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A. We discuss the singular differential equation (g(x′))′ = f (t, x, x′) to-
gether with the nonlocal boundary conditions max{x(t) : t ∈ [0,T]} = A, x(0) =

x(T). Here,g ∈ C0(�) is an increasing and odd function, whereas the negative
f satisfying the local Carathéodory conditions on [0,T] × � × (� \ {0}) may be
singular at the value 0 of its second phase variable andA ∈ �. An existence result
for the above boundary value problem is proved by the regularization and sequen-
tial techniques. The proofs use the Leray–Schauder degree principle and the Vitali
convergence theorem.
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1. I

L  T    , J = [0,T], and letA ∈ �. Consider the boundary
value problem

(g(x′(t)))′ = f (t, x(t), x′(t)), (1.1)

x(0) = x(T), max{x(t) : t ∈ J} = A. (1.2)

Here,g ∈ C0(�) is an increasing and odd function, and the functionf satisfying
local Carath́eodory conditions onJ × � × (� \ {0}) ( f ∈ Car(J ×� × (� \ {0}))) is
negative, and it may be singular at the value 0 of its second phase variable in the
following sense: limy→0 f (t, x, y) = −∞ for a. e.t ∈ J and everyx ∈ �.

We say that a functionx ∈ C1(J) is a solution of the boundary value problem(1.1),
(1.2) if g(x′) ∈ AC(J) (absolutely continuous functions onJ), x satisfies the boundary
conditions (1.2), and (1.1) holds a. e. onJ.

The aim of this paper is to give conditions guaranteeing the solvability of the
boundary value problem (1.1), (1.2). We note that the derivative of any solution of the
boundary value problem (1.1), (1.2) ‘goes through’ the singularity off somewhere
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inside ofJ. Moreover, we consider solutionsx of the boundary value problem (1.1),
(1.2) having the ‘maximal’ smoothness, that is,x ∈ C1(J) andg(x′) ∈ AC(J). Till
the present, various types of nonlocal boundary conditions have been considered for
differential equations, systems of differential equations, and systems of functional
differential equations with continuous or Carathéodory nonlinearities (see, e. g., [4–
6, 8–10, 13, 16–18] and references therein) or nonlinearities having singularities in
the time variablet (see, e. g., [12, 14, 15] and references therein). There are only
a few papers (see [1, 2, 19, 20]) dealing with boundary value problems for nonlocal
boundary conditions and second-order differential equations having singularities in
phase variables.

As usual,‖x‖ = max{|x(t)| : t ∈ J} and ‖x‖L =
∫ T

0
|x(t)|dt stand for the norm

in C1(J) and L1(J), respectively. For every measurable setM ⊂ �, its Lebesgue
measure is denoted by the symbolµ(M).

Throughout the paper, the following assumptions are used.

(H1) g ∈ C0(�) is an increasing and odd function, limu→∞ g(u) = ∞;
(H2) f ∈ Car(J ×� × (� \ {0})) and there exists a positive constanta such that

f (t, x, y) ≤ −a

for a. e.t ∈ J and all (x, y) ∈ � × (� \ {0});
(H3) For a. e.t ∈ J and all (x, y) ∈ � × (� \ {0}),

f (t, x, y) ≥ −q(x)(ω1(|y|) + ω2(|y|))
with q ∈ C0(�) positive,ω1 ∈ C0([0,∞)) non-negative,ω2 ∈ C0((0,∞))
positive and non-increasing and

∫ 1

0
ω2(g−1(s)) ds< ∞.∗

A further assumption (H4) will be given in Section 2.
The plan of the paper is as follows: In Section 2, we first define a sequence of aux-

iliary regular boundary value problems with nonlinearitiesfn such thatfn(t, x, y) =

f (t, x, y) for a. e.t ∈ J and forx ∈ �, |y| ≥ 1/n, n ∈ �. Then we consider properties
of their solutions (Lemma 2.1) and give thema priori bounds (Lemma 2.2). By using
the Leray–Schauder degree principle (see [7]), the existence of a solutionxn of aux-
iliary boundary value problem with nonlinearityfn is proved (Lemma 2.3). Finally,
we show that the sequence{ fn(t, xn(t), x′n(t))} is uniformly absolutely continuous on
J (Lemma 2.5). It is this result which is used in the next section when passing to the
limit because it is impossible to find a Lebesque majorant for{ fn(t, xn(t), x′n(t))}which
is necessary for the application of the Lebesgue theorem on dominated convergence.

