

Miskolc Mathematical Notes Vol. 15 (2014), No 1, pp. 211-215

Almost periodic solutions of difference equations with discrete argument on metric space

Vasyl Slyusarchuk

HU e-ISSN 1787-2413

ALMOST PERIODIC SOLUTIONS OF DIFFERENCE EQUATIONS WITH DISCRETE ARGUMENT ON METRIC SPACE

V. YU. SLYUSARCHUK

Received 04 January, 2014

Abstract. We obtain conditions for existence of almost periodic solutions of difference equations with discrete argument on metric space.

2010 Mathematics Subject Classification: 39A10; 47B39; 54J35

Keywords: nonlinear difference equations, almost periodic solutions, metric spaces

1. INTRODUCTION

Let *M* be a metric space with metric ρ_M . Fix an arbitrary element $a \in M$. Denote by \mathfrak{M} the metric space of sequences $\mathbf{x} = (\mathbf{x}(n))_{n \in \mathbb{Z}}$ for which

$$\sup_{n\in\mathbb{Z}}\rho_M(\mathbf{x}(n),a)<\infty$$

with metric

$$\rho_{\mathfrak{M}}(\mathbf{x}_1, \mathbf{x}_2) = \sup_{n \in \mathbb{Z}} \rho_M(\mathbf{x}_1(n), \mathbf{x}_2(n)).$$

Define the shift operator $S_m : \mathfrak{M} \to \mathfrak{M}, m \in \mathbb{Z}$, by the formulae

$$(S_m \mathbf{x})(n) = \mathbf{x}(n+m), \ n \in \mathbb{Z}.$$

Definition 1. The sequence $\mathbf{x} \in \mathfrak{M}$ is called almost periodic if the set $\overline{\{S_m \mathbf{x} : m \in \mathbb{Z}\}}$ is compact in \mathfrak{M} .

Denote by \mathfrak{B} the metric space of sequences $\mathbf{x} \in \mathfrak{M}$ which are almost periodic.

Let \mathcal{K} be the set of compact sets K of the metric space M and let $R(\mathbf{x})$ be the set $\{\mathbf{x}(n) : n \in \mathbb{Z}\}$. Fix an arbitrary compact set $K \subset \mathcal{K}$. We denote by \mathfrak{D}_K the set of all elements of $\mathbf{x} \in \mathfrak{M}$ for each of which $R(\mathbf{x}) \subset K$.

Definition 2. The operator $\mathbf{H} : \mathfrak{M} \to \mathfrak{M}$ is called almost periodic if for every set $K \in \mathcal{K}$ and a sequence $(m_k)_{k \ge 1}$ of whole numbers there exists a subsequence $(m_{k_l})_{l \ge 1}$, which

$$\lim_{l_1\to\infty,\ l_2\to\infty}\sup_{\mathbf{x}\in\mathfrak{D}_K}\rho_\mathfrak{M}\left(S_{m_{l_1}}\mathbf{H}S_{-m_{l_1}}\mathbf{x},S_{m_{l_2}}\mathbf{H}S_{-m_{l_2}}\mathbf{x}\right)=0.$$

© 2014 Miskolc University Press

V. YU. SLYUSARCHUK

Note that the almost periodic operator $\mathbf{H} : \mathfrak{M} \to \mathfrak{M}$ can not be almost periodic by Bochner [2, 3]. However, the almost periodic by Bochner operator $\mathbf{H} : \mathfrak{M} \to \mathfrak{M}$ be almost periodic by Definition 2.

