the functfosatisfying
local Carateodory conditions old X R x (R \ {0}) (f € Car(J xR x (R \ {0}))) is
negative, and it may be singular at the value 0 of its second phase variable in the
following sense: ligo f(t, X,y) = —co for a. e.t € J and everyx € R.
We say that a functior € C(J) is a solution of the boundary value probldn1),
(1.2) if g(x') € AC(J) (absolutely continuous functions di), x satisfies the boundary
conditions (1.2), and (1.1) holds a. e. &én
The aim of this paper is to give conditions guaranteeing the solvability of the
boundary value problem (1.1), (1.2). We note that the derivative of any solution of the
boundary value problem (1.1), (1.2) ‘goes through’ the singularity eébmewhere
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inside ofJ. Moreover, we consider solutiornsof the boundary value problem (1.1),
(1.2) having the ‘maximal’ smoothness, thatxse C1(J) andg(x') € AC(J). Till

the present, various types of nonlocal boundary conditions have been considered for
differential equations, systems oftfdrential equations, and systems of functional
differential equations with continuous or Cakdtory nonlinearities (see, e. g., [4—

6, 8-10, 13, 16-18] and references therein) or nonlinearities having singularities in
the time variabld (see, e. g., [12, 14, 15] and references therein). There are only
a few papers (see [1, 2, 19, 20]) dealing with boundary value problems for nonlocal
boundary conditions and second-ordefatiential equations having singularities in
phase variables.

As usual,|[x]] = max|x(t)| : t € J} and||x]|. = f0T|x(t)|dt stand for the norm
in C1(J) andL1(J), respectively. For every measurable a8dtc R, its Lebesgue
measure is denoted by the sympOM).

Throughout the paper, the following assumptions are used.

(H1) g € CO(R) is an increasing and odd function, lim. g(u) = oo;
(Ho) f eCar(JxR x (R {0})) and there exists a positive constarguch that

f(t,xy) <-a

fora.ete Jandall k,y) € R x (R \ {0});
(H3) Fora.ete Jandall ki) € R x (R \ {0}),

f(t, X y) = —q(X)(w1(ly)) + w2(ly1)

with q € CO(R) positive, w; € C°([0, «)) non-negativew, € C°((0, =)
positive and non-increasing and

1
fo wag~Y(9) ds< co.*

A further assumptionH,) will be given in Section 2.

The plan of the paper is as follows: In Section 2, we first define a sequence of aux-
iliary regular boundary value problems with nonlinearitigsuch thatf,(t, X, y) =
f(t,x,y) fora. e.t € Jand forx € R, |y| = 1/n, n € N. Then we consider properties
of their solutions (Lemma 2.1) and give thenpriori bounds (Lemma 2.2). By using
the Leray—Schauder degree principle (see [7]), the existence of a sotytddmux-
iliary boundary value problem with nonlinearify; is proved (Lemma 2.3). Finally,
we show that the sequen¢g(t, X,(t), X, (t))} is uniformly absolutely continuous on
J (Lemma 2.5). Itis this result which is used in the next section when passing to the
limit because itis impossible to find a Lebesque majorantfidt, xn(t), x;,(t))} which
is necessary for the application of the Lebesgue theorem on dominated convergence.

*Sinceg™ is increasing by i;) and w, is positive and non-increasing byi{), it follows that
foc wo(g71(s)) ds < oo for everyc € (0, o).
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Section 3 presents the main existence result for singular boundary value problem
(1.1), (2.2) (Theorem 3.1). It is proved by the AeAscoli theorem and the Vitali
convergence theorem (see [3, 11]).

The results are demonstrated on an example (Example 3.2).

2. AUXILIARY REGULAR BOUNDARY VALUE PROBLEMS
For everyn € N, we definef, € Car (J x R?) by
fn(t,x,y):{:(t’x’y) for (t,x) € IX R, ly| > &
Af(txd)(y+3)-ftx-2)(y-3%)] for(txeIxR, ly<?i.
By (H2) and Ha),
—a 2 fo(t, X, y) > —q(})(w.1(lyl) + w2(lyl)) (2.1)
fora. e.t € Jand all k, y) € R?, where
wi(l) forO0O<x<1
walx) = { wi(X)  forx> 1.
Consider the family of regular fierential equations
(g(X (1)))" = Afn(t, (1), X' (1)) (EX

depending on the parameters IN and2a € [0, 1]. We note thak = A is the unique
solution of the boundary value problem PE)1.2) for everyn € N.