∗Sinceg−1 is increasing by (H1) andω2 is positive and non-increasing by (H3), it follows that∫ c

0
ω2(g−1(s)) ds< ∞ for everyc ∈ (0,∞).
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Section 3 presents the main existence result for singular boundary value problem
(1.1), (1.2) (Theorem 3.1). It is proved by the Arzelà–Ascoli theorem and the Vitali
convergence theorem (see [3,11]).

The results are demonstrated on an example (Example 3.2).

2. A    

For everyn ∈ �, we definefn ∈ Car (J ×�2) by

fn(t, x, y) =


f (t, x, y) for (t, x) ∈ J ×�, |y| ≥ 1

n
n
2

[
f
(
t, x, 1

n

) (
y + 1

n

)
− f

(
t, x,−1

n

) (
y − 1

n

) ]
for (t, x) ∈ J ×�, |y| < 1

n.

By (H2) and (H3),

−a ≥ fn(t, x, y) ≥ −q(x)(ω∗1(|y|) + ω2(|y|)) (2.1)

for a. e.t ∈ J and all (x, y) ∈ �2, where

ω∗1(x) =


ω1(1) for 0≤ x ≤ 1

ω1(x) for x > 1.

Consider the family of regular differential equations

(g(x′(t)))′ = λ fn(t, x(t), x′(t)) (E)λn

depending on the parametersn ∈ � andλ ∈ [0, 1]. We note thatx = A is the unique
solution of the boundary value problem (E)0

n, (1.2) for everyn ∈ �.

Lemma 2.1. Let assumptions(H1) − (H3) be satisfied and letn ∈ �, λ ∈ (0,1].
Assume thatx is a solution of the boundary value problem(E)λn, (1.2). Then

(x(T) =) x(0) = min{x(t) : t ∈ J} < A, (2.2)

A− x(0) ≥
∫ T/2

0
g−1(λas) ds, (2.3)

x′(ξ) = 0 for a uniqueξ ∈ (0,T), and

x′(t) ≥ g−1(λa(ξ − t)) for t ∈ [0, ξ],

x′(t) ≤ −g−1(λa(t − ξ)) for t ∈ [ξ,T].
(2.4)

Proof. Since
(g(x′(t)))′ ≤ −λa for a. e.t ∈ J, (2.5)

by (2.1), we see thatg(x′) is decreasing onJ and, therefore,x′ is decreasing as
well. Now from (1.2) we deduce thatx′(ξ) = 0 for aξ ∈ (0,T), and soξ is unique,
max{x(t) : t ∈ J} = x(ξ), x′ > 0 on [0, ξ) x′ < 0 on (ξ,T], and (2.2) is also true.
Integrating (2.5) over [t, ξ] ⊂ [0, ξ] and over [ξ, t] ⊂ [ξ,T], we get

g(x′(t)) ≥ λa(ξ − t), t ∈ [0, ξ]
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and
g(x′(t)) ≤ −λa(t − ξ), t ∈ [ξ,T],

respectively. Hence, (2.4) is true.
Finally, it follows from (2.4) and the equalityx(ξ) = A that

A− x(0) = x(ξ) − x(0) =

∫ ξ

0
x′(t) dt ≥

∫ ξ

0
g−1(λa(ξ − t)) dt =

∫ ξ

0
g−1(λas) ds

and

x(T) − A = x(T) − x(ξ) =

∫ T

ξ
x′(t) dt ≤ −

∫ T

ξ
g−1(λa(t − ξ)) dt

= −
∫ T−ξ

0
g−1(λas) ds.