Let Λ be a bounded subset of the space M. Define the diameter diam Λ of the set Λ by the equality

diam
$$\Lambda = \sup\{\rho_M(x, y) : x, y \in \Lambda\}.$$

Consider the almost periodic difference operator $F:\mathfrak{M}\to\mathfrak{M}$ defined by the formulae

$$(\mathbf{F}\mathbf{x})(n) = F(n, \mathbf{x}(n), \mathbf{x}(n+m_1), \dots, \mathbf{x}(n+m_k)), \ n \in \mathbb{Z},$$

where $\mathbf{x} \in \mathfrak{M}, k \in \mathbb{N}, m_1, \dots, m_k \in \mathbb{Z}$ and $F : \mathbb{Z} \times M^{k+1} \to M$ is operator such that

diam
$$F(\mathbb{Z} \times M_1 \times \ldots \times M_{k+1}) < +\infty$$

for all bounded sets M_1, \ldots, M_{k+1} .

Consider the difference equation

$$\mathbf{F}\mathbf{x} = \mathbf{h},\tag{1.1}$$

where $\mathbf{h} \in \mathfrak{B}$.

The aim of this work is to find conditions under which the bounded solutions of equation (1.1) are almost periodic.

In the study of equation (1.1) will use a functional defined on the set of solutions of an equation of the sets of values which are subsets of compact sets.

2. Functional δ

Fix an arbitrary set $K \in \mathcal{K}$. Let $N(\mathbf{F}, K)$ be the set of all solutions of equation (1.1), each of which $R(\mathbf{x}) \subset \mathcal{K}$ and $\overline{R(\mathbf{x})} \neq K$. Suppose that $N(\mathbf{F}, K) \neq \emptyset$.

Fix an arbitrary element $\mathbf{x}^* \in N(\mathbf{F}, K)$. Let

$$r(\mathbf{x}^*, K) = \sup \left\{ \rho_M(x, y) : x \in \overline{R(\mathbf{x}^*)}, y \in K \right\}.$$

Due to the inequality $N(\mathbf{F}, K) \neq \emptyset$

$$r(\mathbf{x}^*, K) > 0.$$

Also fix the arbitrary number $\varepsilon \in [0, r(\mathbf{x}^*, K)]$. We denote by $\Omega(\mathbf{x}^*, K, \varepsilon)$ the set of all elements of $\mathbf{y} \in \mathfrak{M}$, each of which

$$R(\mathbf{y}) \subset K$$

and

$$\rho_{\mathfrak{M}}(\mathbf{y}, \mathbf{x}^*) \geq \varepsilon.$$

Consider the functional

$$\delta(\mathbf{x}^*, K, \varepsilon) = \inf_{\mathbf{y} \in \Omega(\mathbf{x}^*, K, \varepsilon)} \rho_{\mathfrak{M}}(\mathbf{F}\mathbf{y}, \mathbf{F}\mathbf{x}^*).$$
(2.1)

212

First analogous functionals have been proposed by the author in the papers [7,8,10] for the study of nonlinear almost periodic equations

$$\begin{aligned} x(t+1) &= f(t, x(t)), \ t \in \mathbb{R}, \\ \frac{dx(t)}{dt} &= f(t, x(t)), \ t \in \mathbb{R}, \end{aligned}$$

and

$$f(t, x(t)) = 0, \ t \in \mathbb{R},$$

with continuous operator $f : \mathbb{R} \times E \to E$. Here *E* is a Banach space. Analogous functional for nonlinear difference equation

$$x(n+1) = g(n, x(n)), \ n \in \mathbb{Z},$$

used in [9].

3. MAIN RESULT

We give conditions for the existence of almost periodic solutions of equation (1.1), in contrast to the well-known theorem Amerio of almost periodic solutions of nonlinear differential equations (see [1, 4]) do not use the H-class of equation (1.1). In the case of linear differential equations using H-classes of these equations is essential [5, 6].

The main result of this paper reads as follows

Theorem 1. Let us suppose that $K \in \mathcal{K}$, $\mathbf{z} \in N(\mathbf{F}, K)$, diam $R(\mathbf{z}) \neq 0$ and

$$\delta(\mathbf{z}, K, \varepsilon) > 0 \tag{3.1}$$

for each $\varepsilon \in (0, r(\mathbf{z}, K))$. Then solution \mathbf{z} of equation (1.1) is almost periodic.

