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Abstract. In this paper, we introduce �-generalized pseudo and �-genera-lized quasi with the
tool right upper-Dini-derivative and illustrated these by non-trivial examples. Necessary and
sufficient optimality conditions are obtained for a nonlinear multiobjective fractional program-
ming problem involving some classes of generalized convexities with the tool-right upper-Dini-
derivative. Furthermore, usual duality theorems are proved for a general dual problem using the
concept of generalized convex functions. Our results generalize and extend the several results
appeared in the literature.
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1. INTRODUCTION

The weak minimum (weakly efficient, weak Pareto) solution is an important con-
cept in mathematical models, economics, decision theory, optimal control and game
theory. During the last decades the analysis of duality in multiobjective theory has
been a focal issue. For brief accounts of the evolution of convex theory, with and
without differentiability assumptions, and in the framework of multiobjective theory,
the reader may consult [1–3, 5–8, 10–12, 16, 19] and the references cited therein.

In the past few years extensive literature relative to the other families of more gen-
eral functions to substitute the convex functions in the mathematical programming
has grown immensely. Such functions are called generalized convex functions. In
fact the concept of invexity existed earlier in the literature, e.g., Hanson [9] used it
to give Kuhn-Tucker sufficient optimality conditions in nonlinear programming. For
the most part, the study of invexity has been in the context of differentiable functions.
But the corresponding conclusions cannot be obtained for nondifferentiable program-
ming with the help of invex because the derivative is required in the definition of in-
vex. However, in the recent years, the concept of invexity, previously introduced for
differentiable functions, was generalized to the case of nondifferentiable functions.
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Ye [17] defined a generalized convexity, called d -invexity, and discussed some
theoretical problems for nondifferentiable programming. Nahak and Mohapatra [13]
introduced the notation of d -�-.�;�/-invexity and obtained optimality conditions and
duality results for a multiobjective programming problem. Jayswal et al. [11] es-
tablished sufficient conditions and duality theorems for a multiobjective fractional
programming problem under .p;r/-�-.�;�/-invex functions. In [16], Sharma and
Ahmad used the concept of .F;�;�/-type I functions to establish Karush-Kuhn-
Tucker type sufficient optimality conditions for a nonsmooth multiobjective program-
ming problem.

Making use of arcwise connected set, as defined by Ortega and Rheinboldt [15],
Avriel and Zang [4] extended the concept of convex functions to the correspond-
ing forms of arcwise connected functions and presented some interrelations between
them. Zhang [20] introduced B-arcwise connected and strictly B-arcwise connected
functions based on arcwise connected functions. Optimality and duality results are
also obtained for a nonlinear semi-infinite programming problem in [20]. Recently,
Yuan and Liu [18] introduced some new generalized convexity notations using right-
upper Dini derivative, and established optimality conditions and duality theorems for
two types of dual programming.

Inspired and motivated by above works, the purpose of this paper is to investigate
the following multiobjective nonlinear fractional programming problem involving
generalized convex functions, in terms of the right upper-Dini-derivative:

.VFP/ min

 
f1.x/

g1.x/
;
f2.x/

g2.x/
; : : : ;

fp.x/

gp.x/

!

subject to

(
hj .x/5 0; j D 1;2; : : : ;m;

x 2X0;

where X0 be a nonempty subset of Rn and gi .x/ > 0 for all x 2 X0 and each
i D 1;2; : : : ;p. Let f D .f1;f2; : : : ;fp/; g D .g1;g2; : : : ;gp/; hD .h1;h2; : : : ;hm/.
We denote by X D fx 2 X0 W hj .x/ 5 0; j D 1;2; : : : ;mg the set of all feasible solu-
tions to problem (VFP). For Nx 2X we denoteM. Nx/Dfj 2 f1;2; : : : ;mg W hj . Nx/D 0g,
h0 D .hj /j2M. Nx/ and N. Nx/D f1;2; : : : ;mg nM. Nx/.

This paper is divided into five sections. Section 2 recalls some definitions and
related results which will be used in later sections. Non-trivial examples are also
discussed to support our functions. In Section 3, necessary and sufficient optimal-
ity conditions are established for a nonlinear fractional multiobjective programming
problem involving generalized convex functions. In Section 4, we establish appro-
priate duality theorems for a general dual problem. Finally, conclusion and further
developments are given in Section 5.
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2. PRELIMINARIES

Let Rn be the n-dimensional Euclidean space and Rn
C

its non-negative orthant. If
x;y 2Rn then x < y, xi <yi ; i D 1;2; : : : ;nI x 5 y, xi 5 yi ; i D 1;2; : : : ;n and
x � y, xi 5 yi ; i D 1;2; : : : ;n and x ¤ y.
In this section, we recall some well known results and concepts.

Definition 1. A point Nx 2X is said to be a weak minimum to (VFP) if there exists
no other feasible point x such that f . Nx/

g. Nx/
> f .x/
g.x/

.

Definition 2 ( [20]). A set C � Rn is said to be an arcwise connected set if,
for every x1 2 C; x2 2 C; there exists a continuous vector-valued function Hx1;x2

W

Œ0;1�! C; called an arc, such that

Hx1;x2
.0/D x1; Hx1;x2

.1/D x2:

Definition 3 ([18]). Let ' be a real-valued function defined on an arcwise connec-
ted set C � Rn: Let x1;x2 2 C and Hx1;x2

be the arc connecting x1 and x2 in C .
The right upper-Dini-derivative of ' with respect to Hx2;x1

.t/ at t D 0 is defined as
follows:

.d'/C.Hx2;x1
.0C//D lim

t!0C
sup

'.Hx2;x1
.t//�'.x2/

t
: (2.1)

Using this upper-Dini-derivative concept, Yuan and Liu [18] introduced a class of
functions, which called .˛;�/-right upper-Dini-derivative function. For convenience,
we recall the following definitions.

