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Abstract. In the present paper we investigate commutativity of �-prime ring R, which satisfies
certain differential identities on �-ideals of R. Some results already known for prime rings
on ideals have also been deduced. Finally, we provide several examples to justify that various
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1. INTRODUCTION

Throughout the paper, R will represent an associative ring with center Z. For any
x;y 2 R the symbol Œx;y� will denote the commutator xy �yx; while the symbol
xoy will stand for the anticommutator xyCyx. R is called a prime ring if xRyDf0g
implies x D 0 or y D 0: It is called semiprime if xRx D f0g implies x D 0: Given an
integer n > 1, ring R is said to be n-torsion free, if for x 2R, nx D 0 implies x D 0:
An additive mapping x 7! x� ofR into itself is called an involution onR if it satisfies
the conditions: .i/ .x�/�D x, .i i/ .xy/�D y�x� for all x;y 2R. A ringR equipped
with an involution ‘�’ is called a ring with involution or a �-ring. A ringR with invol-
ution ‘�’ is said to be �-prime if aRb D aRb� D f0g; where a;b 2 R ( equivalently
aRb D a�Rb D f0g ) implies that either a D 0 or b D 0: It is to be noted that every
prime ring having an involution ‘�’ is �-prime but the converse is not true in general.
Of course, if Ro denotes the opposite ring of a prime ring R, then R�Ro equipped
with the exchange involution �ex; defined by �ex.x;y/ D .y;x/; is �ex-prime but
not prime. Let R be a �-prime ring. The set of symmetric and skew symmetric
elements of R will be denoted by Sa�.R/ i.e.; Sa�.R/ D fx 2 R j x

� D ˙xg: An
ideal I of R is called a �-ideal of R if I� D I: An additive mapping d W R �! R is
said to be a derivation on R if d.xy/ D d.x/yCxd.y/ holds for all x;y 2 R: Let
R be a �-prime ring, a 2 R and aRa D f0g. This implies that aRaRa� D f0g also.
Now �-primeness of R insures that aD 0 or aRa� D f0g: aRa� D f0g together with
aRaD f0g gives us aD 0: Thus we conclude that every �-prime ring is a semiprime
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ring.

Ashraf, Bell, Herstein and Hongon etc. [1–4] studied the commutativity of prime
and semiprime rings, satisfying certain differential identities on some appropriate
subsets of R. Hence it is natural to question that what can we say about the com-
mutativity of �-prime rings in which derivations satisfy certain identities on �-ideals.
In this direction Oukhtite , Salhi, Vukman and Kosi-Ulbl etc. [5–11] have already
investigated several differential identities on �-ideals. In this paper we have ob-
tained the commutativity of �-prime rings satisfying any one of the following dif-
ferential identities on �-ideal I under some restrictions: .i/ d.xoy/D d.x/oy .i i/
d.x/oy D xoy, .i i i/ d.Œx;y�/D˙.xoy/ .iv/ d.xoy/D˙Œx;y�, .v/ d.x/oy 2 Z;
.vi/ d.Œx;y�/˙.xoy/2Z, .vi i/ d.xoy/˙ Œx;y�2Z, .vi i i/ d.x/od.y/D xoy and
.ix/ .d.x/oy/� .xod.y// 2Z for all x;y 2 I: We have also shown that there exists
no nonzero derivation d satisfying the following differential identities on �-ideal I in
a �-prime ring R under some constraints viz.; .i/ d.xoy/D d.x/oy .i i/ d.x/oy D
xoy, .i i i/ d.x/oy D xod.y/, .iv/ d.x/oy D d.x/od.y/ .v/ xod.y/D d.x/od.y/
for all x;y 2 I: Several examples have also been constructed to justify the necessity
of �-primeness or ”characteristic different from 2” of the ring R while dealing with
the above differential identities.

2. PRELIMINARY RESULTS

We begin with the following lemmas which are essential for developing the proof
of our main results. The proofs of Lemma 1-3 can be seen in [6] while that of Lemma
4 can be found in [8].

Lemma 1. Let R be a �-prime ring and I be a nonzero �-ideal of R. If x;y 2 R
satisfy xIy D xIy� D f0g; then x D 0 or y D 0.

Lemma 2. Let R be a �-prime ring admitting a nonzero derivation d which com-
mutes with ‘�’. If I is a nonzero �-ideal of R and Œx;R�Id.x/D f0g for all x 2 I ,
then R is commutative.

Lemma 3. Let R be a �-prime ring admitting a nonzero derivation d which com-
mutes with ‘�’. If I is a nonzero �-ideal of R and Œd.x/;x�D 0 for all x 2 I , then R
is commutative.