Lemma 2.1. Let assumptiongH;) — (H3) be satisfied and let € N, 1 € (0,1].
Assume thax is a solution of the boundary value problg);, (1.2). Then

(X(T) =) x(0) = min{x(t) : te J} < A, (2.2)

T/2
A - x(0) > f g Y(1agds (2.3)
0
X' (£) = 0for a uniquet € (0, T), and
X(t) =g (1aE¢ 1) forte[0,4],
) o (2.4)
X)) < —g(1at-¢)) forte[&T).

Proof. Since

(g(X()) <-1a fora.eteld, (2.5)
by (2.1), we see thag(X’) is decreasing od and, thereforex’ is decreasing as
well. Now from (1.2) we deduce that(¢) = 0 for a& € (0, T), and sa is unique,
maxx(t) : t € J} = x(£), X >00on[Q¢ X < 0on ¢,T], and (2.2) is also true.
Integrating (2.5) overt[£] c [0, £] and over E, t] C [£, T], we get

g(X() = 1a(¢ -1), tel0,¢]
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and
g(X(t) < -dat-¢), te[dT]
respectively. Hence, (2.4) is true.
Finally, it follows from (2.4) and the equality(¢) = A that

A - x(0) = X&) — X(0) = f X (t) dt > f g Y (a(¢ - 1) dt = f g Y(1a9ds
0 0 0

and

X(T)-A=xT)-x(¢) = f; X{t)dt< - f; g‘l(/la(t - &) dt

T-¢
=- f g Y(1a9ds
0

Therefore,
‘ T-¢
(A= x(T) =) A= x(0) > max{ f( g Y(1as)ds f g Y(1a9 ds}
0 0

T/2
> [y tagds
0

which proves (2.3). O

We are going to give priori bounds for the solution of the boundary value prob-
lem (EX, (1.2). Define the functionsl € C°([0, o)) andQa € CO((~c0, A]), A € R,

by the relations
o g9
0= [ TS e ®

and .
Qn(U) = f o(9 ds

ThenH is increasing on [0x), Qa is decreasing on-{co, A], and H=1(Qa(A)) = 0.
If the functionH1(Qa(u)) satisfies the assumptibn

A 1
(Ha) f ds<o forAeR,

A-1 HH(Qa(9)
then we define, for ever € R, the functionSa € CO((—co, A]) by putting

A 1
SA(u):fu —H—l(QA(s))dS (2.6)

Since the functionH 1(Q,) is decreasing on—o, A], the assumptionH,) guarantees that
I T < o foreveryu e (—co, A).



A NONLOCAL SINGULAR BOUNDARY VALUE PROBLEM 95
ThenSa(A) = 0 andSp is decreasing orHeo, A]. Set

A= {A: AcR, lim Sa) > ;} @2.7)
We are now in a position to give priori bounds for the solution of the boundary

value problem (E), (1.2).

Lemma 2.2. Let assumptiongH;) — (H4) be satisfied and leA € A. Letx be a
solution of the boundary value problgi@);, (1.2), 1 € (0,1], ne N. Then

X(0) = X(T) > Aa (2.8)
and
Xl < max{lAal, A}, 11Xl < HH(Qa(AA)), (2.9)
where
An = Syt (%) (2.10)

andSa is defined by(2.6).

Proof. By Lemma 2.1 X' (£) = 0 for a uniquet € (0, T), X > 0on[Q¢&), andx <0
on ¢, T]. Then (see (2.1))
(g(xX (1))’ X (1) > —a(x(O)[w.1(X (1)) + w2(X' ())]X (1) fora.e.te[0,]
and
(g(X (1)) X (1) < —a(X(O)[w:a (=X (1)) + wo(-X ())]X'(t) fora.e.te[&T].