Definition 4 ([18]). A set X0 � Rn is said to be locally arcwise connected at Nx if
for any x 2X0 and x¤ Nx there exist a positive number a.x; Nx/, with 0 < a.x; Nx/5 1,
and a continuous arc H Nx;x such that H Nx;x.t/ 2X0 for any t 2 .0;a.x; Nx//.
The set X0 is locally arcwise connected on X0 if X0 is locally arcwise connected at
any x 2X0.

Definition 5 ([18]). LetX0 �Rn be a locally arcwise connected set and ' WX0!
R be a real function defined on X0. The function ' is said to be .˛;�/-right upper-
Dini-derivative locally arcwise connected with respect to H at Nx, if there exist real
functions ˛ WX0�X0!R, � WX0�X0!R such that

'.x/�'. Nx/= ˛.x; Nx/.d'/C.H Nx;x.0
C//C�.x; Nx/; 8x 2X0:

If ' is .˛;�/-right upper-Dini-derivative locally arcwise connected with respect
to H at Nx for any Nx 2 X0, then ' is called .˛;�/-right upper-Dini-derivative locally
arcwise connected with respect to H on X0.

Remark 1. It revealed by an example given in [18] that there exists a function,
which is .˛;�/-right upper-Dini-derivative locally arcwise connected but neither d -�-
.�;�/-invex [13] nor d -invex [17], nor directional differentially B-arcwise connected
[20].
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Now we define the notions of �-generalized-pseudo-right upper-Dini-derivative loc-
ally arcwise connected, strictly �-generalized-pseudo-right upper-Dini-deriv-ative loc-
ally arcwise connected and �-generalized-quasi-right upper-Dini-deriva-tive locally
arcwise connected functions.

Definition 6. The function ' WX0!R is said to be �-generalized-pseudo-right
upper-Dini-derivative locally arcwise connected (with respect to H ) at Nx, if there
exists a real function � WX0�X0!R such that

.d'/C.H Nx;x.0
C//= ��.x; Nx/) '.x/= '. Nx/; 8x 2X0;

equivalently

'.x/ < '. Nx/) .d'/C.H Nx;x.0
C// < ��.x; Nx/; 8x 2X0:

The function ' W X0 ! R is said to be �-generalized-pseudo-right upper-Dini-
derivative locally arcwise connected (with respect to H ) on X0 if it is �-generalized-
pseudo-right upper-Dini-derivative locally arcwise connected (with respect to H ) at
any Nx 2X0.

It is noted that, not every �-generalized-pseudo-right upper-Dini-derivative locally
arcwise connected with respect to H is .˛;�/-right upper-Dini-derivative locally ar-
cwise connected with respect to H [18]. We have the following counter-example,
which shows that the function ' is �-generalized-pseudo-right upper-Dini-derivative
locally arcwise connected with respect toH but not .˛;�/-right upper-Dini-derivative
locally arcwise connected with respect to H .

Example 1. Let ' WR!R be defined by

'.x/D

8<: x cos2
1

x
I if x > 0

0I if x � 0:

For any, x;y 2R, defining the arc H W Œ0;1�!R by

Hy;x.t/D txC .1� t /y; t 2 Œ0;1�:

Now, by the definition of right upper-Dini-derivative defined by (2.1), we have

.d'/C.H0;x.0
C//D lim

t!0C
sup

'.H0;x.t//�'.0/

t
D lim
t!0C

sup
'.tx/

t

D lim
t!0C

sup
tx cos2

1

tx
t

D x:

Consider the function � WR�R!R to be defined by

�.x;y/D

�
�xC3x cos2 1

x
I if x > 0

0I if x � 0:
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For Nx D 0; we have

'.x/�'. Nx/D

�
x cos2 1

x
I if x > 0

0I if x � 0;

while

.d'/C.H Nx;x.0
C//C�.x; Nx/D

�
3x cos2 1

x
I if x > 0

0I if x � 0:
So, clearly ' is �-generalized-pseudo-right upper-Dini-derivative locally arcwise con-
nected (with respect toH ) at NxD 0. But, ' is not a .˛;�/-right upper-Dini-derivative
locally arcwise connected with respect to same arc H and � at Nx D 0 because for
x D 0:3 and ˛.x; Nx/D 1, we get

'.x/�'. Nx/�˛.x; Nx/.d'/C.H Nx;x.0
C//��.x; Nx/D�0:5782 < 0:

Definition 7. The function ' WX0!R is said to be strictly �-generalized-pseudo-
right upper-Dini-derivative locally arcwise connected (with respect to H ) at Nx, if
there exists a real function � WX0�X0!R such that

.d'/C.H Nx;x.0
C//= ��.x; Nx/) '.x/ > '. Nx/; 8x 2X0;x ¤ Nx;

equivalently

'.x/5 '. Nx/) .d'/C.H Nx;x.0
C// < ��.x; Nx/; 8x 2X0;x ¤ Nx:

The function ' W X0! R is said to be strictly �-generalized-pseudo-right upper-
Dini-derivative locally arcwise connected (with respect to H ) on X0 if it is strictly
�-generalized-pseudo-right upper-Dini-derivative locally arcwise connected (with re-
spect to H ) at any Nx 2X0.