Therefore,

(A− x(T) =) A− x(0) ≥ max

{∫ ξ

0
g−1(λas) ds,

∫ T−ξ

0
g−1(λas) ds

}

≥
∫ T/2

0
g−1(λas) ds,

which proves (2.3). �

We are going to givea priori bounds for the solution of the boundary value prob-
lem (E)λn, (1.2). Define the functionsH ∈ C0([0,∞)) andQA ∈ C0((−∞,A]), A ∈ �,
by the relations

H(u) =

∫ g(u)

0

g−1(s)
ω∗1(g−1(s)) + ω2(g−1(s))

ds

and

QA(u) =

∫ A

u
q(s) ds.

ThenH is increasing on [0,∞), QA is decreasing on (−∞,A], andH−1(QA(A)) = 0.
If the functionH−1(QA(u)) satisfies the assumption†

(H4)
∫ A

A−1

1
H−1(QA(s))

ds< ∞ for A ∈ �,

then we define, for everyA ∈ �, the functionSA ∈ C0((−∞,A]) by putting

SA(u) =

∫ A

u

1
H−1(QA(s))

ds. (2.6)

†Since the functionH−1(QA) is decreasing on (−∞,A], the assumption (H4) guarantees that∫ A

u
ds

H−1(QA(s))
< ∞ for everyu ∈ (−∞,A).
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ThenSA(A) = 0 andSA is decreasing on (−∞,A]. Set

A =

{
A : A ∈ �, lim

u→−∞SA(u) >
T
2

}
. (2.7)

We are now in a position to givea priori bounds for the solution of the boundary
value problem (E)λn, (1.2).

Lemma 2.2. Let assumptions(H1) − (H4) be satisfied and letA ∈ A. Let x be a
solution of the boundary value problem(E)λn, (1.2), λ ∈ (0,1], n ∈ �. Then

x(0) = x(T) ≥ ΛA (2.8)

and
‖x‖ ≤ max{|ΛA|, |A|} , ‖x′‖ ≤ H−1(QA(ΛA)), (2.9)

where

ΛA = S−1
A

(T
2

)
(2.10)

andSA is defined by(2.6).

Proof. By Lemma 2.1,x′(ξ) = 0 for a uniqueξ ∈ (0,T), x′ > 0 on [0, ξ), andx′ < 0
on (ξ,T]. Then (see (2.1))

(g(x′(t)))′x′(t) ≥ −q(x(t))[ω∗1(x′(t)) + ω2(x′(t))]x′(t) for a. e.t ∈ [0, ξ]

and

(g(x′(t)))′x′(t) ≤ −q(x(t))[ω∗1(−x′(t)) + ω2(−x′(t))]x′(t) for a. e.t ∈ [ξ,T].

Integrating the inequality

(g(x′(t)))′x′(t)
ω∗1(x′(t)) + ω2(x′(t))

≥ −q(x(t))x′(t) for a. e.t ∈ [0, ξ]

from t ∈ [0, ξ] to ξ and the inequality

(g(x′(t)))′x′(t)
ω∗1(−x′(t)) + ω2(−x′(t))

≤ −q(x(t))x′(t) for a. e.t ∈ [ξ,T]

from ξ to t ∈ [ξ,T] and using the relationx(ξ) = A, we get
∫ g(x′(t))

0

g−1(s)
ω∗1(g−1(s)) + ω2(g−1(s))

ds≤
∫ A

x(t)
q(s) ds, t ∈ [0, ξ]

and ∫ g(−x′(t))

0

g−1(s)
ω∗1(g−1(s)) + ω2(g−1(s))

ds≤
∫ A

x(t)
q(s) ds, t ∈ [ξ,T].