Integrating the inequality

(g(x' (1))’ X (t) ,

(X () + 02X @) > —q(x@®))X'(t) fora.e.te][0,£]

fromt € [0, £] to & and the inequality

(g(X (1)) x'(t) ~ /

0 (=X () + 02X (O) < —q(x()X(t) fora.e.te[&T]

fromé&tot € [£, T] and using the relatior(¢) = A, we get

fg(x’(t)) g_l(s) ds< A () te0.4
T TE FETE el A ’
and (=x' (1) 1 A
g9

fo oG M) + walg 1) 55 J o MFds teleT]

Therefore,
H(X' (1)) < Qa(x(t)) forte 0, (2.11)

and

H(=X () < Qa(x(t)) forte [ TI. (2.12)
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Now integrating the relation

X(t)
m < 1, te [O, f]

XM
OO I
from & to T, we have (see (2.6)3a(x(0)) < & andSA(X(T)) < T — &. Hence
(SA(X(T)) =) Sa(X(0)) < T/2, and consequently(T) =) X(0) > S;}(T/2) = Aa
becausé&, is decreasing. We have thus proved that (2.8) is true and, therefore,

IXII < max{|Aal, |Al}.
Now (2.11) witht = 0 and (2.12) witht = T yield
X (0) < H(Qa(X(0)) < H™H(Qa(An),
—X(T) < HH(Qa(X(T)) < H™H(Qa(An)),
and sincd|X'|| = maxx/(0), —x'(T)}, we have
X1l < H™(Qa(AA)),
as required. O

from 0 to¢ and

Lemma 2.3. Let assumptionfH;) — (H4) be satisfied. LeA € A andn € N. Then
there exists a solutior of the boundary value proble(&)?, (1.2) satisfying(2.8) and
(2.9), whereAn is defined by2.10).

Proof. Let us put
Q={(x0): (xc) e CYI) xR, IIXll < max|Aal, IA} + 1,
Xl < H™(Qa(AA)) + 1. ol < max(|Aal, |A} + 1}

ThenQ is a bounded, open, and symmetric with respect t0)Bubset of the Banach
spac_eCl(J) x R with the norm||(x,c)ll. = [IX|| + |X]| + |c|. Define the mapping
F 1 Qx[0,1] - CYJ) x R by the equality

F(x.CA) = (c, c+maxx(t) : t € J} - AA).

Then¥ is a compact operator. Lgtbe the identity operator on'(J) xR and let us
defineg : Q — CY(J) x R by puttingGg = 7 — 7(-,-,0). Then

G(x.¢) = (x—c, —max(x(t) : t e Jj).
Assume now that

G(=Xo, —Co) = x0G (X0, Co)
for some o, Co) € 9Q andy € [1, ). Then

(- %+ co, —max-xo(t) : t € J}) = xo(Xo — Co, —Maxtxo(t) : t € Jj),
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and, thus,
(xo(t) —co)(1+x0) =0 forteJ, (2.13)
max—Xo(t) : t € J} = yomax{xp(t) : t € J}. (2.14)

It follows from (2.13) thatxg(t) = cpfort € J, and (2.14) then yieldg6+1)co = O.
Hence, ko, co) = (0,0), contrary to the inclusionxg, cp) € 9Q. Now Theorem 8.3
from [7] implies that

D(Z -7 0),Q,0) 0, (2.15)
where ‘D” stands for the Leray—Schauder degree.

If F (X, Cs, 1) = (X, C.) for some ., c,) € 9Q and . € [0, 1], thenx,. = c. and
max(x.(t) : t € J} = 1,A. Hencegc. = A.A and, consequentl§G.| < A, [IX.I| < |Al,
and||X'|| = 0, which contradicts the relatiox,(, c.) € Q. We have thus proved that

F(xc,2) # (%)

for (x,c) € 0Q anda € [0, 1] and, therefore, by virtue of the homotopy property and
(2.15), we obtain

DI - F(-,-1),Q,0)= D(Z - F(,-,0),Q,0) 0. (2.16)
Finally, let us define the operat®¢ : Q x [0, 1] — C1(J) x R by the relation

t S
7((x,c,/l):(c+ fo g H(K+2 fo fav, X(0), X (v)) dv) ds

C+maxx(t) : t e I} A)
whereK = K(x, 1) € R is a solution of the equation
p(X;x,4) =0 (2.17)
with
T t
p(X; X, ) = f gt (X + Af fa(s x(9), x’(s))ds) dt. (2.18)
0 0

