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Abstract. In this paper algorithms are developed for computing the Stirling transform and the
inverse Stirling transform; specifically, we investigate a class of sequences satisfying a two-
term recurrence. We derive a general identity which generalizes the usual Stirling transform
and investigate the corresponding generating functions also. In addition, some interesting con-
sequences of these results related to classical sequences like Fibonacci, Bernoulli and the num-
bers of derangements have been derived.
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1. INTRODUCTION

The Stirling numbers arise frequently in mathematics, especially in enumerative
problems. This is the reason of their important role in combinatorial analysis, num-
ber theory, probability, graph theory, calculus of finite differences and interpolation.
The notations for these numbers have never been standardized, this paper follows
the notation of Riordan for the signed Stirling numbers of the first kind s .n;k/ and
Knuth’s notation for the Stirling numbers of the second kind

˚
n
k

	
.

The Stirling transform of a sequence .an/ is the the sequence .bn/ given by

bn D

nX
kD0

(
n

k

)
ak; (1.1)

and the inverse transform is

an D

nX
kD0

s .n;k/bk : (1.2)

The identity (1.1) has a combinatorial interpretation given in [2]. If an is the num-
ber of objects in some class with points labeled 1;2; : : : ;n (with all labels distinct)
then bn is the number of objects with points labeled 1;2; : : : ;n (with repetitions al-
lowed).
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In this paper algorithms are developed for computing the Stirling transform and the
inverse Stirling transform; specifically, we investigate a class of sequences satisfying
a two-term recurrence. We derive a general identity which generalizes the usual
Stirling transform and investigate the corresponding generating functions also.

Given a sequence am WD a0;m .m � 0/. We construct an infinite matrix S WD�
an;m

�
as follows:

The first row a0;m of the matrix is the initial sequence; the first column bn WD an;0

.n� 0/ is called the final sequence and, each entry an;m is given recursively by

anC1;m D an;mC1Cman;m: (1.3)

Conversely, if we start with the final sequence, the matrix S can be recovered by
the recursive relations

an;mC1 D anC1;m�man;m: (1.4)

2. DEFINITIONS AND NOTATION

In this section, we introduce some definitions and notations which are useful in the
rest of the paper. N being the set of positive integers and N0 DN[f0g :

The falling and rising factorials are defined, respectively by

.x/n D x .x�1/ � � �.x�nC1/ ; .x/0 D 1

and

hxin D x .xC1/ � � �.xCn�1/ ;hxi0 D 1:

The (signed) Stirling numbers s.n;k/ of the first kind, are usually defined by

.x/n D

nX
kD0

s .n;k/xk; (2.1)

or by the following generating function

1

kŠ
.ln.1Cx//k D

X
n�k

s .n;k/
xn

nŠ
: (2.2)

It follows from (2.1) or (2.2) that

s .nC1;k/D s .n;k�1/�n s .n;k/ (2.3)

and that

s.n;0/D ın;0 .n 2N/ ; s .n;k/D 0 .k > n or k < 0/;

where ın;m denotes the Kronecker symbol.
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The Stirling numbers
˚

n
k

	
of the second kind count the number of possible par-

titions of a set of n objects into k disjoint blocks. These numbers can be defined
explicitly by

xn
D

nX
kD0

(
n

k

)
.x/k :

For any positive r 2N the quantity
˚

n
k

	
r

denotes the number of partitions of a set
of n objects into exactly k nonempty, disjoint subsets, such that the first r elements
are in distinct subsets. These numbers obey the recurrence relation(

n

k

)
r

D 0; n < r;(
n

k

)
r

D ık;r ; nD r;(
n

k

)
r

D k

(
n�1

k

)
r

C

(
n�1

k�1

)
r

; n > r;

(2.4)

The exponential generating function is given by

X
n�k

(
nC r

kC r

)
r

xn

nŠ
D
1

kŠ
erx

�
ex
�1
�k
: (2.5)

The properties (
n

r

)
r

D rn�r

and (
nC r

kC r

)
r

D

(
nC r

kC r

)
r�1

� .r �1/

(
nC r �1

kC r

)
r�1

(2.6)

are given in [3], which one can consult for more details on r-Stirling numbers.