Lemma 4. Let d be a nonzero derivation of a 2-torsion free �-prime ring R and
I a nonzero �-ideal of R. If r 2 Sa�.R/ satisfies Œd.x/;r� D 0 for all x 2 I , then
r 2Z. Furthermore, if d.I /�Z; then R is commutative.

Now we prove the following:

Lemma 5. If R is a �-prime ring admitting a nonzero central �-ideal I i.e.; I �
Z, then R is commutative.
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Proof. Let r;s 2 R and x 2 I . Using hypothesis we get rsx D rxs D srx: This
implies that Œr; s�I D f0g and hence Œr; s�I l D Œr; s�I l� D f0g, where 0 ¤ l 2 R: In
view of Lemma 1, we get the required result. �

Lemma 6. Let R be a �-prime ring admitting a nonzero derivation d which com-
mutes with ‘�’. If I is a nonzero �-ideal of R and d.x/I Œx;R�D f0g for all x 2 I ,
then R is commutative.

Proof. For the proof, first we show that d.x/I Œx;R� D f0g for all x 2 I if and
only if Œx;R�Id.x/D f0g for all x 2 I: Suppose that d.x/I Œx;R�D f0g for all x 2 I:
This implies that Œx;R��I�fd.x/g� D f0g for all x 2 I: Since I is a �-ideal of R
and d commutes with ‘�’, we conclude that Œx�;R�Id.x�/D f0g for all x 2 I: Now
replacing x by x� in the last relation we obtain that Œx;R�Id.x/D f0g for all x 2 I:
Converse can be proved in similar way. Finally using Lemma 2, we get the required
result. �

Lemma 7. If R is a �-prime ring of characteristic different from 2, then R is
2-torsion free.

Proof. Suppose that x 2 R such that 2x D 0. This implies that 2xrs D 0 for all
r;s 2 R i.e.; xR.2s/D f0g for all s 2 R. Since characteristic of R is different from
2 and R ¤ f0g, this provides us a nonzero element l 2 R such that 2l ¤ 0: Now we
conclude that xR.2l/D f0g D xR.2l/�: Finally �-primeness of R provides us x D 0
and hence R is 2-torsion free. �

3. MAIN RESULTS

There has been a great deal of work concerning commutativity of prime and
semiprime rings satisfying certain differential identities on some appropriate subsets
of the ring, see [1–4] where further references can be found. Motivated by such work,
we explore the commutativity of �-prime ring involving derivations satisfying some
identities on nonzero �-ideal of the ring. We begin with the following differential
identity on a nonzero �-ideal of a �-prime ring, which is of independent interest and
insures the commutativity of the ring:

Theorem 1. LetR be a �-prime ring, I be a nonzero �-ideal ofR and d a nonzero
derivation of R such that d commutes with ‘�’. If d.xoy/D d.x/oy for all x;y 2 I
or d.x/oy D xoy for all x;y 2 I , then R is commutative.

Proof. Assume that d.xoy/ D d.x/oy for all x;y 2 I . Now replacing y by xy
we arrive at d.xoxy/D d.x/oxy i.e.; d.x/.xoy/Cxd.xoy/D d.x/xyCxyd.x/:
Using hypothesis we obtain that d.x/.xoy/Cx.d.x/oy/D d.x/xyCxyd.x/: This
implies that d.x/xyCd.x/yxCxd.x/yCxyd.x/D d.x/xyCxyd.x/ i.e.;

d.x/yx D�xd.x/y (3.1)
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for all x;y 2 I . Putting yr , where r 2R; for y in the relation (3.1) and using it again
we conclude that d.x/yrx D �xd.x/yr D d.x/yxr i.e.; d.x/I Œx;R�D f0g for all
x 2 I and Lemma 6 forces that R is commutative.
Now suppose that d.x/oy D xoy for all x;y 2 I: Replacing x by yx, we get
d.yx/oy D yxoy i.e.; d.yx/oy D y.xoy/ for all x;y 2 I: Using our hypothesis
we obtain that d.yx/yCyd.yx/D y.d.x/oy/ i.e.; d.y/xyCyd.x/yCyd.y/xC
y2d.x/D yd.x/yCy2d.x/ and therefore d.y/xy D �yd.y/x for all x;y 2 I . In
view of the latter relation we arrive at d.x/yx D �xd.x/y for all x;y 2 I: This is
identical with the relation (3.1). Arguing as in above we conclude that R is commut-
ative. �

Theorem 2. Let R be a �-prime ring of characteristic different from 2, I be a
nonzero �-ideal of R and d a derivation of R such that ‘d ’ commutes with ‘�’. If
d.xoy/D d.x/oy for all x;y 2 I or d.x/oy D xoy for all x;y 2 I , then d D 0

Proof. Suppose that d.xoy/D d.x/oy for all x;y 2 I: Then we have to show that
d D 0: Suppose on contrary that d ¤ 0. Therefore by Theorem 1 we conclude that R
is commutative. By hypothesis given we have 2d.xy/D 2d.x/y for all x;y 2 I and
hence d.x/yC xd.y/ D d.x/y for all x;y 2 I: This yields that xd.y/ D 0 for all
x;y 2 I and sinceR is commutative we arrive at d.x/yD 0 for all x;y 2 I:Replacing
y by sy where s 2R in the last relation we obtain that d.x/syD 0 i.e.; d.x/RyDf0g
for all x;y 2 I . Since I is a �-ideal of R, we conclude that d.x/Ry� D f0g for all
x;y 2 I also. I ¤ f0g and �-primeness of R provide us d.x/D 0 for all x 2 I: Now
putting xt where t 2 R in place of x in the last relation and using the same again
we arrive at xd.t/D 0 i.e.; Id.t/D f0g: Using hypothesis this relation provides us
lId.t/ D lI fd.t/g� D f0g where 0 ¤ l 2 R. Finally Lemma 1 assures that d D 0,
leading to a contradiction.
Now assume that d.x/oy D xoy for all x;y 2 I: Then we have to show that d D 0: If
d ¤ 0, then by Theorem 1 we conclude that R is commutative. By hypothesis given
we have 2d.x/y D 2xy for all x;y 2 I , then d.x/y D xy for all x;y 2 I: Replacing
x by rx, where r 2 R in the last relation and using the same again we infer that
d.rx/y D rxy i.e.; d.r/xyC rd.x/y D rxy. This implies that d.r/xy D 0 for all
r 2 R and x;y 2 I: Finally we conclude that d.r/Iy D f0g for all r 2 R and y 2 I .
In particular we also obtain that d.r/Iy� D f0g: Lemma 1 and I ¤ f0g assure that
d D 0, leading to a contradiction. �

The following example shows that the existence of ”characteristic different from
2” in the hypothesis of the above theorem is not superfluous.

Example 1. Suppose that RDZ2Œx��Z2Œx�, where Z2Œx� is the polynomial ring
over Z2. Let us consider D;� WR �!R such that

D.f .x/;g.x//D .d.f .x//;d.g.x/// and .f .x/;g.x//� D .g.x/;f .x//;
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where d is the usual differentiation in Z2Œx�: It is easy to check thatR is a �ex-prime
ring since ‘�’ is an involution of R, known as exchange involution denoted by �ex

and D is a derivation on R. Moreover, it is obvious that R is a ring of characteristic
2 and D�ex D �exD. Further assume that I D Œx2� is the ideal of Z2Œx� generated
by x2 2Z2Œx�: Then it can be easily shown that I D I � I is a nonzero �ex-ideal of
R such that D.xoy/DD.x/oy for all x;y 2 I and D.x/oy D xoy for all x;y 2 I:

However D ¤ 0.

In the year 2007, Oukhtite and Salhi [9] obtained the commutativity of �-prime
ring R having ”characteristic different from 2” and admitting a nonzero derivation d
which commutes with ‘�’, such that d.Œx;y�/ D 0 for all x;y in a nonzero �-ideal
of R. We have improved this result and showed that the restriction of ”characteristic
different from 2” on R used in the above theorem is redundant. In addition we have
also investigated similar other differential identities which insure the commutativity
of �-prime rings. In fact we have obtained the following.

Theorem 3. Let R be a �-prime ring and I a nonzero �-ideal of R. If R admits a
nonzero derivation d which commutes with ‘�’ and satisfies any one of the following
differential identities: .i/ d.Œx;y�/ D 0 for all x;y 2 I , .i i/ d.Œx;y�/ D ˙Œx;y�
for all x;y 2 I; .i i i/ d.Œx;y�/D˙.xoy/ for all x;y 2 I , .iv/ d.xoy/D 0 for all
x;y 2 I , .v/ d.xoy/D˙.xoy/ for all x;y 2 I and .vi/ d.xoy/D˙Œx;y� for all
x;y 2 I: Then R is commutative.