Sincep(-; x, 2) is continuous and increasing @and limy_,.. P(X; X, 1) = +oo0
by virtue of Hy), it follows that equation (2.17) has a unique solution for every
(x,2) € Q x[0,1]. Assume thatX, c) is a fixed point of the operatdk(-, -, 1). Then

t S
X(t) = c+ fo g (K. + fo (v, X(0), X)) dv) s te ]

and maxx(t) : t € J} = A, wherekK, is the unique solution of equatiqi{X; x,1) = 0.
Hence x is a solution of the boundary value problem}K).2) andc = x(0). We see
that, to prove our lemma, it is flicient to verify that

D(Z - K(-,-,1),Q,0) 0. (2.19)

Since
K(x,c,0)= (c, C+ maxx(t) :te J} - A),
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we havekx(.,-,0) = ¥(-,-,1), and then (2.16) yields the inequality
DI - K(-,-,0),Q,0) # 0.

By the homotopy property, the fulfilment of (2.19) will be proved if we show that

(i) K is a compact operator and
(i) K(x,c, ) # (xc)for (x.c) € 0Q andA € [0, 1].

We first show thatX is a continuous operator. L&t<m, Cm, Am)} C Qx [0,1] be
a convergent sequence and Hm., (Xm, Cm, Am) = (Xo, Co, o). Let Ky, be the unique
solution of equatiorp(X; Xm, Am) = 0. Sincef, € Car (J x R?), there existy € L1(J)
such that

[fa(t, X, y)l < y(t) fora.e.te Jandall  y)
such thatx| < max|Aal, |Al} + 1 andly| < H}(Qa(An)) + 1. (2.20)

Therefore,

T t
B(IyIIL: X ) = fo g-l(uynwzm fo o0, X (0), X)) o] dlt = O

forme N.

Now from p(0; Xm, Am) < O for m € N we deduce thatK,} is bounded and
0 < Kn < IvllL. If {Km} is not convergent, there exist subsequeniégs and
{Im} of {m} such that linh e Kk, = V1, iMoo K, = Vo andVy # Vo. Then
p(Vj; X0, 40) = 0 (j = 1,2) by the Lebesgue dominated convergence theorem, con-
trary to the fact thap(- ; Xo, Ao) increasing. HencéKy,} is convergent and the con-
tinuity of K follows again from the Lebesgue dominated convergence theorem. By
(2.20) and the Bolzano—Weierstrass theorem we can verifyi@tx [0, 1]) is rela-
tively compact inC1(J) x R. Hence, property (i) is valid.

Assume thatk(x,c, 1) = (x c) for some &) € Q andA € [0,1]. If 1 = 0,
then from the first part of our proof we hawe= c = A, and so ,C) ¢ dQ. Let
A € (0,1]. Then it can be readily verified thatis a solution of the boundary value
problem (E}, (1.2) andc = x(0). Hence, by Lemma 2.3x]| < max|Aal, |Al}, [IX]] <
H=1(Qa(An)) and, therefore,

Icl < max{|Aal, |Al}.
We have proved thak(c) ¢ dQ, which shows that condition (ii) is satisfied. o

Lemma 2.4. Let assumptionfH;)—(H4) be satisfied ané € A. Letx, be a solution
of the boundary value probleg)?}, (1.2) and x/(&n) = O for a (unique & € (0, T).
Then there exist constarntsg, ¢, such that

O<ci<é<cp<T forneNN. (2.21)
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Proof. Assume that there is a subsequefég} of {&n} such that lim_ &, = O.
Then

A = i,(0) = X, (i) — X, (0) = X (Tn)éi,»
wherery € (0,&,). By Lemma 2.1, we have

T/2
A - % (0) > f g (@9 ds
0
and, therefore,
lim X (tn) = (A= %,(0))/ék, = oo,

contrary to the inequalityx,|| < H"%(Qa(Aa)) for n € N (see Lemma 2.2). Hence
&, > ¢1 for n € N with a positive constart;. The inequalitieg, < ¢, < T, n€ N,
with a constant, can be proved analogously. O