3. COMBINATORIAL IDENTITIES

Theorem 1. Given an initial sequence
�
a0;m

�
m�0

; define the matrix S by (1.3).
Then, the entries of the infinite matrix S are given by

an;m D

nX
kD0

(
nCm

kCm

)
m

a0;mCk : (3.1)
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Proof. We prove by induction on n, the result clearly holds for nD 0. By induction
hypothesis

an;mC1Cman;m D

nX
kD0

(
nCmC1

kCmC1

)
mC1

a0;mCkC1Cm

(
nCm

m

)
m

a0;m

Cm

n�1X
kD1

(
nCm

kCm

)
m

a0;mCk

D

nX
kD0

(
nCmC1

kCmC1

)
mC1

a0;mCkC1Cm

(
nCm

m

)
m

a0;m

Cm

n�2X
kD0

(
nCm

kCmC1

)
m

a0;mCkC1

D

(
nCmC1

nCmC1

)
mC1

a0;mCnC1C

(
nCmC1

nCm

)
mC1

a0;mCn

C

n�2X
kD0

(
nCmC1

kCmC1

)
mC1

a0;mCkC1

Cm

(
nCm

m

)
m

a0;mCm

n�2X
kD0

(
nCm

kCmC1

)
m

a0;mCkC1:

From (2.6) and after some rearrangements, we get

an;mC1Cman;m D

nC1X
kD0

(
nCmC1

kCm

)
m

a0;mCk :

D anC1;m:

�

Theorem 2. Given a final sequence
�
an;0

�
n�0

; define the matrix S by (1.4). Then,
the entries of the infinite matrix S are given by

an;m D

mX
kD0

s .m;k/anCk;0: (3.2)

Proof. We prove by induction on m, the result clearly holds for nD 0. By induc-
tion hypothesis and (2.3), we have

anC1;m�man;m D

mC1X
kD1

s .m;k�1/anCk;0�m

mX
kD0

s .m;k/anCk;0
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D s .m;m/anCmC1;0C

mX
kD1

s .m;k�1/anCk;0

�ms .m;0/an;0�m

mX
kD1

s .m;k/anCk;0

D s .m;m/anCmC1;0C

mX
kD1

.s .m;k�1/�ms .m;k//anCk;0

�ms .m;0/an;0

D an;mC1:

�

Corollary 1. For n;m 2N0, we have
mX

kD0

s .m;k/bnCk D

nX
kD0

(
nCm

kCm

)
m

amCk : (3.3)

The last identity can be viewed as the generalized Stirling transform which re-
duced, for mD 0; to the Stirling transform (1.1) of the sequence an, and for nD 0
reduces to the inverse Stirling transform (1.2) of the sequence bm. We may now for-
mulate the following algorithms

Algorithm 1. Stirling transform
Input: an

Output: bn

Set Xm D an�m;m

for nD 0;1; : : : do
Xn WD an

for mD n;n�1; : : : ;0 do
Xm�1 WD .m�1/Xm�1CXm

end do
bn WDX0

end do

Algorithm 2. inverse Stirling transform
Input: bm

Output: am

Set Yn D bn;m�n

for mD 0;1; : : : do
Ym WD bm

for nDm;m�1; : : : ;0 do
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Yn�1 WD Yn� .m�n/Yn�1

end do
am WD Y0

end do

Example 1. Setting a0;m D 1 in (3.3), we get the well known identity [7]
nX

kD0

(
nCm

kCm

)
m

D

mX
kD0

s .m;k/BnCk;

where Bn is the nth Bell number.