Definition 8. The function ' W X0 ! R is said to be �-generalized-quasi-right
upper-Dini-derivative locally arcwise connected with respect toH at Nx; if there exists
a real function � WX0�X0!R such that

'.x/5 '. Nx/) .d'/C.H Nx;x.0
C//5 � N�.x; Nx/; 8x 2X0;

equivalently

.d'/C.H Nx;x.0
C// > � N�.x; Nx/) '.x/ > '. Nx/; 8x 2X0:

The function ' WX0!R is said to be �-generalized-quasi-right
upper-Dini-derivative locally arcwise connected (with respect to H ) on X0 if it is
�-generalized-quasi-right upper-Dini-derivative locally arcwise connected (with re-
spect to H ) at any Nx 2X0:

Now, we present an example which shows that there exists a function which is �-
generalized-quasi-right upper-Dini-derivative locally arcwise connected but neither
.˛;�/-right upper-Dini-derivative locally arcwise connected nor �-generalized-pseudo-
right upper-Dini-derivative locally arcwise connected with respect to the arc H .
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Example 2. Let ' WR!R be a function defined by

'.x/D

8<: x sin
1

x
�3xI if 0 < x < 1

0I otherwise :

For any, x;y 2R, defining the arc H W Œ0;1�!R by

Hy;x.t/D txC .1� t /y; t 2 Œ0;1�:

Clearly, .d'/C.H0;x.0C//D�2x:
Let � WR�R!R be defined by

�.x;y/D

�
2xI if 0 < x < 1
0I otherwise :

Then, it can be easily seen that ' is �-generalized-quasi-right upper-Dini-derivative
locally arcwise connected (with respect to H ) at Nx D 0. However, for 0 < x <

1;˛.x; Nx/D 1 and Nx D 0, we have

'.x/�'. Nx/�˛.x; Nx/.d'/C.H Nx;x.0
C//��.x; Nx/ < 0;

and
'.x/�'. Nx/ < 0; but .d'/C.H Nx;x.0C//C N�.x; Nx/D 0:

Hence, ' is neither .˛;�/-right upper-Dini-derivative locally arcwise connected nor
�-generalized-pseudo-right upper-Dini-derivative locally arcwise connected with re-
spect to same arc H and � at Nx D 0.

Definition 9 ([18]). A function f W X0! Rp is called preinvex (with respect to
� WX0�X0!Rn) on X0 if there exists a vector valued function � such that,

f .uC t�.x;u//5 tf .x/C .1� t /f .u/

holds for all x;u 2X0 and any t 2 Œ0;1�:

Definition 10 ([18]). A function f W X0! Rp is said to be convexlike if for any
x;y 2X0 and 05 �5 1, there is ´ 2X0 such that

f .´/5 �f .x/C .1��/f .y/:

Remark 2. The convex and the preinvex functions are convexlike functions.

Lemma 1 ([18]). Let S be a nonempty set in Rn and  W S ! Rp, a convexlike
function. Then either

 .x/ < 0 has a solution x 2 S
or

�T .x/= 0 for all x 2 S; for some � 2Rp; �� 0;
but both alternatives are never true simultaneously, and the symbol T denotes the
transpose of a matrix.

In the next section we will use the following version of Theorem 3.2 from [18].
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Lemma 2. Let Nx 2X be a (local) weak minimum solution for the following prob-
lem:

min .'1.x/;'2.x/; : : : ;'p.x//;

subject to

(
hj .x/5 0; j 2 f1;2; :::;mg;

x 2X0;

where ' D .'1.x/;'2.x/; : : : ;'p.x// WX0!Rp and h1;h2; : : : ;hm are right upper-
Dini-derivative functions of x with respect to the arcH Nx;x.0C/. Assume that hj .j 2
N. Nx// is a upper semi-continuous function at Nx and .d'/C .H Nx;x.0C// and
.dh0/C.H Nx;x.0

C// are convexlike functions of x on X0. If .dh0/C.H Nx;x.0C// sat-
isfies a regularity condition at Nx [18], then there exist �0 2Rp

C
; u0 2Rm

C
such that

�0
T

.d'/C.H Nx;x.0
C//Cu0

T

.dh/C.H Nx;x.0
C//= 0; for al l x 2X0;

u0
T

h. Nx/D 0;
pX
iD1

�0i D 1:

3. OPTIMALITY CONDITIONS

In this section, we first derive Fritz-John type and Karush-Kuhn-Tucker type neces-
sary conditions for (VFP) and then using the concept of (local) weak optimality, we
also establish some sufficient optimality conditions.