Lemma 2.5. Let assumptionfH;) — (H4) be satisfied andé € A. Letx, be a solution
of the boundary value proble(&):, (1.2). Then the sequence

{fn(t xn(®), X))} € L1(J)

is uniformly absolutely continuo&®/AC) on J, that is, for everyg > 0, there exists
ad > 0such that

f [fa(t, Xa(1), X(D)Idt <&, neN
wheneveM c Jis meag/ltjrable angd(M) < 6.
Proof. By Lemma 2.2,
1%l < max|Aal A} [IX]l < HH(Qa(An)) forneN, (2.22)
where the constamta is defined by (2.10), and then (see (2.1))

| n(t. Xa(t), Xn(D)] < max{q(u) : |ul < max|Aal Al

x (max{w.1(W) 1 0 < u< HH(Qa(AW)} + w2(lXy(1))  (2.23)
for a. e.t € Jand everyn € IN. In addition, X' (&,) = O for a uniquet, € (0, T),
X(t) > g @@ —t) forte[0,&), (2.24)

X0 = g H(alt - &) forte [én,T] (2.25)
forn e N by Lemma 2.1, and (2.21) is true with constamitsc,. Now (2.23) yields
that{ fu(t, Xn(t), X,(1))} is UAC on J if {w2(]x,(t)l)} is UAC onJ.

Due to the structure of the measurable set®Rjnit follows that {w2(Ix; (1))} is
UAC on J if and only if for everye > 0 there exist$ > 0 such that for any at most
countable set(aj, bj)}jep of the mutually disjoint intervalsaj, bj) c J, ¥ jey(bj —

aj) <o, we have

b

> f wo(IX,(ONdt<e, neN.
jer v
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For this reason, Ig(aj, bj)}jcy be an at most countable set of mutually disjoint inter-

vals @j, bj) c J. Let us put
Jh=1{jtied (a,b)c(0.é)

and
Ja=1{jtiel (a,b)c @,

Then, forj € J} andi € J2, in view of (2.24) and (2.25), we have
bj , bj 1 1 a(fn—aj) 1
f w2(IXa(1)) dt < f w2(g~ (@ - 1)) dt = — f w2(g~(9)) ds
aj aj a Ja(ér-by)

and

f: WX (B)) dt < f: walg™alt - )t = 5 f:(bi_fn) wz(g™(9) ds

(&—¢n)

If IL U T2 # T and{jo} = I\ (I U J2), then

bio sn bio
fa w(IX, (1)) dt < f( wa2(g~H@aEn - 1)) dt + fs w2(g™H(alt - &) dt

a

io i)
1 A(En—2jy) 1 a(bj,—¢n) 1
_1 f wag(9) ds+ f wag(9) ds].
alJo 0
Let us set
Ar = (@ - b)), aén - ) + €}
jeld
and
A2 = J(ata - &), alb; - &) + &3
jela
where
L |2 ifJ=JtuUD2
"l (0a¢-ay)  if {jo) =T\ FEUI?)
and
2_{@ if J=Jtul2
" | ©abj,-£&) if {jo) =T\ @EUTR).
Then

udp) <ay (bj-ay), i=12

jel

(2.26)



A NONLOCAL SINGULAR BOUNDARY VALUE PROBLEM 101

and
bi ’ 1 -1 -1
Zf wz(IXn(t)I)dtS—[f w2(g (t))dt+f w2(g (t))dt]- (2.27)
e Vay alJa A3
Sincewz(g™1) € Lioe([0, )), we conclude from (2.26) and (2.27) that the sequence
{w2(Ix, (D))} is UAC on J. O

3. EXISTENCE RESULT AND AN EXAMPLE

Theorem 3.1. Let assumptionfHi) — (H,4) be satisfied. Then boundary value prob-
lem(1.1), (1.2) has a solution for everj € A.