Example 2. Let .Fn/n2N0
be the Fibonacci sequence given by Binet’s formula

Fn D
1
p
5

�
˛n
�ˇn

�
;

where ˛ D 1C
p

5
2

and ˇ D 1�
p

5
2

. If the initial sequence

a0;m D
.�1/m
p
5
.h�˛im�h�ˇim/ ;

then we get the following matrix

S D

0BBBBBBBBBBBB@

0 1 0 1 �4 19 �108 � � �

1 1 1 �1 3 �13 71

1 2 1 0 �1 6 �37

2 3 2 �1 2 �7 34

3 5 3 �1 1 �1 �3

5 8 5 �2 3 �8 31

8 13 8 �3 4 �9 28

13 21 13 �5 7 �17 59
:::

1CCCCCCCCCCCCA
:

From this matrix we observe that an;0D an;2D�anC2;3DFn; and anC3;4DLn;

where .Ln/n2N0
the Lucas sequence given by Binet’s formula

Ln D ˛
n
Cˇn:

It is well known that the Fn and Ln are connected by the formula

Ln D Fn�1CFnC1; .n 2N/ :

By (3.3), one can deduce that

mX
kD0

s .m;k/FnCk D
1
p
5

nX
kD0

.�1/mCk

(
nCm

kCm

)
m

�
h�˛imCk �h�ˇimCk

�
;
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and by Theorem 2, we get

Fn D

2X
kD0

s .2;k/FnCk D�FnC1CFnC2

D�

3X
kD0

s .3;k/FnC2Ck D�2FnC3C3FnC4�FnC5;

and for n 2N0, we have

Corollary 2.

Ln D

4X
kD0

s .4;k/FnC3Ck D�6FnC4C11FnC5�6FnC6CFnC7:

By Theorem 1, one easily gets the following explicit formulas.

Corollary 3. For n 2N0, we have

Fn D
1
p
5

nX
kD0

.�1/k

(
n

k

)
.h�˛ik �h�ˇik/

D
1
p
5

nX
kD0

.�1/k

(
nC2

kC2

)
2

�
h�˛ikC2�h�ˇikC2

�
D

1
p
5

nC2X
kD0

.�1/k

(
nC5

kC3

)
3

�
h�˛ikC3�h�ˇikC3

�
and

Ln D
1
p
5

nC3X
kD0

.�1/k

(
nC7

kC4

)
4

�
h�˛ikC4�h�ˇikC4

�
:

4. GENERATING FUNCTION

Theorem 3. Suppose that the initial sequence a0;mCr has the following exponen-
tial generating functionAr .´/D

X
k�0

a0;kCr
´k

kŠ
: Then the sequence fan;rgn of the rth

columns of the matrix S has an exponential generating function Br .´/D
X
n�0

an;r
´n

nŠ

given by
Br .´/D e

r´Ar

�
e´
�1
�

(4.1)
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Proof. We have

Br .´/D
X
k�0

a0;rCk

X
n�0

(
nC r

kC r

)
r

´n

nŠ

D

X
k�0

a0;rCk

1

kŠ
er´

�
e´
�1
�k

D er´
X
k�0

a0;rCk

.e´�1/k

kŠ

D er´Ar

�
e´
�1
�
:

�

Theorem 4. Suppose that the final sequence anCr;0 has the following exponential
generating function Br .´/ D

X
k�0

akCr;0
´k

kŠ
: Then the sequence far;mgm of the rth

rows of the matrix S has an exponential generating function Ar .´/D
X
m�0

ar;m
´m

mŠ

given by

Ar .´/DBr .ln.1C´// : (4.2)

Proof. We have

Ar .´/D
X
k�0

arCk;0

X
m�0

s .m;k/
´m

mŠ

D

X
k�0

arCk;0

.ln.1C´//k

kŠ

DBr .ln.1C´// :

�

Example 3. A derangement on a set f1;2; : : : ;mg is a permutation � D i1i2 � � � im
such that ik ¤ k for k D 1;2; : : :m: The number of derangements on f1;2; : : : ;mg is
denoted by Dm and given by Dm D

h
mŠ
e

i
; where Œx� the nearest integer function.