Therefore,
H(x′(t)) ≤ QA(x(t)) for t ∈ [0, ξ] (2.11)

and
H(−x′(t)) ≤ QA(x(t)) for t ∈ [ξ,T]. (2.12)
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Now integrating the relation

x′(t)
H−1(QA(x(t))

≤ 1, t ∈ [0, ξ]

from 0 toξ and

− x′(t)
H−1(QA(x(t))

≤ 1, t ∈ [ξ,T]

from ξ to T, we have (see (2.6))SA(x(0)) ≤ ξ and SA(x(T)) ≤ T − ξ. Hence
(SA(x(T)) =) SA(x(0)) ≤ T/2, and consequently (x(T) =) x(0) ≥ S−1

A (T/2) = ΛA

becauseSA is decreasing. We have thus proved that (2.8) is true and, therefore,

‖x‖ ≤ max{|ΛA|, |A|} .
Now (2.11) witht = 0 and (2.12) witht = T yield

x′(0) ≤ H−1(QA(x(0)) ≤ H−1(QA(ΛA)),

−x′(T) ≤ H−1(QA(x(T)) ≤ H−1(QA(ΛA)),

and since‖x′‖ = max{x′(0),−x′(T)}, we have

‖x′‖ ≤ H−1(QA(ΛA)),

as required. �

Lemma 2.3. Let assumptions(H1) − (H4) be satisfied. LetA ∈ A andn ∈ �. Then
there exists a solutionx of the boundary value problem(E)1n, (1.2) satisfying(2.8) and
(2.9), whereΛA is defined by(2.10).

Proof. Let us put

Ω =
{
(x, c) : (x, c) ∈ C1(J) ×�, ‖x‖ < max{|ΛA|, |A|} + 1,

‖x′‖ ≤ H−1(QA(ΛA)) + 1, |c| < max{|ΛA|, |A|} + 1
}
.

ThenΩ is a bounded, open, and symmetric with respect to (0,0) subset of the Banach
spaceC1(J) × � with the norm‖(x, c)‖∗ = ‖x‖ + ‖x′‖ + |c|. Define the mapping
F : Ω × [0,1]→ C1(J) ×� by the equality

F (x, c, λ) =
(
c, c + max{x(t) : t ∈ J} − λA

)
.

ThenF is a compact operator. LetI be the identity operator onC1(J)×� and let us
defineG : Ω→ C1(J) ×� by puttingG = I − F (·, ·,0). Then

G(x, c) =
(
x− c, −max{x(t) : t ∈ J}

)
.

Assume now that
G(−x0,−c0) = χ0G(x0, c0)

for some (x0, c0) ∈ ∂Ω andχ0 ∈ [1,∞). Then(
− x0 + c0, −max{−x0(t) : t ∈ J}

)
= χ0

(
x0 − c0, −max{x0(t) : t ∈ J}

)
,
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and, thus,
(x0(t) − c0)(1 + χ0) = 0 for t ∈ J, (2.13)

max{−x0(t) : t ∈ J} = χ0 max{x0(t) : t ∈ J}. (2.14)

It follows from (2.13) thatx0(t) = c0 for t ∈ J, and (2.14) then yields (χ0+1)c0 = 0.
Hence, (x0, c0) = (0, 0), contrary to the inclusion (x0, c0) ∈ ∂Ω. Now Theorem 8.3
from [7] implies that

D(I − F (·, ·,0),Ω,0) , 0, (2.15)

where “D” stands for the Leray–Schauder degree.
If F (x∗, c∗, λ∗) = (x∗, c∗) for some (x∗, c∗) ∈ ∂Ω andλ∗ ∈ [0,1], thenx∗ = c∗ and

max{x∗(t) : t ∈ J} = λ∗A. Hence,c∗ = λ∗A and, consequently,|c∗| ≤ |A|, ‖x∗‖ ≤ |A|,
and‖x′‖ = 0, which contradicts the relation (x∗, c∗) ∈ ∂Ω. We have thus proved that

F (x, c, λ) , (x, c)

for (x, c) ∈ ∂Ω andλ ∈ [0, 1] and, therefore, by virtue of the homotopy property and
(2.15), we obtain

D(I − F (·, ·, 1),Ω,0) = D(I − F (·, ·,0),Ω, 0) , 0. (2.16)