Theorem 1 (Fritz-John type necessary conditions). Assume that Nx is a (local)
weak minimum solution to (VFP). Let .df /C.H Nx;x.0C//, .dg/C.H Nx;x.0C// and
.dh0/C.H Nx;x.0

C// be convexlike functions of x onX0 and also let hj be upper semi-
continuous at Nx for j 2 N. Nx/. Then there exist �0 2 Rp

C
; u0 2 R

p
C
and v0 2 Rm

C
,

.�0;u0;v0/¤ 0 such that

�0
T

.df /C.H Nx;x.0
C//�u0

T

.dg/C.H Nx;x.0
C//Cv0

T

.dh/C.H Nx;x.0
C//= 0;

for all x 2X0;

v0
T

h. Nx/D 0:

Proof. Let Nx be a (local) weak minimum solution for (VFP) and suppose there
exists x� 2X0 such that

.df /C.H Nx;x�.0
C// < 0; (3.1)

.dg/C.H Nx;x�.0
C// > 0; (3.2)

.dh0/C.H Nx;x�.0
C// < 0: (3.3)

By the relation (3.1) we have

lim
t!0C

sup
fi .H Nx;x�.t//�fi . Nx/

t
< 0;8 i 2 f1;2; :::;pg;
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which implies that there exists ıi > 0 such that

fi .H Nx;x�.t// < fi . Nx/; for t 2 .0;ıi /:

Similarly (by the relations (3.2), (3.3)), for each i 2 f1;2; :::;pg;j 2M. Nx/ there exist
�i > 0;�j > 0 such that

gi .H Nx;x�.t// > gi . Nx/; for t 2 .0;�i /;

h0.H Nx;x�.t// < h
0. Nx/D 0; for t 2 .0;�j /:

Now, for j 2N. Nx/; hj . Nx/ < 0 and hj is semi-continuous at Nx; then hj .H Nx;x�.t// is
semi-continuous at t D 0: Hence, for � D 1

2
hj . Nx/ > 0; there exists �j such that

hj .H Nx;x�.t// < hj . Nx/C � D
1

2
hj . Nx/; for t 2 .0;�j /:

Let ı� Dminfıi ; �i ;�j g, then for t 2 .0;ı�/; we have

fi .H Nx;x�.t// < fi . Nx/; for i 2 f1;2; :::;pg; (3.4)

gi .H Nx;x�.t// > gi . Nx/; for i 2 f1;2; :::;pg; (3.5)

hj .H Nx;x�.t// < hj . Nx/D 0; for j 2 f1;2; :::;mg: (3.6)

Using (3.4) and (3.5), for f .x/
g.x/
D

�
f1.x/
g1.x/

; f2.x/
g2.x/

; :::;
fp.x/

gp.x/

�
we get f . Nx/

g. Nx/
>
f .H Nx;x� .t//

g.H Nx;x� .t//
,

which contradicts the assumption that Nx is a local weak minimum solution of (VFP).
By Lemma 1 and the hypothesis that .df /C; .dg/C and .dh0/C are convexlike func-
tions of x on X0, we obtain the required result. �

For each uD .u1;u2; : : : ;up/T 2R
p
C

, where Rp
C

denotes the positive orthant of Rp,
we consider the parametric problem

.VFPu/ minimize .f1.x/�u1g1.x/;f2.x/�u2g2.x/; : : : ;fp.x/�upgp.x//;

subject to

(
hj .x/5 0; j 2 f1;2; :::;mg;

x 2X0:

Lemma 3 ([14]). If Nx is a (local) weak minimum to (VFP), then Nx is a (local) weak
minimum to (VFPu0), where u0 D f . Nx/

g. Nx/
.

Using this lemma we can derive a Karush-Kuhn-Tucker type necessary optimality
criterion for the problem (VFP).

Theorem 2 (Karush-Kuhn-Tucker type necessary conditions). Assume that Nx is a
(local) weak minimum solution to (VFP). Let .df /C.H Nx;x .0C//, .dg/C .H Nx;x.0C//
and .dh0/C.H Nx;x.0C// be convexlike functions of x on X0 and also let hj be upper
semi-continuous at Nx for j 2 N. Nx/, further .dg/C.H Nx;x.0C// satisfies the slater
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constraint qualification (i.e., there exists Ox 2 X such that .dg/C.H Nx; Ox.0C// < 0).
Then there exist �0 2Rp

C
; u0 2R

p
C
and v0 2Rm

C
such that

pX
iD1

�0i
�
.dfi /

C.H Nx;x.0
C//�u0i .dgi /

C.H Nx;x.0
C//

�
Cv0

T

.dh/C.H Nx;x.0
C//= 0;

for al l x 2X0;

v0
T

h. Nx/D 0;

pX
iD1

�0i D 1:

Proof. Let Nx be a (local) weak minimum solution for (VFP). According to Lemma
3, we have that Nx is a (local) weak minimum solution for (VFPu0), where u0 D
.u01;u

0
2; :::;u

0
p/, u

0
i D fi . Nx/=gi . Nx/; i 2 f1;2; :::;pg. Now, applying Lemma 2 to prob-

lem (VFPu0), we get that there exist �0 2Rp
C
; v0 2Rm

C
such that

pX
iD1

�0i
�
.dfi /

C.H Nx;x.0
C//�u0i .dgi /

C.H Nx;x.0
C//

�
Cv0

T

.dh/C.H Nx;x.0
C//= 0;

for al l x 2X0;

v0
T

h. Nx/D 0;

pX
iD1

�0i D 1;

and the theorem is proved. �

Remark 3. In the above theorem we can suppose, for any i D 1;2; :::;p, that .dfi /C

.H Nx;x.0
C//�u0i .dgi /

C.H Nx;x.0
C// is convexlike on X0, where u0i D

fi . Nx/
gi . Nx/

instead
of considering that .dfi /C.H Nx;x.0C// and .dgi /C.H Nx;x.0C// are convexlike onX0,
for any i D 1;2; :::;p.

