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1. INTRODUCTION

LetM be a metric space with metric �M . Fix an arbitrary element a 2M . Denote
by M the metric space of sequences xD .x.n//n2Z for which

sup
n2Z

�M .x.n/;a/ <1

with metric
�M.x1;x2/D sup

n2Z
�M .x1.n/;x2.n//:

Define the shift operator Sm WM!M, m 2Z, by the formulae

.Smx/.n/D x.nCm/; n 2Z:

Definition 1. The sequence x2M is called almost periodic if the set fSmx Wm 2Zg
is compact in M.

Denote by B the metric space of sequences x 2M which are almost periodic.
Let K be the set of compact sets K of the metric space M and let R.x/ be the set

fx.n/ W n 2Zg. Fix an arbitrary compact set K �K . We denote by DK the set of all
elements of x 2M for each of which R.x/�K.

Definition 2. The operator H WM!M is called almost periodic if for every
set K 2K and a sequence .mk/k>1 of whole numbers there exists a subsequence
.mkl

/l>1, which

lim
l1!1; l2!1

sup
x2DK

�M

�
Sml1

HS�ml1
x;Sml2

HS�ml2
x
�
D 0:
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Note that the almost periodic operator H WM!M can not be almost periodic by
Bochner [2, 3]. However, the almost periodic by Bochner operator H WM!M be
almost periodic by Definition 2.

Let � be a bounded subset of the space M . Define the diameter diam� of the set
� by the equality

diam�D supf�M .x;y/ W x;y 2�g:

Consider the almost periodic difference operator F WM!M defined by the for-
mulae

.Fx/.n/D F.n;x.n/;x.nCm1/; : : : ;x.nCmk//; n 2Z;

where x 2M, k 2N, m1; : : : ;mk 2Z and F WZ�M kC1!M is operator such that

diamF.Z�M1� : : :�MkC1/ <C1

for all bounded sets M1; : : : ;MkC1.
Consider the difference equation

FxD h; (1.1)

where h 2B.
The aim of this work is to find conditions under which the bounded solutions of

equation (1.1) are almost periodic.
In the study of equation (1.1) will use a functional defined on the set of solutions

of an equation of the sets of values which are subsets of compact sets.

2. FUNCTIONAL ı

Fix an arbitrary set K 2K . Let N.F;K/ be the set of all solutions of equation
(1.1), each of which R.x/�K and R.x/ 6DK. Suppose that N.F;K/ 6D¿.

Fix an arbitrary element x� 2N.F;K/. Let

r.x�;K/D sup
n
�M .x;y/ W x 2R.x�/;y 2K

o
:

Due to the inequality N.F;K/ 6D¿

r.x�;K/ > 0:

Also fix the arbitrary number " 2 Œ0;r.x�;K/�. We denote by ˝.x�;K;"/ the set of
all elements of y 2M, each of which

R.y/�K

and
�M.y;x�/� ":

Consider the functional

ı.x�;K;"/D inf
y2˝.x�;K;"/

�M.Fy;Fx�/: (2.1)
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First analogous functionals have been proposed by the author in the papers [7,8,10]
for the study of nonlinear almost periodic equations

x.tC1/D f .t;x.t//; t 2 R;

dx.t/

dt
D f .t;x.t//; t 2 R;

and
f .t;x.t//D 0; t 2 R;

with continuous operator f W R�E ! E. Here E is a Banach space. Analogous
functional for nonlinear difference equation

x.nC1/D g.n;x.n//; n 2Z;

used in [9].

3. MAIN RESULT

We give conditions for the existence of almost periodic solutions of equation (1.1),
in contrast to the well-known theorem Amerio of almost periodic solutions of non-
linear differential equations (see [1, 4]) do not use the H-class of equation (1.1). In
the case of linear differential equations using H-classes of these equations is essential
[5, 6].

The main result of this paper reads as follows

Theorem 1. Let us suppose that K 2K , z 2N.F;K/, diamR.z/ 6D 0 and

ı.z;K;"/ > 0 (3.1)

for each " 2 .0;r.z;K//. Then solution z of equation (1.1) is almost periodic.

Proof. Assume that the solution z 2 N.F;K/ of the equation (1.1) is not element
of the space B. Then there exists a sequence .Smp

z/p�1 such that each subsequence
.Skp

z/p�1 is divergent. Consequently, for some numbers pr 2N, qr 2N, r � 1, and
 2 .0;diamR.z//

�M.Skpr
z;Skqr

z/� ; r � 1:
Because

�M.z;S�kpr
Skqr

z/� ; r � 1;
and therefore

S�kpr
Skqr

z 2˝.z;K;/; r � 1: (3.2)

Based on the inclusion of h 2 B, without loss of generality of the proof, we can
assume that

lim
r!1

�M
�
S�kpr

h;S�kqr
h
�
D 0: (3.3)
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Note that diamR.z// � r.z;K//. Without loss of generality we can assume that the
sequence .Skp

FS�kp
x/p�1 converges uniformly on DK . Then

lim
p;q!1

sup
x2DK

�M.Skp
FS�kp

x;Skq
FS�kq

x/D 0: (3.4)

We show that
ı.z;K;/D 0: (3.5)

It is obvious that by (2.1) and (3.4)

ı.z;K;/D inf
y2˝.z;K;/

�M.Fy;Fz/� �M.FS�kpr
Skqr

z;Fz/; r � 1: (3.6)

Note that

�M.FS�kpr
Skqr

z;Fz/D

D �M
�
S�kpr

�
Skpr

FS�kpr

�
Skqr

z;S�kqr

�
Skqr

FS�kqr

�
Skqr

z
�

� �M
�
S�kpr

�
Skpr

FS�kpr

�
Skqr

z;S�kpr

�
Skqr

FS�kqr

�
Skqr

z
�

C�M
�
S�kpr

�
Skqr

FS�kqr

�
Skqr

z;S�kqr

�
Skqr

FS�kqr

�
Skqr

z
�

D �M
��
Skpr

FS�kpr

�
Skqr

z;
�
Skqr

FS�kqr

�
Skqr

z
�
C�M

�
S�kpr

Skqr
h;S�kqr

Skqr
h
�

� sup
x2DK

�M
�
Skpr

FS�kpr
x;Skqr

FS�kqr
x
�
C�M

�
S�kpr

h;S�kqr
h
�
; r � 1:

Therefore, based on (3.3), (3.4) and (3.6) the equality (3.5) is true.
This relation contradicts (3.1).
Thus, the assumption that the solution z 2 N.F;K/ of the equation (1.1) is not

element of the space B, is false.
So, the proof is complete. �
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