Proof. Assume that the solution $\mathbf{z} \in N(\mathbf{F}, K)$ of the equation (1.1) is not element of the space \mathfrak{B} . Then there exists a sequence $(S_{m_p}\mathbf{z})_{p\geq 1}$ such that each subsequence $(S_{k_p}\mathbf{z})_{p\geq 1}$ is divergent. Consequently, for some numbers $p_r \in \mathbb{N}, q_r \in \mathbb{N}, r \geq 1$, and $\gamma \in (0, \text{diam } R(\mathbf{z}))$

$$\rho_{\mathfrak{M}}(S_{k_{p_r}}\mathbf{z}, S_{k_{q_r}}\mathbf{z}) \geq \gamma, \ r \geq 1.$$

Because

$$\rho_{\mathfrak{M}}(\mathbf{z}, S_{-k_{pr}} S_{k_{qr}} \mathbf{z}) \ge \gamma, \ r \ge 1,$$

and therefore

$$S_{-k_{pr}}S_{k_{qr}}\mathbf{z}\in\Omega(\mathbf{z},K,\gamma), \ r\geq 1.$$
(3.2)

Based on the inclusion of $h \in \mathfrak{B}$, without loss of generality of the proof, we can assume that

$$\lim_{r \to \infty} \rho_{\mathfrak{M}} \left(S_{-k_{p_r}} \mathbf{h}, S_{-k_{q_r}} \mathbf{h} \right) = 0.$$
(3.3)

Note that diam $R(\mathbf{z}) \leq r(\mathbf{z}, K)$. Without loss of generality we can assume that the sequence $(S_{k_p} \mathbf{F} S_{-k_p} \mathbf{x})_{p \geq 1}$ converges uniformly on \mathfrak{D}_K . Then

$$\lim_{p,q\to\infty}\sup_{\mathbf{x}\in\mathfrak{D}_K}\rho_{\mathfrak{M}}(S_{k_p}\mathbf{F}S_{-k_p}\mathbf{x},S_{k_q}\mathbf{F}S_{-k_q}\mathbf{x})=0.$$
(3.4)

We show that

$$\delta(\mathbf{z}, K, \gamma) = 0. \tag{3.5}$$

It is obvious that by (2.1) and (3.4)

$$\delta(\mathbf{z}, K, \gamma) = \inf_{\mathbf{y} \in \Omega(\mathbf{z}, K, \gamma)} \rho_{\mathfrak{M}}(\mathbf{F}\mathbf{y}, \mathbf{F}\mathbf{z}) \le \rho_{\mathfrak{M}}(\mathbf{F}S_{-k_{pr}}S_{k_{qr}}\mathbf{z}, \mathbf{F}\mathbf{z}), \ r \ge 1.$$
(3.6)