Now, we establish some sufficient optimality conditions for the problem (VFP) using
the concept of (local) weak minimum. As we go on weakening the assumptions of
convexity, we get a weaker conclusion of the (weak) efficient solution of (VFP). Let
˛ WX0�X0!R, N�; O� WX0�X0!Rp and M� WX0�X0!Rm:

Theorem 3 (Karush-Kuhn-Tucker type sufficient conditions). Let Nx 2X and f be
.˛; N�/-right upper-Dini-derivative locally arcwise connected (with respect toH ) at Nx,
�g be .˛; O�/-right upper-Dini-derivative locally arcwise connected (with respect to
H ) at Nx, and h be .˛; M�/-right upper-Dini-derivative locally arcwise connected (with
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respect toH ) at Nx. Assume also that there exist �0 2Rp, u0 2Rp and v0 2Rm such
that ˛. Qx; Nx/ > 0, �0

T

N�. Qx; Nx/Cv0
T

M�. Qx; Nx/= 0, O�. Qx; Nx/= 0 and
pX
iD1

�0i
�
.dfi /

C.H Nx;x.0
C//

�
C

mX
jD1

v0j .dhj /
C.H Nx;x.0

C//= 0; for al l x 2X;

(3.7)
.dgi /

C.H Nx;x.0
C//5 0; 8x 2X; i D 1;2; :::;p; (3.8)
mX
jD1

v0j hj . Nx/D 0; (3.9)

pX
iD1

�0i D 1; (3.10)

�0 = 0; u0 = 0; v0 = 0: (3.11)
Then Nx is a weak minimum solution to (VFP).

Proof. Suppose contrary to the result. Hence there exists Qx 2X such that
fi . Qx/

gi . Qx/
<
fi . Nx/

gi . Nx/
; i D 1;2; :::;p: (3.12)

Since f is .˛; N�/-right upper-Dini-derivative locally arcwise connected (with respect
toH ) at Nx, and h is .˛; M�/-right upper-Dini-derivative locally arcwise connected (with
respect to H ) at Nx, we get

fi . Qx/�fi . Nx/= ˛. Qx; Nx/.dfi /
C.H Nx; Qx.0

C//C N�i . Qx; Nx/; i D 1;2; :::;p; (3.13)

hj . Qx/�hj . Nx/= ˛. Qx; Nx/.dhj /
C.H Nx; Qx.0

C//C M�j . Qx; Nx/; j D 1;2; :::;m: (3.14)
Multiplying (3.13) by �0i = 0, i 2 P , �0 2Rp

C
, (3.14) by v0j = 0, j D 1;2; :::;m, and

then summing the obtained relations, we get"
pX
iD1

�0i .fi . Qx/�fi . Nx//

#
C

"
mX
jD1

v0j .hj . Qx/�hj . Nx//

#

= ˛. Qx; Nx/

pX
iD1

�0i .dfi /
C.H Nx; Qx.0

C//C˛. Qx; Nx/

mX
jD1

v0j .dhj /
C.H Nx; Qx.0

C//

C�0
T

N�. Qx; Nx/Cv0
T

M�. Qx; Nx/= 0;

where the last inequality is according to (3.7), ˛. Qx; Nx/ > 0 and

�0
T

N�. Qx; Nx/Cv0
T

M�. Qx; Nx/= 0:

Hence "
pX
iD1

�0i .fi . Qx/�fi . Nx//

#
C

"
mX
jD1

v0j .hj . Qx/�hj . Nx//

#
= 0: (3.15)
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Since x 2X , v0 = 0; by (3.9) and (3.15), we get
pX
iD1

�0i .fi . Qx/�fi . Nx//= 0: (3.16)

Using (3.11) and (3.16), we obtain that there exists i0 2 f1;2; :::;pg such that

fi0. Qx/= fi0. Nx/: (3.17)

Since �g is .˛; O�/-right upper-Dini-derivative locally arcwise connected (with re-
spect to H ) at Nx, we get

�gi . Qx/Cgi . Nx/= �˛. Qx; Nx/.dgi /C.H Nx; Qx.0C//C O�i . Qx; Nx/; i D 1;2; :::;p;
equivalently,

gi . Qx/�gi . Nx/5 ˛. Qx; Nx/.dgi /
C.H Nx; Qx.0

C//� O�i . Qx; Nx/; i D 1;2; :::;p: (3.18)

By (3.8), (3.18) and using ˛. Qx; Nx/ > 0, O�. Qx; Nx/= 0, it follows

gi . Qx/5 gi . Nx/; i D 1;2; :::;p: (3.19)

Now, using (3.17), (3.19), f = 0 and g > 0, we obtain
fi0. Qx/

gi0. Qx/
=
fi0. Nx/

gi0. Nx/
;

which contradicts (3.12). Thus Nx is a weak minimum solution to (VFP). �

Theorem 4 (Karush-Kuhn-Tucker type sufficient conditions). Let Nx 2 X and let
pP
iD1

�0i
�
fi .:/� u

0
i gi .:/

�
C

mP
jD1

v0j hj .:/ be .˛;�/-right upper-Dini-derivative locally

arcwise connected (with respect to H ) at Nx. Assume also that there exist �0 2 Rp,
u0i D

fi . Nx/
gi . Nx/

, i D 1;2; :::;p; and v0 2Rm such that ˛.x; Nx/ > 0, �.x; Nx/= 0;

pX
iD1

�0i
�
.dfi /

C.H Nx;x.0
C//�u0i .dgi /

C.H Nx;x.0
C//

�
C

mX
jD1

v0j .dhj /
C.H Nx;x.0

C//= 0; 8x 2X; (3.20)

mX
jD1

v0j hj . Nx/D 0; (3.21)

pX
iD1

�0i D 1; (3.22)