Proof. .i/ By hypothesis we have d.Œx;y�/D 0; for all x;y 2 I . Now replacing y
by yx and using the hypothesis, we obtain that Œx;y�d.x/D 0 for all x;y 2 I i.e.;

xyd.x/D yxd.x/ (3.2)

for all x;y 2 I . Replacing y by ry, where r 2 R in the relation (3.2) and us-
ing it again, we arrive at Œx;r�yd.x/ D 0 for all x;y 2 I and for all r 2 R i.e.;
Œx;R�Id.x/D f0g for all x 2 I: Now by Lemma 2, the result follows.

.i i/ By hypothesis we have d.Œx;y�/D˙Œx;y�, for all x;y 2 I . Now replacing
y by yx and using the hypothesis, we infer that Œx;y�d.x/D 0 for all x;y 2 I i.e.;
xyd.x/ D yxd.x/ for all x;y 2 I . This is identical with the relation (3.2). Now
arguing in the similar way as above .i/, we get our required result.

.i i i/ Using the same trick as used in .i i/, result follows.

.iv/ By hypothesis we have d.xoy/D 0; for all x;y 2 I . Now replacing y by yx
and using the hypothesis, we obtain that .xoy/d.x/D 0 for all x;y 2 I i.e.;

xyd.x/D�yxd.x/ (3.3)

for all x;y 2 I . Replacing y by ry, where r 2 R in the relation (3.3) and us-
ing it again, we arrive at Œx;r�yd.x/ D 0 for all x;y 2 I and for all r 2 R i.e.;
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Œx;R�Id.x/D f0g for all x 2 I: Now by Lemma 2, the result follows.

.v/ By hypothesis we have d.xoy/D˙.xoy/, for all x;y 2 I . Now replacing y
by yx and using the hypothesis, we conclude that .xoy/d.x/D 0 for all x;y 2 I i.e.;
xyd.x/D �yxd.x/ for all x;y 2 I . This is identical with the relation (3.3). Now
using similar arguments as used in .iv/, we get our required result.

.vi/ Using the same arguments as used in .v/, result follows. �

Corollary 1. Let R be a prime ring and I a nonzero ideal of R. If R ad-
mits a nonzero derivation d satisfying any one of the following differential iden-
tities: .i/ d.Œx;y�/ D 0 for all x;y 2 I , .i i/ d.Œx;y�/ D ˙Œx;y� for all x;y 2 I;
.i i i/ d.Œx;y�/ D ˙.xoy/ for all x;y 2 I , .iv/ d.xoy/ D 0 for all x;y 2 I , .v/
d.xoy/D˙.xoy/ for all x;y 2 I and .vi/ d.xoy/D˙Œx;y� for all x;y 2 I: Then
R is commutative.

Proof. Let d be a nonzero derivation of R satisfying any one of above differential
identities. Since R is a prime ring, consider R D R�Ro, which is clearly a �ex-
prime ring. Set I D I � I o is a nonzero �ex-ideal of R: Now define D WR �!R

by D.x;y/ D .d.x/;d.y//. Using hypothesis it can be easily proved that D is a
nonzero derivation of R: Moreover D�ex D �exD and .i/ D.Œx;y�/ D 0 for all
x;y 2 I, .i i/ D.Œx;y�/D˙Œx;y� for all x;y 2 I .i i i/ D.Œx;y�/D˙.xoy/ for all
x;y 2 I, .iv/ D.xoy/ D 0 for all x;y 2 I, .v/ D.xoy/ D ˙.xoy/ for all x;y 2 I

and .vi/ D.xoy/D˙Œx;y� for all x;y 2 I: Using the Theorem 3, we deduce that R

is commutative and in turn we obtain that R is also commutative. �

Theorem 4. Let R be a �-prime ring of characteristic different from 2 and I a
nonzero �-ideal of R. If R admits a nonzero derivation d such that d.x/oy 2 Z for
all x;y 2 I , then R is commutative.

Proof. Assume that
d.x/oy 2Z (3.4)

for all x;y 2 I . The relation (3.4) implies that d.x/yCyd.x/ 2 Z for all x;y 2 I:
Since I is a nonzero ideal of R, d.x/yCyd.x/ 2 I for all x;y 2 I also. Now we
conclude that d.x/yCyd.x/ 2 Z \ I for all x;y 2 I: Now we break the proof in
two cases.
Case I: If Z\I D f0g, we obtain that d.x/yCyd.x/D 0 i.e.;

d.x/y D�yd.x/ (3.5)