Note that

$$\begin{split} \rho_{\mathfrak{M}}(\mathbf{F}S_{-k_{pr}}S_{k_{qr}}\mathbf{z},\mathbf{F}\mathbf{z}) &= \\ &= \rho_{\mathfrak{M}}\left(S_{-k_{pr}}\left(S_{k_{pr}}\mathbf{F}S_{-k_{pr}}\right)S_{k_{qr}}\mathbf{z},S_{-k_{qr}}\left(S_{k_{qr}}\mathbf{F}S_{-k_{qr}}\right)S_{k_{qr}}\mathbf{z}\right) \\ &\leq \rho_{\mathfrak{M}}\left(S_{-k_{pr}}\left(S_{k_{pr}}\mathbf{F}S_{-k_{pr}}\right)S_{k_{qr}}\mathbf{z},S_{-k_{pr}}\left(S_{k_{qr}}\mathbf{F}S_{-k_{qr}}\right)S_{k_{qr}}\mathbf{z}\right) \\ &+ \rho_{\mathfrak{M}}\left(S_{-k_{pr}}\left(S_{k_{qr}}\mathbf{F}S_{-k_{qr}}\right)S_{k_{qr}}\mathbf{z},S_{-k_{qr}}\left(S_{k_{qr}}\mathbf{F}S_{-k_{qr}}\right)S_{k_{qr}}\mathbf{z}\right) \\ &= \rho_{\mathfrak{M}}\left(\left(S_{k_{pr}}\mathbf{F}S_{-k_{pr}}\right)S_{k_{qr}}\mathbf{z},\left(S_{k_{qr}}\mathbf{F}S_{-k_{qr}}\right)S_{k_{qr}}\mathbf{z}\right) + \rho_{\mathfrak{M}}\left(S_{-k_{pr}}S_{k_{qr}}\mathbf{h},S_{-k_{qr}}S_{k_{qr}}\mathbf{h}\right) \\ &\leq \sup_{\mathbf{x}\in\mathfrak{D}_{K}}\rho_{\mathfrak{M}}\left(S_{k_{pr}}\mathbf{F}S_{-k_{pr}}\mathbf{x},S_{k_{qr}}\mathbf{F}S_{-k_{qr}}\mathbf{x}\right) + \rho_{\mathfrak{M}}\left(S_{-k_{pr}}\mathbf{h},S_{-k_{qr}}\mathbf{h}\right), \quad r \geq 1. \end{split}$$

Therefore, based on (3.3), (3.4) and (3.6) the equality (3.5) is true. This relation contradicts (3.1).

Thus, the assumption that the solution $\mathbf{z} \in N(\mathbf{F}, K)$ of the equation (1.1) is not element of the space \mathfrak{B} , is false.

So, the proof is complete.

References

- [1] L. Amerio, "Soluzioni quasiperiodiche, o limital, di sistemi differenziali non lineari quasiperiodici, o limitati," *Ann. mat. pura ed appl.*, vol. 39, pp. 97–119, 1955.
- [2] S. Bochner, "Beitrage zur theorie der fastperiodischen, i teil: Funktionen einer variablen," *Math. Ann.*, vol. 96, pp. 119–147, 1927.
- [3] S. Bochner, "Beitrage zur theorie der fastperiodischen, ii teil: Funktionen mehrerer variablen," Math. Ann., vol. 96, pp. 383–409, 1927.
- [4] B. P. Demydovych, Lectures on the theory matematycheskoy Stability. Moskva: Nauka, 1967 (in Russian).
- [5] J. Favard, "Sur les équations différentielles a coefficients presque périodiques," Acta Math., vol. 51, pp. 31–81, 1927.
- [6] B. M. Levitan, Almost-periodic functions. Moskva: Gostechisdat, 1953 (in Russian).
- [7] V. Y. Slyusarchuk, "Conditions for the existence of almost periodic solutions of nonlinear differential equations in banach space," *Ukrain. Math. J.*, vol. 65, no. 2, pp. 307–312 (in Ukrainian), 2013.
- [8] V. Y. Slyusarchuk, "Conditions of almost periodicity of bounded solutions of nonlinear difference equations with continuous argument," *Nelinijni Kolyvannya*, vol. 16, no. 1, pp. 118–124 (in Ukrainian), 2013.

214

- [9] V. Y. Slyusarchuk, "Conditions of almost periodicity of bounded solutions of nonlinear difference equations with discrete argument," *Nelinijni Kolyvannya*, vol. 16, no. 3, pp. 416–425 (in Ukrainian), 2013.
- [10] V. Y. Slyusarchuk, "Criterion for the existence of almost periodic solutions of nonlinear equations, which does not use the \mathcal{H} -classes of these equations," *Bukovinian Math. J.*, vol. 1, no. 1–2, pp. 136–138 (in Ukrainian), 2013.

Author's address

V. Yu. Slyusarchuk

National University of Water Management and Natural Resources Application, Department of Higher Mathematics, 11 Soborna St., 33000 Rivne, Ukraine

E-mail address: V.E.Slyusarchuk@gmail.com