Finally, let us define the operatorK : Ω × [0, 1]→ C1(J) ×� by the relation

K(x, c, λ) =

(
c +

∫ t

0
g−1

(
K + λ

∫ s

0
fn(v, x(v), x′(v)) dv

)
ds,

c + max{x(t) : t ∈ J} − A
)

whereK = K(x, λ) ∈ � is a solution of the equation

p(X; x, λ) = 0 (2.17)

with

p(X; x, λ) =

∫ T

0
g−1

(
X + λ

∫ t

0
fn(s, x(s), x′(s)) ds

)
dt. (2.18)

Sincep(·; x, λ) is continuous and increasing on� and limX→±∞ p(X; x, λ) = ±∞
by virtue of (H1), it follows that equation (2.17) has a unique solution for every
(x, λ) ∈ Ω × [0,1]. Assume that (x, c) is a fixed point of the operatorK(·, ·, 1). Then

x(t) = c +

∫ t

0
g−1

(
K∗ +

∫ s

0
fn(v, x(v), x′(v)) dv

)
ds, t ∈ J,

and max{x(t) : t ∈ J} = A, whereK∗ is the unique solution of equationp(X; x, 1) = 0.
Hence,x is a solution of the boundary value problem (E)1

n, (1.2) andc = x(0). We see
that, to prove our lemma, it is sufficient to verify that

D(I − K(·, ·,1),Ω, 0) , 0. (2.19)

Since
K(x, c,0) =

(
c, c + max{x(t) : t ∈ J} − A

)
,
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we haveK(·, ·,0) = F (·, ·,1), and then (2.16) yields the inequality

D(I − K(·, ·,0),Ω,0) , 0.

By the homotopy property, the fulfilment of (2.19) will be proved if we show that

(i) K is a compact operator and
(ii) K(x, c, λ) , (x, c) for (x, c) ∈ ∂Ω andλ ∈ [0,1].

We first show thatK is a continuous operator. Let{(xm, cm, λm)} ⊂ Ω × [0, 1] be
a convergent sequence and limm→∞(xm, cm, λm) = (x0, c0, λ0). Let Km be the unique
solution of equationp(X; xm, λm) = 0. Sincefn ∈ Car (J×�2), there existsγ ∈ L1(J)
such that

| fn(t, x, y)| ≤ γ(t) for a. e.t ∈ J and all (x, y)

such that|x| ≤ max{|ΛA|, |A|} + 1 and|y| ≤ H−1(QA(ΛA)) + 1. (2.20)

Therefore,

p(‖γ‖L; xm, λm) =

∫ T

0
g−1

(
‖γ‖L + λm

∫ t

0
fn(v, xm(v), x′m(v)) dv

)
dt ≥ 0

for m ∈ �.
Now from p(0; xm, λm) ≤ 0 for m ∈ � we deduce that{Km} is bounded and

0 ≤ Km ≤ ‖γ‖L. If {Km} is not convergent, there exist subsequences{km} and
{lm} of {m} such that limm→∞ Kkm = V1, limm→∞ Klm = V2 and V1 , V2. Then
p(V j ; x0, λ0) = 0 ( j = 1,2) by the Lebesgue dominated convergence theorem, con-
trary to the fact thatp(· ; x0, λ0) increasing. Hence{Km} is convergent and the con-
tinuity of K follows again from the Lebesgue dominated convergence theorem. By
(2.20) and the Bolzano–Weierstrass theorem we can verify thatK(Ω × [0, 1]) is rela-
tively compact inC1(J) ×�. Hence, property (i) is valid.

Assume thatK(x̄, c̄, λ̄) = (x̄, c̄) for some ( ¯x, c̄) ∈ Ω and λ̄ ∈ [0,1]. If λ̄ = 0,
then from the first part of our proof we have ¯x = c̄ = A, and so ( ¯x, c̄) < ∂Ω. Let
λ̄ ∈ (0, 1]. Then it can be readily verified that ¯x is a solution of the boundary value
problem (E)λ̄n, (1.2) andc̄ = x̄(0). Hence, by Lemma 2.2,‖x̄‖ ≤ max{|ΛA|, |A|}, ‖x̄′‖ ≤
H−1(QA(ΛA)) and, therefore,

|c̄| ≤ max{|ΛA|, |A|} .
We have proved that ( ¯x, c̄) < ∂Ω, which shows that condition (ii) is satisfied. �

Lemma 2.4. Let assumptions(H1)−(H4) be satisfied andA ∈ A. Letxn be a solution
of the boundary value problem(E)1n, (1.2) and x′n(ξn) = 0 for a (unique) ξ ∈ (0,T).
Then there exist constantsc1, c2 such that

0 < c1 ≤ ξn ≤ c2 < T for n ∈ �. (2.21)
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Proof. Assume that there is a subsequence{ξkn} of {ξn} such that limn→∞ ξkn = 0.
Then

A− xkn(0) = xkn(ξkn) − xkn(0) = x′kn
(τn)ξkn,

whereτn ∈ (0, ξkn). By Lemma 2.1, we have

A− xkn(0) ≥
∫ T/2

0
g−1(as) ds,

and, therefore,
lim
n→∞ x′kn

(τn) = (A− xkn(0))/ξkn = ∞,
contrary to the inequality‖x′n‖ ≤ H−1(QA(ΛA)) for n ∈ � (see Lemma 2.2). Hence
ξn ≥ c1 for n ∈ � with a positive constantc1. The inequalitiesξn ≤ c2 < T, n ∈ �,
with a constantc2 can be proved analogously. �

Lemma 2.5. Let assumptions(H1)−(H4) be satisfied andA ∈ A. Letxn be a solution
of the boundary value problem(E)1n, (1.2). Then the sequence

{ fn(t, xn(t), x′n(t))} ⊂ L1(J)

is uniformly absolutely continuous(UAC) on J, that is, for everyε > 0, there exists
a δ > 0 such that ∫

M
| fn(t, xn(t), x′n(t))|dt < ε, n ∈ �

wheneverM ⊂ J is measurable andµ(M) < δ.

Proof. By Lemma 2.2,

‖xn‖ ≤ max{|ΛA|, |A|}, ‖x′n‖ ≤ H−1(QA(ΛA)) for n ∈ �, (2.22)

where the constantΛA is defined by (2.10), and then (see (2.1))

| fn(t, xn(t), x′n(t))| ≤ max
{
q(u) : |u| ≤ max{|ΛA|, |A|}

}
×

×
(
max{ω∗1(u) : 0 ≤ u ≤ H−1(QA(ΛA))} + ω2(|x′n(t)|)

)
(2.23)

for a. e.t ∈ J and everyn ∈ �. In addition,x′(ξn) = 0 for a uniqueξn ∈ (0,T),

x′n(t) ≥ g−1(a(ξn − t)) for t ∈ [0, ξn], (2.24)

|x′n(t)| ≥ g−1(a(t − ξn)) for t ∈ [ξn,T] (2.25)

for n ∈ � by Lemma 2.1, and (2.21) is true with constantsc1, c2. Now (2.23) yields
that{ fn(t, xn(t), x′n(t))} is UAC onJ if {ω2(|x′n(t)|)} is UAC onJ.

Due to the structure of the measurable sets in�, it follows that {ω2(|x′n(t)|)} is
UAC on J if and only if for everyε > 0 there existsδ > 0 such that for any at most
countable set{(a j , b j)} j∈� of the mutually disjoint intervals (a j , b j) ⊂ J,

∑
j∈�(b j −

a j) < δ, we have
∑

j∈�

∫ b j

a j

ω2(|x′n(t)|) dt < ε, n ∈ �.
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For this reason, let{(a j ,b j)} j∈� be an at most countable set of mutually disjoint inter-
vals (a j , b j) ⊂ J. Let us put

�1
n = { j : j ∈ �, (a j ,b j) ⊂ (0, ξn)}

and

�2
n = { j : j ∈ �, (a j ,b j) ⊂ (ξn,T)}.