GENERALIZED STIRLING TRANSFORM 685

Now, if the initial sequence a0;m D .�1/
mDm; then we get the following matrix

S D

0BBBBBBBB@

1 0 1 �2 9 �44 � � �

0 1 0 3 �8 45

1 1 3 1 13 �39

1 4 7 16 13 76

4 11 30 61 128 159

11 41 121 311 671 1381
:::

1CCCCCCCCA
The generating function of the sequence a0;m is A0.´/D

e´

1C´
. It follows from (4.1)

thatB0.´/D exp.e
´�´�1/, and we notice that an;0 is the number vn of partitions of

f1;2; : : : ;ng without singletons (see for instance [8]). By (3.3), one can then deduce
that

Corollary 4. For n;m 2N0, we have

mX
kD0

s .m;k/vnCk D

nX
kD0

.�1/mCk

(
nCm

kCm

)
m

DmCk :

If mD 0; we get the well-known identity (cf. [9], p.1569)

vn D

nX
kD0

.�1/k

(
n

k

)
Dk :

Example 4. The exponential generating function of the Bernoulli polynomials
Bn .x/ is

B0 .´/ WD
´ex´

e´�1
D

X
n�0

Bn .x/
´n

nŠ
:

By Theorem 4, we have

A0 .´/D
.1C´/x ln.1C´/

´
:

It is not difficult to show that�
´m
�
A0 .´/D

mX
iD0

.�1/m�i .x/i
m� iC1

;

where Œ´n�f .´/ denote the operation of extracting the coefficient of ´n in the formal
power series f .´/D

X
fn´

n. Now, let us consider S defined by (1.4) with the final
sequence an;0 D Bn .x/ ; by (3.3), we obtain the following corollary
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Corollary 5. For n;m 2N0, we have

mX
kD0

s .m;k/BnCk .x/D

nX
kD0

(
nCm

kCm

)
m

mCkX
iD0

.�1/mCk�i .x/i
mCk� iC1

: (4.3)

Notice that the Todorov theorem [10, Eq. 49] is obtained by setting nD 0 in (4.3).

Example 5. Catalan and Motzkin numbers naturally appear in a large number of
combinatorial objects. It is well known that the Catalan number Cn D

1
nC1

�
2n
n

�
and

Motzkin number Mn D

bn=2cX
kD0

1
kC1

�
n

2k

��
2k
k

�
are connected by [1]

CnC1 D

nX
kD0

 
n

k

!
Mk”Mn D

nX
kD0

.�1/n�k

 
n

k

!
CkC1:

Using the generalized Stirling transform, we can show that the Catalan numbers are
related to the Motzkin numbers in terms of Stirling numbers by

nX
kD0

s .n;k/Mk D

nC1X
kD0

s .nC1;k/Ck; (4.4)

and

Cn D ın;0C

nX
kD1

k�1X
iD0

(
n

k

)
s .k�1; i/Mi ”Mn D

nX
kD0

kC1X
iD0

(
n

k

)
s .kC1; i/Ci :

(4.5)
Setting the final sequence an;0 D Cn; we get the following matrix

S D

0BBBBBBBBBB@

1 1 1 1 0 1 �5 29 � � �

1 2 3 3 1 0 �1 7

2 5 9 10 4 �1 1 �1

5 14 28 34 15 �4 5 �11

14 42 90 117 56 �15 19 �42

42 132 297 407 209 �56 72 �160

132 429 1001 1430 780 �208 272 �614
:::

1CCCCCCCCCCA
:

Since

B0 .´/D
X
n�0

Cn
´n

nŠ
D 1F1

�
1=2

2
I4´

�
;
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where 1F1

�
p

q
I´

�
denotes the Kummer confluent hypergeometric function defined

by X
n�0

hpin
hqin

´n

nŠ
:

It follows from (4.2) that

A0 .´/D
X
n�0

Rn
´n

nŠ
D 1F1

�
1=2

2
I4 ln.1C´/

�
and

mX
kD0

s .m;k/CnCk D

nX
kD0

(
nCm

kCm

)
m

RmCk : (4.6)

Now, if the initial sequence a0;m DRmC1; we get the following matrix

T D

0BBBBBBBBBB@

1 1 1 0 1 �5 29 �196 � � �

1 2 2 1 �1 4 �22 146

2 4 5 2 0 �2 14 �100

4 9 12 6 �2 4 �16 93

9 21 30 16 �4 4 �3 �26

21 51 76 44 �12 17 �44 172

51 127 196 120 �31 41 �92 282
:::