�0 = 0; u0 = 0; v0 = 0: (3.23)
Then Nx is a weak minimum solution to (VFP).
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Proof. Suppose contrary to the result. Hence there exists a x 2X such that

fi .x/

gi .x/
<
fi . Nx/

gi . Nx/
; for any i D 1;2; :::;p:

That is,
fi .x/ < u

0
i gi .x/; for any i D 1;2; :::;p: (3.24)

From the .˛;�/-right upper-Dini-derivative locally arcwise connected (with respect

to H ) of
pP
iD1

�0i
�
fi .:/�u

0
i gi .:/

�
C

mP
jD1

v0j hj .:/ at Nx, we have"
pP
iD1

�0i .fi .x/�fi . Nx//

#
�

"
pP
iD1

�0i u
0
i .gi .x/�gi . Nx//

#
C

"
mP
jD1

v0j .hj .x/�hj . Nx//

#
= ˛.x; Nx/

�
pP
iD1

�0i

�
.dfi /

C.H Nx;x.0
C//�u0i .dgi /

C.H Nx;x.0
C//

�
C

mP
jD1

v0j .dhj /
C.H Nx;x.0

C//

#
C�.x; Nx/= 0;

where the last inequality is according to (3.20), ˛. Qx; Nx/ > 0 and �.x; Nx/= 0. Hence,"
pX
iD1

�0i .fi .x/�fi . Nx//

#
�

"
pX
iD1

�0i u
0
i .gi .x/�gi . Nx//

#

C

"
mX
jD1

v0j .hj .x/�hj . Nx//

#
= 0: (3.25)

Now, x 2X , (3.21) and (3.25), gives
pX
iD1

�0i .fi .x/�fi . Nx//�

pX
iD1

�0i u
0
i .gi .x/�gi . Nx//= 0:

That is,
pX
iD1

�0i ..fi .x/�u
0
i gi .x//� .fi . Nx/�u

0
i gi . Nx///= 0:

Since u0i D
fi . Nx/
gi . Nx/

, i D 1;2; :::;p, we obtain

pX
iD1

�0i .fi .x/�u
0
i gi .x//= 0:

From �0 = 0;
pP
iD1

�0i D 1, we obtain that there exists i0 2 f1;2; :::;pg such that

fi0.x/�u
0
i0
gi0.x/= 0;
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That is,
fi0.x/= u0i0gi0.x/; for some i0 2 f1;2; :::;pg;

which contradicts (3.24). Thus Nx is a weak minimum solution for (VFP). �

Theorem 5 (Karush-Kuhn-Tucker type sufficient conditions). Let Nx 2 X , �0 2
Rp, u0i D

fi . Nx/
gi . Nx/

, i D 1;2; :::;p and v0 2 Rm such that the conditions (3.20)-(3.23)
of Theorem 3.4 hold. Assume also that for any i D 1;2; :::;p; fi .:/�u0i gi .:/ is N�-
generalized-pseudo-right upper-Dini-derivative locally arcwise connected (with re-
spect to H ) at Nx, and for any j 2M. Nx/; hj .:/ is M�-generalized-quasi-right upper-
Dini-derivative locally arcwise connected (with respect to H ) at Nx, further the in-
equality

Pp
iD1�

0
i N�i .x; Nx/C

Pm
jD1 v

0
j M�j .x; Nx/= 0 holds. Then Nx is a weak minimum

solution to (VFP).

Proof. Suppose contrary to the result. Hence there exists x 2X such that
fi .x/

gi .x/
<
fi . Nx/

gi . Nx/
; for any i D 1;2; :::;p:

That is,
fi .x/�u

0
i gi .x/ < 0; for any i D 1;2; :::;p;

which is equivalent to

fi .x/�u
0
i gi .x/ < fi . Nx/�u

0
i gi . Nx/; for any i D 1;2; :::;p:

Now, by the N�-generalized-pseudo-right upper-Dini-derivative locally arcwise con-
nected (with respect to H ) of fi .:/�u0i gi .:/, i D 1;2; :::;p; at Nx, we get

.dfi /
C.H Nx;x.0

C//�u0i .dgi /
C.H Nx;x.0

C// < � N�i .x; Nx/; for any i D 1;2; :::;p:

Using �0i 2R
p
C
;
pP
iD1

�0i D 1, we obtain

pX
iD1

�0i
�
.dfi /

C.H Nx;x.0
C//�u0i .dgi /

C.H Nx;x.0
C//

�
< �

pX
iD1

�0i N�i .x; Nx/: (3.26)

For x 2X we have hj .x/5 0: But for j 2M. Nx/; hj . Nx/D 0: Hence

hj .x/5 hj . Nx/; for any j 2M. Nx/;

which by using the M�-generalized-quasi-right upper-Dini-derivative locally arcwise
connected (with respect to H ) of hj .:/, j 2M. Nx/ at Nx, we get

.dhj /
C.H Nx;x.0

C//5 � M�j .x; Nx/; 8j 2M. Nx/:

But v0 2Rm
C

and v0j D 0 for j 2N. Nx/, we obtain
mX
jD1

v0j .dhj /
C.H Nx;x.0

C//5 �
mX
jD1

v0j M�j .x; Nx/: (3.27)
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On adding (3.26), (3.27) and using
Pp
iD1�

0
i N�i .x; Nx/C

Pm
jD1 v

0
j M�j .x; Nx/= 0, we get

pP
iD1

�0i
�
.dfi /

C.H Nx;x.0
C//�u0i .dgi /

C.H Nx;x.0
C//

�
C

mX
jD1

v0j .dhj /
C.H Nx;x.0

C// < �

 
pX
iD1

�0i N�i .x; Nx/C

mX
jD1

v0j M�j .x; Nx/

!
5 0:

That is,
pP
iD1

�0i
�
.dfi /

C.H Nx;x.0
C//�u0i .dgi /

C.H Nx;x.0
C//

�
C

mX
jD1

v0j .dhj /
C.H Nx;x.0

C// < 0;

which contradicts (3.20). Thus Nx is a weak minimum to (VFP). �

4. DUALITY

We consider, for (VFP), a general Mond-Weir dual (FMWD) as

max 	.y;�;u;v/D u�vTI0
hI0
.y/e;

subject to
pX
iD1

�i
�
.dfi /

C.Hy;x.0
C//�ui .dgi /

C.Hy;x.0
C//

�
CvT .dh/C.Hy;x.0

C//= 0;

for all x 2X; (4.1)

fi .y/�uigi .y/= 0; for any i D 1;2; :::;p; (4.2)

vTIS
hIS

.y/= 0; .15 s 5 /; (4.3)

�T e D 1; �= 0; � 2Rp; (4.4)

u= 0; u 2Rp; v = 0; y 2X0; (4.5)

where e is p-tuple of 10s,  = 1, Is \ It D Ø for s ¤ t and
S
sD0 Is D f1;2; :::;mg;

vIs
D .vj /j2Is

and hIs
D .hj /j2Is

:

Let W denote the set of all feasible solutions to (FMWD). Also, we define the
following sets

AD f.�;u;v/ 2Rp �Rp �Rm W .y;�;u;v/ 2W for some y 2X0g

and for .�;u;v/ 2 A,

B.�;u;v/D
˚
y 2X0 W .y;�;u;v/ 2W

	
:
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We put B D
S
.�;u;v/2AB.�;u;v/ and note that B � X0. Also, we note that if

.y;�;u;v/ 2W then .�;u;v/ 2 A and y 2 B.�;u;v/.

Now we establish certain duality results between (VFP) and (FMWD). Assume
that f , g and h are right upper-Dini-derivative functions of x with respect to the arc
H on X:

Theorem 6 (Weak duality). Let x 2 X and .y;�;u;v/ 2W be feasible solutions

for (VFP) and (FMWD) respectively. Assume also that
pP
iD1

�i
�
fi .:/� uigi .:/

�
C

vTI0
hI0
.:/ is �-generalized-pseudo-right upper-Dini-derivative locally arcwise con-

nected at y on B.�;u;v/ and for 1 5 s 5 ; vTIs
hIs
.:/ are M�s-generalized-quasi-

right upper-Dini-derivative locally arcwise connected at y on B.�;u;v/, further
�.x;y/C

P
sD1 M�s.x;y/= 0. Then the following cannot hold:

fi .x/�uigi .x/5 vTI0
hI0
.y/ for any i D 1;2; :::;p; (4.6)

and
fi0.x/�ui0gi0.x/ < v

T
I0
hI0
.y/ for some i0 2 f1;2; :::;pg: (4.7)

Proof. Using the feasibility of x for (VFP) and of .y;�;u;v/ for (FMWD), we
have

vTIS
hIS

.x/5 vTIS
hIS

.y/; .15 s 5 /;

which by using M�s-generalized-quasi-right upper-Dini-derivative locally arcwise con-
nected of vTIs

hIs
.:/, for 15 s 5  at y on B.�;u;v/, we obtainX
j2Is

vj .dhj /
C.Hy;x.0

C//5 � M�s.x;y/; 15 s 5 : (4.8)

Now, we suppose to the contrary of the result of the theorem that (4.6) and (4.7)
holds. Then by (4.4), we get

pX
iD1

�i
�
fi .x/�uigi .x/

�
< vTI0

hI0
.y/: (4.9)

On the other hand, by using (4.2), (4.4), (4.5) and the feasibility of x for (VFP), we
have

vTI0
hI0
.x/5 05

pX
iD1

�i
�
fi .y/�uigi .y/

�
: (4.10)

Combining (4.9) and (4.10), we get
pX
iD1

�i
�
fi .x/�uigi .x/

�
CvTI0

hI0
.x/ <

pX
iD1

�i
�
fi .y/�uigi .y/

�
CvTI0

hI0
.y/;
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which by using �-generalized-pseudo-right upper-Dini-derivative locally arcwise con-

nected of
pP
iD1

�i
�
fi .:/�uigi .:/

�
CvTI0

hI0
.:/ at y on B.�;u;v/, we obtain

pP
iD1

�i
�
.dfi /

C.Hy;x.0
C//�ui .dgi /

C.Hy;x.0
C//

�
C

X
j2I0

vj .dhj /
C.Hy;x.0

C// < ��.x;y/:

Now, by (4.1) and �.x;y/C
P
sD1 M�s.x;y/= 0, we obtain

X
sD1

X
j2Is

vj .dhj /
C.Hy;x.0

C// > �.x;y/= �
X
sD1

M�s.x;y/:

That is,
X
sD1

X
j2Is

vj .dhj /
C.Hy;x.0

C// > �

X
sD1

M�s.x;y/;

which contradicts (4.8). Thus, the theorem is proved. �

Theorem 7 (Strong duality). Let Nx be a (local) weak minimum solution for (VFP).
Assume that the hypotheses of Theorem 2 hold. Then, there exist . N�0; Nu0; Nv0/ 2Rp �
Rp�Rm such that . Nx; N�0; Nu0; Nv0/ is feasible for dual (FMWD) and the two objectives
are equal. Also, if the weak duality Theorem 6 holds for all feasible solutions of
the problems (VFP) and (FMWD), then . Nx; N�0; Nu0; Nv0/ is a (local) weak minimum
solution of (FMWD).