Then, for j ∈ �1
n andi ∈ �2

n, in view of (2.24) and (2.25), we have
∫ b j

a j

ω2(|x′n(t)|) dt ≤
∫ b j

a j

ω2(g−1(a(ξn − t))) dt =
1
a

∫ a(ξn−a j )

a(ξn−b j )
ω2(g−1(s)) ds

and
∫ bi

ai

ω2(|x′n(t)|) dt ≤
∫ bi

ai

ω2(g−1(a(t − ξn))) dt =
1
a

∫ a(bi−ξn)

a(ai−ξn)
ω2(g−1(s)) ds.

If �1
n ∪ �2

n , � and{ j0} = � \ (�1
n ∪ �2

n), then
∫ b j0

a j0

ω2(|x′n(t)|) dt ≤
∫ ξn

a j0

ω2(g−1(a(ξn − t))) dt +

∫ b j0

ξn

ω2(g−1(a(t − ξn))) dt

=
1
a

[∫ a(ξn−a j0)

0
ω2(g−1(s)) ds+

∫ a(b j0−ξn)

0
ω2(g−1(s)) ds

]
.

Let us set

∆1
n =

⋃

j∈�1
n

(
a(ξn − b j),a(ξn − a j)

)
+ E1

n

and

∆2
n =

⋃

j∈�2
n

(
a(a j − ξn),a(b j − ξn)

)
+ E2

n

where

E1
n =


∅ if � = �1

n ∪ �2
n

(0, a(ξn − a j0)) if { j0} = � \ (�1
n ∪ �2

n)

and

E2
n =


∅ if � = �1

n ∪ �2
n

(0,a(b j0 − ξn)) if { j0} = � \ (�1
n ∪ �2

n).

Then
µ(∆i

n) ≤ a
∑

j∈�
(b j − a j), i = 1, 2 (2.26)
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and
∑

j∈�

∫ b j

a j

ω2(|x′n(t)|) dt ≤ 1
a

[∫

∆1
n

ω2(g−1(t)) dt +

∫

∆2
n

ω2(g−1(t)) dt

]
. (2.27)

Sinceω2(g−1) ∈ Lloc([0,∞)), we conclude from (2.26) and (2.27) that the sequence
{ω2(|x′n(t)|)} is UAC onJ. �

3. E    

Theorem 3.1. Let assumptions(H1) − (H4) be satisfied. Then boundary value prob-
lem(1.1), (1.2) has a solution for everyA ∈ A.

Proof. Let us fix A ∈ A. By Lemmas 2.1–2.4, there exists a solutionxn of the
boundary value problem (E)1

n, (1.2) and inequalities (2.21)–(2.25) are satisfied, where
ΛA is defined by (2.10),ξn ∈ (0,T) is the unique zero ofx′n andc1, c2 are constants. In
addition, by Lemma 2.5, the sequence

{
fn(t, xn(t), x′n(t))

}
is UAC onJ, which implies

that the sequence
{
g(x′n(t))

}
=

{∫ t

ξn

fn(s, xn(s), x′n(s)) ds

}

is equicontinuous onJ. Then, in view of the relation

|x′n(t2) − x′n(t1)| = |g−1(g(x′n(t2))) − g−1(g(x′n(t1)))|, t1, t2 ∈ J, n ∈ �;

and the fact thatg−1 is continuous and increasing on�, we conclude that{x′n(t)}
is equicontinuous onJ. Hence,{xn} is bounded inC1(J), {x′n(t)} is equicontinuous
on J and since{ξn} is bounded, using the Arzelà–Ascoli theorem and the Bolzano–
Weierstrass theorem, we can assume without loss of generality that{xn} is convergent
in C1(J) and{ξn} is convergent in�.

Let limn→∞ xn = x and limn→∞ ξn = ξ. Thenx ∈ C1(J), x(0) = x(T), max{x(t) :
t ∈ J} = A, 0 < c1 ≤ ξ ≤ c2 < T, and

x′(t) ≥ g−1(a(ξ − t)) for t ∈ [0, ξ], |x′(t)| ≥ g−1(a(t − ξ)) for t ∈ [ξ,T].