Proof. Let us fix A € A. By Lemmas 2.1-2.4, there exists a solutignof the
boundary value problem (E)1.2) and inequalities (2.21)—(2.25) are satisfied, where
Anais defined by (2.10%, € (0, T) is the unique zero of}, andc,, c; are constants. In
addition, by Lemma 2.5, the sequer{dg(t, xn(t), x;(t))} is UAC on J, which implies
that the sequence

t
106600 = { [ o 9. 590
is equicontinuous od. Then, in view of the relation

IX)(t2) — X, ()l = g™ (g(X(t2)) — g Hg((t))), titoe I neN;

and the fact thay™! is continuous and increasing d&, we conclude thatx;(t)}
is equicontinuous od. Hence,{x,} is bounded inC(J), {x,(t)} is equicontinuous
on J and since&,} is bounded, using the ArzetAscoli theorem and the Bolzano—
Weierstrass theorem, we can assume without loss of generalitykthat convergent
in C1(J) and{&,} is convergent irR.

Let limy e Xy = x and lim_. & = & Thenx € CY(J), x(0) = x(T), maxx(t) :
teJ}=A0<c<é<<T,and

X() > g M@ -1) forte[0,&], XMl =g (at-¢) forte[sT].

Therefore,

lim ot %), X4(0) = F(&X(©), X() fora. eted,

Thus, f(t, x(t), X (1)) € L1(J) and

lim f (8 %0(9). X.(9) ds = f e x9.X(9)ds ted
n=c Jo 0

by the Vitali convergence theorem. Passing to the limit as « in the equalities

t
G(X,(1)) = L (s (9, X,(9)ds  ted neN
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we get
g(X'(t)) = j: f(sx(s), X (g)ds teld
Hence g(x’) € AC(J) andx is a solution of boundary value problem (1.1), (1.2

Example3.2 Consider the dferential equation

(IX (®)PsgnX'(t))" = — (2 + sin(tx(t)) + x(¥)) (|x'(t)|a s (1t)|ﬁ) 3.1)
wherep>1,0<a<p-1and0< B < p.
Let us set
f(t, %, y) = = (2 + sin(tx) + ) (|y|a + Iyilﬁ)
for (t,x,y) € Ix R x (R \ {0}). Then H,) is satisfied withy(u) = |u[Psgnu, and f
satisfies Hy) and Hz) with a = 1, q(X) = 3 + |X|, w1(u) = u® andwo(u) = 1/uP.

Therefore,
B 1 forO<ux<l1
w(l) = ur  foru>1
and
A A
Qn(U) = f o(9 ds= f (3+18)ds> 3(A- ), (3.2)
A
Qu(U) = f (3+18) ds< (3+ maxAL lu})(A— u) (3.3)

foru < A. Since

B g(U) g_l(S) B W Gl/p
R = fo wx1(g71(9) + w2(g1(9) ds= fo 1+ sB/p ds

uP
< f UBP s P 1D
~Jo 1+B8+p

for u € [0, 1], we have that

1/(1+p+p)
H(u) > (1+€+ pu)

foru € [0, H(1)] and, hence (see (3.2)),
A 1 A 3(1+ﬂ + p) ~ )—1/(1+ﬂ+p)
I e o= [ e e

for £ = min{1, A— Q }(H(1))} because A1 + 8 + p) < 1. This shows thatH) is
satisfied.
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We are going to verify tha#l = R, whereA is given by (2.7). Fou > 1, we have

P (1+B)/p

uP S1/p u
H(u) = H(1)+£ mds: H(1)+f; mds
1, p
- —a)/p — I R £ B
2H(1)+2f1 o ds H(1)+2(1+p_a)(u 1)
and, consequently,
_ 1/(1+p-a)
H(u) < (2(1+—§a)(u “H) + 1)

for u € [H(1), «0). Hence, we have (see (3.3))
A A 1 AHW) g
—————ds= —d ——d
|, 7w le(H(l)) Fo@® ), e

QAl(H (l))
> f
u

for u < Q;1(H(1)). Since 2(1 + p- a) < 1, we see that

. A 1
u'ﬂ‘wfu HLQa() 5

for everyA € R and, hence, we have proved ttvt= R. Applying Theorem 3.1, we
conclude that the boundary value problem (3.1), (1.2) has a solution far=iR.

-1
1+p-a

(3+max|AlL|s}) (A- ) - H(1)) + 1 ds

2(1+ p—oz)(
p
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