Proof. Since Nx is a (local) weak minimum solution of (VFP) and all the assump-
tions of Theorem 2 are satisfied, therefore, there exist N�0 2Rp

C
; Nu0 2R

p
C

and Nv0 2Rm
C

such that

pX
iD1

N�0i
�
.dfi /

C.H Nx;x.0
C//� Nu0i .dgi /

C.H Nx;x.0
C//

�
C Nv0

T

.dh/C.H Nx;x.0
C//= 0;

for all x 2X0;

Nv0
T

h. Nx/D 0;
pX
iD1

N�0i D 1;

where Nu0i D fi . Nx/=gi . Nx/; i D 1;2; :::;p: Thus, . Nx; N�0; Nu0; Nv0/ is feasible for
(FMWD) and the two objectives are equal. The (local) weak minimum solution of
. Nx; N�0; Nu0; Nv0/ for (FMWD) follows from weak duality Theorem 6. This completes
the proof. �
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Theorem 8 (Strict converse duality). Let Nx and . Ny; N�; Nu; Nv/ be (local) weak min-
imum solutions for (VFP) and (FMWD), respectively such that Nu0i Dfi . Nx/=gi . Nx/; i D
1;2; :::;p and

pX
iD1

N�i
�
fi . Nx/� Nuigi . Nx/

�
5 NvTI0

hI0
. Ny/: (4.11)

Assume also that
pP
iD1

N�i
�
fi .:/� Nuigi .:/

�
C NvTI0

hI0
.:/ is strictly �-generalized pseudo-

right upper-Dini-derivative locally arcwise connected at Ny on B. N�; Nu; Nv/ and for 15
s5  , NvTIs

hIs
.:/ are M�s-generalized-quasi-right upper-Dini-derivative locally arcwise

connected at Ny on B. N�; Nu; Nv/, further the inequality �. Nx; Ny/C
P
sD1 M�s. Nx; Ny/ = 0

holds. Then Nx D Ny; that is, Ny is an efficient solution for (VFP).

Proof. Suppose that Nx ¤ Ny. Using the feasibility of Nx for (VFP) and of . Ny; N�; Nu; Nv/
for (FMWD), we have

NvTIS
hIS

. Nx/5 NvTIS
hIS

. Ny/; .15 s 5 /;

which by using M�s-generalized-quasi-right upper-Dini-derivative locally arcwise con-
nected of NvTIs

hIs
.:/, for 15 s 5  at Ny on B. N�; Nu; Nv/, we obtainX
j2Is

Nvj .dhj /
C.H Ny; Nx.0

C//5 � M�s. Nx; Ny/; 15 s 5 : (4.12)

Now, by (4.1) and (4.12), we get

05
pX
iD1

N�i
�
.dfi /

C.H Ny; Nx.0
C//� Nui .dgi /

C.H Ny; Nx.0
C//

�
C NvT .dh/C.H Ny; Nx.0

C//

D

pX
iD1

N�i
�
.dfi /

C.H Ny; Nx.0
C//� Nui .dgi /

C.H Ny; Nx.0
C//

�
C

X
j2I0

Nvj .dhj /
C.H Ny; Nx.0

C//

C

X
sD1

X
j2Is

Nvj .dhj /
C.H Ny; Nx.0

C//

5
pX
iD1

N�i
�
.dfi /

C.H Ny; Nx.0
C//� Nui .dgi /

C.H Ny; Nx.0
C//

�
C

X
j2I0

Nvj .dhj /
C.H Ny; Nx.0

C//

�

X
sD1

M�s. Nx; Ny/:
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Since, �. Nx; Ny/C
P
sD1 M�s. Nx; Ny/= 0, we have

pX
iD1

N�i
�
.dfi /

C.H Ny; Nx.0
C//� Nui .dgi /

C.H Ny; Nx.0
C//

�
C

X
j2I0

Nvj .dhj /
C.H Ny; Nx.0

C//= ��. Nx; Ny/;

which by using strictly �-generalized pseudo-right upper-Dini-derivative locally arc-

wise connected of
pP
iD1

N�i
�
fi .:/� Nuigi .:/

�
C NvTI0

hI0
.:/ at Ny on B. N�; Nu; Nv/, we obtain

pX
iD1

N�i
�
fi . Nx/� Nuigi . Nx/

�
C NvTI0

hI0
. Nx/ >

pX
iD1

N�i
�
fi . Ny/� Nuigi . Ny/

�
C NvTI0

hI0
. Ny/:

Using (4.2), (4.4), (4.5) and the feasibility of Nx for (VFP), the above inequality yields
pX
iD1

N�i
�
fi . Nx/� Nuigi . Nx/

�
> NvTI0

hI0
. Ny/;

which contradicts (4.11). Thus, the theorem is proved. �

5. CONCLUSION

In this paper, we established necessary and sufficient optimality conditions and
duality results for a class of multiobjective fractional programming problem under
generalized convexity using right-upper Dini derivative. The methods used here can
be extended to the study of nonsmooth variational and nonsmooth control problems,
which will orient the future research of the author.
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