for all x;y 2 I . Substituting ry, where r 2 R for y in the relation (3.5) and us-
ing it again we arrive at d.x/ry D rd.x/y i.e.; Œd.x/;R�y D f0g: This implies that
Œd.x/;R�I s D f0g D Œd.x/;R�I s�, where 0 ¤ s 2 R: Now by Lemma 1, we infer
that Œd.x/;R�D f0g for all x 2 I i.e; d.I / � Z: Finally, Lemma 4 assures that R is
commutative.
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Case II: If Z\I ¤ f0g; there exists 0¤ ´ 2Z\I: By hypothesis we have d.x/yC
yd.x/ 2 Z for all x;y 2 I: In particular we conclude that d.x/´C´d.x/ 2 Z i.e.;
2d.x/´ 2Z for all x 2 I: Now we have 2d.x/´r D 2rd.x/´ for all x 2 I and r 2R:
This yields that Œd.x/;r�´D 0 for all x 2 I and r 2 R i.e.; Œd.x/;R�I´D f0g for all
x 2 I . We already know that 0¤ ´ 2 Z\ I: Since I D I� and Z D Z�; the latter
relation implies that 0¤ ´� 2 Z\ I: Now using ´� in place of ´ and arguing in the
similar way as in just above lines we arrive at Œd.x/;R�I´� D f0g for all x 2 I: Fi-
nally we conclude that Œd.x/;R�I´D f0g D Œd.x/;R�I´� for all x 2 I , where 0¤ ´:
Using Lemma 1 & Lemma 4, we get the required result for this case. �

The following example demonstrates that the �-primeness in the hypothesis of the
above theorem can not be omitted.

Example 2. Let RD RŒx��H, where RŒx� is the polynomial ring over the ring R
of real numbers and H is the ring of real quaternions. R is clearly a ring of charac-
teristic different from 2. Define D W R �! R as D.f .x/;q/ D .d.f .x/;0/, where
d is the usual differentiation of the polynomial ring RŒx�: Also define � W R �! R

as �.f .x/;q/ D .f .�x/; Nq/, where f .x/ 2 RŒx� and Nq D ˛�ˇi � 
j � ık, where
q D ˛Cˇi C 
j C ık 2 H. It can be easily shown that D and ‘�’ are a nonzero
derivation and an involution of R respectively. Suppose that I D RŒx�� f0g: It is
obvious that I is a �-ideal of R. Let 0¤ u.x/ 2 RŒx� and 0¤ v 2H: Then we have
.u.x/;0/R.0;v/ D f.0;0/g D .u.x/;0/R.0;v/�, where .0;0/ ¤ .u.x/;0/; .0;0/ ¤

.0;v/ 2 R. This implies that R is not a �-prime ring but it is a semiprime ring.
It can be easily seen that D.m/on 2Z for all m;n 2 I but R is noncommutative.

Theorem 5. LetR be a �-prime ring of characteristic different from 2, I a nonzero
�-ideal of R. If R admits a nonzero derivation d which commutes with ‘�’ such that
d.Œx;y�/˙ .xoy/ 2Z for all x;y 2 I: Then R is commutative.

Proof. It is clear that d.Œx;y�/˙ .xoy/ 2 I for all x;y 2 I also. Now in view of
our hypothesis we conclude that d.Œx;y�/˙ .xoy/ 2Z\I for all x;y 2 I:
Case I: If Z\I D f0g, then d.Œx;y�/˙ .xoy/D 0 for all x;y 2 I; using Theorem 3
we get our required result.
Case II: If Z\I ¤ f0g, then suppose 0¤ ´ 2Z\I . Replacing y by ´, we arrive at
d.Œx;´�/˙ .xo´/ 2Z\I for all x 2 I i.e.; 2x´ 2Z for all x 2 I and hence x´ 2Z
for all x 2 I i.e.; x´r D rx´ for all r 2 R: This implies that Œx;R�R´D f0g for all
x 2 I: Since 0¤ ´� 2Z\I; arguing in the similar lines as above we also obtain that
Œx;R�R´�D f0g for all x 2 I: By �-primeness of R we conclude that I �Z: Finally
by Lemma 5, the result follows. �

Theorem 6. Let R be a �-prime ring of characteristic different from 2 and I a
nonzero �-ideal of R: If R admits a nonzero derivation d which commutes with ‘�’
such that d.xoy/˙ Œx;y� 2Z for all x;y 2 I: Then R is commutative.
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Proof. It is clear that d.xoy/˙ Œx;y� 2 I for all x;y 2 I also. Now including the
hypothesis we conclude that d.xoy/˙ Œx;y� 2Z\I for all x;y 2 I:
Case I: If Z\ I D f0g, we find that d.xoy/˙ Œx;y�D 0 for all x;y 2 I and hence
using Theorem 3 we get our required result.
Case II: Suppose Z\ I ¤ f0g. Let 0¤ ´ 2 Z\ I . Replacing y by ´, we arrive at
d.xo´/ 2 Z\ I for all x 2 I i.e.; 2d.x´/ 2 Z for all x 2 I and hence d.x´/ 2 Z
for all x 2 I i.e.; d.x/´xCxd.´/x D xd.x/´Cxxd.´/ for all x 2 I: Using the fact
that d.Z/�Z, we conclude that Œd.x/;x�R´D f0g for all x 2 I: since Z� DZ and
I�D I , we obtain that 0¤ ´� 2Z\I: Now arguing in the similar lines as above we
also obtain that Œd.x/;x�R´� D f0g for all x 2 I: By �-primeness of R we conclude
that Œd.x/;x�D 0 for all x 2 I: Finally by Lemma 3, the result follows. �

Corollary 2. Let R be a prime ring of characteristic not 2, I a nonzero ideal and
d a nonzero derivation of R satisfying either of the following differential identities
.i/ d.Œx;y�/˙.xoy/ 2Z for all x;y 2 I or .i i/ d.xoy/˙ Œx;y� 2Z for all x;y 2 I:
Then R is commutative.

Proof. Assume that d is a nonzero derivation ofR such that .i/ d.Œx;y�/˙.xoy/2
Z for all x;y 2 I or .i i/ d.xoy/˙ Œx;y� 2 Z for all x;y 2 I: Since R is a prime
ring of characteristic not 2, consider RD R�Ro, which is clearly a �ex-prime ring
of characteristic different from 2. Set I D I � I o a nonzero �ex-ideal of R: Now
define D W R �! R by D.x;y/ D .d.x/;d.y//. Using hypothesis it can be eas-
ily proved that D is a nonzero derivation of R: Moreover D�ex D �exD and .i/
D.Œx;y�/˙ .xoy/ 2 Z.R/ for all x;y 2 I or .i i/ D.xoy/˙ Œx;y� 2 Z.R/ for all
x;y 2 I: In view of the Theorem 5 and Theorem 6 we deduce that R is commutative
and in turn we obtain that R is also commutative. �

The following example shows that the �-primeness in the hypotheses of the The-
orems 5 & 6 can not be omitted.

Example 3. Let R D RŒx��H, where RŒx� is the polynomial ring over ring R of
real numbers and H is the ring of real quaternions. Clearly, R is a ring of charac-
teristic different from 2. Define D W R �! R as D.f .x/;q/D .0;di .q//, where di

is the inner derivation of H; determined by i 2H, i.e.; di .q/D Œi;q� for all q 2H.
Also define � W R �! R as �.f .x/;q/ D .f .x/; Nq/, where f .x/ 2 RŒx� and Nq D
˛�ˇi�
j �ık, where qD ˛CˇiC
jCık 2H. It can be easily shown thatD and
� are a nonzero derivation and an involution of R respectively such that D� D �D:
Suppose that I DRŒx��f0g: It is obvious that I is a �-ideal ofR. Let 0¤u.x/2RŒx�
and 0¤ v 2H. Then we have .u.x/;0/R.0;v/Df.0;0/gD .u.x/;0/R.0;v/�, where
.0;0/¤ .u.x/;0/; .0;0/¤ .0;v/ 2R. This implies that R is not a �-prime ring but it
is a semiprime ring. Here it is obvious to observe that .i/ D.Œm;n�/˙ .mon/ 2Z for
allm;n2 I and .i i/ D.mon/˙ Œm;n�2Z for allm;n2 I , butR is noncommutative.
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We now consider differential identities involving anticommutators in the next two
results and show that there does not exist nonzero derivation satisfying these differ-
ential identities.

Theorem 7. Let R be a �-prime ring of characteristic different from 2 and I a
nonzero �-ideal of R such that Z\I ¤ f0g. Then there exists no nonzero derivation
d such that d.x/oy D xod.y/ for all x;y 2 I .