1CCCCCCCCCCA
:

From this matrix we observe that an;0 DMn: We prove this observation using gen-
erating functions. We have

A0 .´/D
X
n�0

RnC1
´n

nŠ

D
d

d´

0@X
n�0

Rn
´n

nŠ

1A
D

1

1C´
1F1

�
3=2

3
I4 ln.1C´/

�
:

From (4.1), we get

B0 .´/D 1F1

�
3=2

3
I4´

�
e�´

D
d

d´

0@X
n�0

Cn
´n

nŠ

1AX
n�0

.�1/n
´n

nŠ
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D

X
n�0

 
nX

kD0

.�1/n�k

 
n

k

!
CkC1

!
´n

nŠ

D

X
n�0

Mn
´n

nŠ
:

It follows
mX

kD0

s .m;k/MnCk D

nX
kD0

(
nCm

kCm

)
m

RmCkC1: (4.7)

Combining results (4.6) and (4.7) gives (4.4) and (4.5).

5. HANKEL TRANSFORM

The Hankel transform of a sequence ˛n is the sequence of Hankel determinants
det
�
˛iCj

�
0�i;j�n

. A number of methods for computing the Hankel determinants
have been widely investigated [4, 5]. It is well known that the Hankel transform of
sequences ˛n and ˇn are equal under the binomial transform [6]

ˇn D

nX
kD0

 
n

k

!
˛k :

A natural question arises: ”What about the Hankel transform of the sequences an

and bn under the Stirling transform?” In this section we show that there is a connec-
tion between the generalized Stirling transform and the Hankel determinants.

Theorem 5. For n 2 N0, we consider a matrix .ai;j /0�i;j�n of order n arising
from (1.3) with initial sequence a0;j and the final sequence bi WD ai;0, then

det
�
ai;j

�
0�i;j�n

D det
�
biCj

�
0�i;j�n

;

where det
�
biCj

�
0�i;j�n

is the Hankel transform of the sequence .bi /.

Proof. We can write

det
�
biCj

�
0�i ;j�n

D

ˇ̌̌̌
ˇ̌̌̌
ˇ
a0;0 a1;0 a2;0 a3;0 � � � an;0

a1;0 a2;0 a3;0 a4;0 � � � anC1;0
:::

:::
:::

: : :
:::

an;0 anC1;0 anC2;0 anC3;0 � � � a2n;0

ˇ̌̌̌
ˇ̌̌̌
ˇ ;

after applying (1.4), the determinant is unchanged

det
�
biCj

�
0�i ;j�n

D



GENERALIZED STIRLING TRANSFORM 689ˇ̌̌̌
ˇ̌̌̌
ˇ
a0;0 a1;0 a2;0�a1;0 a3;0�a2;0�2

�
a2;0�a1;0

�
� � �

a1;0 a2;0 a3;0�a2;0 a4;0�a3;0�2
�
a3;0�a2;0

�
� � �

:::
:::

:::
:::

an;0 anC1;0 anC2;0�anC1;0 anC3;0�anC1;0�2
�
anC2;0�anC1;0

�
� � �

ˇ̌̌̌
ˇ̌̌̌
ˇ :

Using (3.2), we get

det
�
biCj

�
0�i ;j�n

D

ˇ̌̌̌
ˇ̌̌̌
ˇ
a0;0 a0;1 a0;2 a0;3 � � � a0;n

a1;0 a1;1 a1;2 a1;3 � � � a1;n
:::

:::
:::

: : :

an;0 an;1 an;2 an;3 an;n

ˇ̌̌̌
ˇ̌̌̌
ˇ ;

from which the relation follows. �

The answer to the previous question is given in the following

Corollary 6. For n 2N0; we have

det
�
biCj

�
0�i;j�n

D det

0@ iX
kD0

(
iCj

kCj

)
j

akCj

1A
0�i;j�n

:
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