Therefore,

lim
n→∞ fn(t, xn(t), x′n(t)) = f (t, x(t), x′(t)) for a. e.t ∈ J,

Thus, f (t, x(t), x′(t)) ∈ L1(J) and

lim
n→∞

∫ t

0
fn(s, xn(s), x′n(s)) ds=

∫ t

0
f (s, x(s), x′(s)) ds, t ∈ J,

by the Vitali convergence theorem. Passing to the limit asn→ ∞ in the equalities

g(x′n(t)) =

∫ t

ξn

fn(s, xn(s), x′n(s)) ds, t ∈ J, n ∈ �
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we get

g(x′(t)) =

∫ t

ξ
f (s, x(s), x′(s)) ds, t ∈ J.

Hence,g(x′) ∈ AC(J) andx is a solution of boundary value problem (1.1), (1.2).�

Example3.2. Consider the differential equation

(|x′(t)|psgnx′(t)
)′

= − (2 + sin(tx(t)) + |x(t)|)
(
|x′(t)|α +

1
|x′(t)|β

)
(3.1)

wherep > 1, 0≤ α < p− 1 and 0< β < p.
Let us set

f (t, x, y) = − (2 + sin(tx) + |x|)
(
|y|α +

1
|y|β

)

for (t, x, y) ∈ J × � × (� \ {0}). Then (H1) is satisfied withg(u) = |u|psgnu, and f
satisfies (H2) and (H3) with a = 1, q(x) = 3 + |x|, ω1(u) = uα andω2(u) = 1/uβ.
Therefore,

ω∗1(u) =


1 for 0≤ u ≤ 1

uα for u > 1

and

QA(u) =

∫ A

u
q(s) ds=

∫ A

u
(3 + |s|) ds≥ 3(A− u), (3.2)

QA(u) =

∫ A

u
(3 + |s|) ds≤ (3 + max{|A|, |u|})(A− u) (3.3)

for u ≤ A. Since

H(u) =

∫ g(u)

0

g−1(s)
ω∗1(g−1(s)) + ω2(g−1(s))

ds=

∫ up

0

s1/p

1 + s−β/p
ds

≤
∫ up

0
s(1+β)/p ds=

p
1 + β + p

u1+β+p

for u ∈ [0,1], we have that

H−1(u) ≥
(
1 + β + p

p
u

)1/(1+β+p)

for u ∈ [0,H(1)] and, hence (see (3.2)),
∫ A

A−ε

1
H−1(QA(s))

ds≤
∫ A

A−ε

(
3(1+ β + p)

p
(A− s)

)−1/(1+β+p)

ds< ∞

for ε = min{1,A − Q−1
A (H(1))} because 1/(1 + β + p) < 1. This shows that (H4) is

satisfied.
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We are going to verify thatA = �, whereA is given by (2.7). Foru ≥ 1, we have

H(u) = H(1) +

∫ up

1

s1/p

sα/p + s−β/p
ds= H(1) +

∫ up

1

s(1+β)/p

1 + s(α+β)/p
ds

≥ H(1) +
1
2

∫ up

1
s(1−α)/p ds= H(1) +

p
2(1+ p− α)

(
u1+p−α − 1

)

and, consequently,

H−1(u) ≤
(
2(1+ p− α)

p
(u− H(1)) + 1

)1/(1+p−α)

for u ∈ [H(1),∞). Hence, we have (see (3.3))

∫ A

u

1
H−1(QA(s))

ds=

∫ A

Q−1
A (H(1))

1
H−1(QA(s))

ds+

∫ Q−1
A (H(1))

u

1
H−1(QA(s))

ds

>

∫ Q−1
A (H(1))

u

[
2(1+ p− α)

p

(
(3 + max{|A|, |s|}) (A− s) − H(1)

)
+ 1

]− 1
1+p−α

ds

for u < Q−1
A (H(1)). Since 2/(1 + p− α) < 1, we see that

lim
u→−∞

∫ A

u

1
H−1(QA(s))

ds= ∞

for everyA ∈ � and, hence, we have proved thatA = �. Applying Theorem 3.1, we
conclude that the boundary value problem (3.1), (1.2) has a solution for allA ∈ �.
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