Proof. By hypothesis we have d.x/yCyd.x/�xd.y/�d.y/x D 0 for all x;y 2
I . Let ´ 2Z\I . Replacing y by ´ in the hypothesis, we arrive at d.x/´C´d.x/�
xd.´/�d.´/xD 0 for all x 2 I and for all ´ 2Z\I: Now sinceR has characteristic
different from 2; and d.Z/ � Z; we find that d.x/´�xd.´/D 0 for all x 2 I and
for all ´ 2 Z\ I: Substituting xy; where y 2 I for x in the last relation and using
the same again we conclude that d.x/y´D 0 for all x;y 2 I and for all ´ 2 Z\ I:
But since Z� D Z and I� D I , we also have Z�\ I� D Z\ I . These arguments
show that d.x/y´� D 0 for all x;y 2 I and for all ´ 2 Z\ I: Finally we infer that
d.x/I´D f0g D d.x/I´� for all x 2 I and for all ´ 2 Z\ I: Lemma 1 and the fact
that Z\I ¤ f0g insure that d.x/D 0 for all x 2 I . Replacing x by xr , where r 2R
in the last relation and using the same again we arrive at Id.r/D f0g: This implies
that sId.r/D f0g D s�Id.r/, where 0¤ s 2R. Finally by Lemma 1, we obtain that
d D 0: �

Theorem 8. Let R be a �-prime ring of characteristic different from 2 and I a
nonzero �-ideal of R such that Z\I ¤ f0g. Then there exists no nonzero derivation
d which commutes with ‘�’ and satisfies either .i/ d.x/oyD d.x/od.y/ for all x;y 2
I or .i i/ xod.y/D d.x/od.y/ for all x;y 2 I:

Proof. .i/ By hypothesis we have d.x/yCyd.x/�d.x/d.y/�d.y/d.x/D 0 for
all x;y 2 I: Let ´ 2Z\I . Replacing x by ´ in the hypothesis, we arrive at d.´/yC
yd.´/�d.´/d.y/�d.y/d.´/D 0 for all y 2 I and for all ´ 2 Z\ I: But since R
has characteristic different from 2 and d.Z/�Z we arrive at d.´/y�d.´/d.y/D 0
for all y 2 I and for all ´ 2 Z \ I: Now we infer that d.´/I.d.y/� y/ D f0g for
all y 2 I and for all ´ 2 Z \ I: But it is obvious to see that Z� \ I� D Z \ I .
Since d� D �d , we also observe that fd.´/g�I.d.y/� y/ D f0g for all y 2 I and
for all ´ 2 Z \ I: Using Lemma 1, we obtain that d.´/ D 0 for all ´ 2 Z \ I or
d.y/ D y for all y 2 I: If first case holds, then hypothesis gives us d.x/o´ D 0
for all x 2 I and for all ´ 2 Z \ I: Since R has characteristic different from 2,
Lemma 7 provides us d.x/´ D 0 for all x 2 I and for all ´ 2 Z \ I: This implies
that d.x/I´D f0g D d.x/I´� for all x 2 I and for all ´ 2 Z\ I: Lemma 1 and the
fact that Z\ I ¤ f0g insure that d.x/D 0 for all x 2 I . Now arguing in the similar
way as in the above Theorem 7, we conclude that d D 0: If second case holds, then
we have d.y/ D y for all y 2 I: Putting yr , where r 2 R in the last relation and
using the same again we conclude that yd.r/D 0 for all y 2 I and for all r 2R: This
shows that lId.r/D f0g D l�Id.r/ for all r 2 R and 0¤ l 2 R. Finally Lemma 1
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gives our required result.

.i i/ Using similar arguments as above, one can obtain the proof. �

The following example justifies that ”characteristic different from 2” in the hypo-
thesis of the above Theorems 7 and 8 is not superfluous.

Example 4. ConsiderR,D, d , �ex , I and I as discussed in the Example 1. It is ob-
vious to observe thatZ\ID I¤ f0g: It is easy to check that .i/ D.x/oy D xoD.y/
for all x;y 2 I, .i i/ D.x/oy D D.x/oD.y/ for all x;y 2 I and .i i i/ xoD.y/ D
D.x/oD.y/ for all x;y 2 I. However D ¤ 0.

Theorem 9. Let R be a �-prime ring of characteristic different from 2 and I a
nonzero �-ideal of R such that Z \ I ¤ f0g. If R admits a nonzero derivation d
which commutes with ‘�’ and satisfies d.x/od.y/D xoy for all x;y 2 I; then R is
commutative.

Proof. Given that d.x/od.y/D xoy for all x;y 2 I: Choose ´ 2Z\I: Replacing
y by y´ in the hypothesis we obtain that d.x/od.y´/D xoy´ for all x 2 I and for
all ´ 2Z\I: Now we have

d.x/od.y´/D d.x/.d.y/´Cyd.´//C .d.y/´Cyd.´//d.x/

D d.x/d.y/´Cd.x/yd.´/Cd.y/´d.x/Cyd.´/d.x/

and on the other hand using the hypothesis we obtain that

xoy´D .xoy/´

D .d.x/od.y//´

D d.x/d.y/´Cd.y/d.x/´:

Equating the above two expressions and using the fact that d.Z/ � Z, we conclude
that .d.x/yCyd.x//d.´/D 0 i.e.; .d.x/yCyd.x//Id.´/D f0g for all x;y 2 I;´2
Z \ I: It is obvious that Z� \ I� D Z \ I . Since d� D �d , we also infer that
.d.x/yCyd.x//I fd.´/g� D f0g for all x;y 2 I;´ 2 Z\ I: By Lemma 1 we arrive
at .d.x/yC yd.x// D 0 for all x;y 2 I or d.´/ D 0 for all ´ 2 Z \ I: We claim
that d.´/¤ 0 for all ´ 2 Z\ I: For otherwise hypothesis provides us xo´D 2x´D
d.x/od.´/ D 0 for all x 2 I and ´ 2 Z \ I: Since R has characteristic different
from 2, Lemma 7 insures that x´D 0 i.e.; xI´D f0g for all x 2 I;´ 2 Z\ I: Since
Z� \ I� D Z \ I . This fact shows that xI´� D f0g for all x 2 I;´ 2 Z \ I . By
Lemma 1, we deduce that either I Df0g orZ\I Df0g: This leads to a contradiction.
Finally we conclude that .d.x/yCyd.x//D 0 for all x;y 2 I . Replacing y by yr ,
where r 2 I in the last relation and using the same again we obtain that yŒd.x/;r�D 0
for all x;y 2 I;r 2 R: This implies that lI Œd.x/;R� D f0g D l�I Œd.x/;R�, for all
x 2 I , where 0¤ l 2R: By Lemma 1, we find that d.I /�Z: Finally using Lemma
4, we get that R is commutative. �
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Theorem 10. Let R be a �-prime ring of characteristic different from 2 and I
a nonzero �-ideal of R such that Z\ I ¤ f0g. If R admits a nonzero derivation d
which commutes with ‘�’ and satisfies .d.x/oy/�.xod.y//2Z for all x;y 2 I; then
R is commutative.

Proof. Replacing y by ´, where ´ 2 Z \ I in the hypothesis and using the fact
that d.Z/ � Z, we arrive at 2.d.x/´� xd.´// 2 Z for all x 2 I . This implies
that .d.x/´� xd.´// 2 Z for all x 2 I and for all ´ 2 Z \ I and hence .d.x/´�
xd.´//x D x.d.x/´� xd.´// for all x 2 I and for all ´ 2 Z \ I: In turn we con-
clude that .d.x/x�xd.x//´D 0 i.e.; .d.x/x�xd.x//I´D f0g for all x 2 I and for
all ´ 2 Z \ I: Since Z�\ I� D Z \ I , we obtain that .d.x/x� xd.x//I´� D f0g

for all x 2 I and for all ´ 2 Z \ I: Now hypothesis and Lemma 1 provide us that
.d.x/x�xd.x// D 0 i.e.; Œd.x/;x� D 0 for all x 2 I: Finally Lemma 3, completes
the proof. �

The following example demonstrates that the �-primeness in the hypothesis in the
above theorem is necessary.

Example 5. Let S DM2�2.RŒx�/, the ring of all 2� 2 matrices over ring RŒx�,
where RŒx� is the polynomial ring over ring of real numbers. Suppose thatRDS�S ,
which is clearly a ring of characteristic different from 2. Define D W R �! R as
D.A;B/D .0;D

0

.B//, where

D
0

�
f .x/ g.x/

h.x/ u.x/

�
D

�
d.f .x// d.g.x//

d.h.x// d.u.x//

�
;

B D

�
f .x/ g.x/

h.x/ u.x/

�
and d is the usual differentiation of the polynomial ring RŒx�:

Also define � WR�!R as �.A;B/D .At ;B t /, whereAt and B t are the transpose of
the matrices A and B respectively. It can be easily shown thatD and � are a nonzero
derivation and an involution of R respectively such that D� D �D: Suppose that
I DM2�2.RŒx�/�f0g: It is obvious that I is a �-ideal ofR andZ\I ¤f0g. Let 0¤
U;0¤ V 2M2�2.RŒx�/. Then we have .U;0/R.0;V /D f.0;0/g D .U;0/R.0;V /�,
where .0;0/¤ .U;0/; .0;0/¤ .0;V / 2 R. This implies that R is not a �-prime ring
but it is a semiprime ring. Here it is obvious to see that .D.p/oq/� .poD.q// 2 Z
for all p;q 2 I; but R is noncommutative.
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