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Abstract. In this paper, we investigate the global stability of a virus infection model with humoral
immune response and distributed intracellular delays. The incidence rate of infection is given by
general functional response. The model has two types of distributed time delays which describe
the time needed for infection of uninfected cell and virus replication. Lyapunov functionals are
constructed and LaSalle’s invariance principle is used to establish the global asymptotic stability
of all steady states of the model. We have proven that, if the basic reproduction number R0 is
less than or equal unity, then the uninfected steady state is globally asymptotically stable (GAS),
and if the humoral immune response reproduction number R1 is less than or equal unity and
R0 > 1, then the infected steady state without humoral immune response exists and it is GAS,
and if R1 > 1, then the infected steady state with humoral immune response exists and it is GAS.
Numerical simulations have been carried out with a specific form of the incidence rate function.
We have shown that, both the numerical and theoretical results are consistent.
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1. INTRODUCTION

Recently, several mathematical models have been proposed and developed to un-
derstand the interaction of virus and target cells, such as human immunodeficiency
virus (HIV) (see [3,4,6–11,13,15,16,23,25,26,29,31,32]), hepatitis B virus (HBV)
[21,28,33], hepatitis C virus (HCV) [27] and [38] and human T cell leukemia HTLV
[22], etc. Mathematical modeling and model analysis of the viral infection process
are helpful for estimating key parameter values, and guiding development efficient
anti-viral drug therapies. Immunity is a biological term that describes a state of
having sufficient biological defenses to avoid infection, disease or other unwanted
biological invasion. Humoral immunity is the aspect of immunity that is mediated
by secreted antibodies. In malaria infection, the humoral immunity is more effect-
ive than cell-mediated immunity [5]. Mathematical models for virus dynamics with
humoral immune response have been developed in [1, 2, 12, 14, 19, 24, 30, 34, 36].
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The basic virus dynamics model with humoral immune response was introduced by
Murase et. al. [24] as:

Px.t/D ��dx.t/�ˇx.t/v.t/; (1.1)

Py.t/D ˇx.t/v.t/�ay.t/; (1.2)

Pv.t/DNay.t/� cv.t/�qv.t/´.t/; (1.3)

Ṕ.t/D rv.t/´.t/��´.t/; (1.4)

where x.t/, y.t/, v.t/ and ´.t/ represent the populations of uninfected cells, infected
cells, virus and B cells at time t , respectively; � is the rate at which new uninfected
cells are generated from the body; d is the natural death rate constant of uninfected
cells; ˇ is the infection rate constant; N is the number of free viruses produced dur-
ing the average infected cell life span; a is the death rate constant of infected cells;
c is the clearance rate constant of the virus particles; r and � are the proliferation
rate and death rate constants of B cells; q is the B cells neutralize rate. Note that the
forenamed system (1.1)-(1.4) does not contain an intracellular time delay between
the infection of a cell and the production of new virus particles, despite the fact that
intracellular delay actually exists (see e.g. [4, 6, 7, 9–11, 13, 15, 16, 23]). Further, the
infection rate is assumed to be bilinear in x and v; but many researches suggested that
the bilinear incidence rate associated with the mass action principle is insufficient to
describe the infection process in detail (see e.g. [18, 20]). Thus, it is reasonable
to assume that the infection rate is given by nonlinear incidence rate. The incid-
ence rate has been considered in the viral infection models with humoral immune
response by different forms as: saturated incidence rate, ˇxv

1C˛v
where ˛ � 0 [12, 36],

Beddington-DeAngelis functional response, ˇxv
1CxC˛v

, ˛; � 0 [14,37], and general
form, ˚.x;v/v [35]. In [35], model with discrete time delay has been investigated.

In this paper, we propose a virus infection model with humoral immune response
and with general incidence rate. We incorporate two types of distributed delays into
this model to account the time delay between the time that target cells are contac-
ted by the virus particles and the time the emission of infectious (matures) virus
particles. The global stability of this model is established using Lyapunov function-
als and LaSalle’s invariance principle. We prove that the global dynamics of this
model is determined by the basic reproduction number R0 and humoral immune
response reproduction number R1. If R0 � 1, then the uninfected steady state is
globally asymptotically stable (GAS), if R1 � 1 < R0, then the infected steady state
without humoral immune response exists and it is GAS, and ifR1 >1; then the infec-
ted steady state with humoral response exists and it is GAS. Numerical simulations
is carried out to confirm our theoretical results.
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2. THE MODEL

In this section, we propose a mathematical model of virus infection which de-
scribes the interaction of the virus with target cells, taking into account the humoral
immune response.

Px.t/D ��dx.t/�˚.x.t/;v.t//v.t/; (2.1)

Py.t/D

hZ
0

f .�/e�m�˚.x.t � �/;v.t � �//v.t � �/d� �ay.t/; (2.2)

Pv.t/DNa

!Z
0

g.�/e�n�y.t � �/d� � cv.t/�qv.t/´.t/; (2.3)

Ṕ.t/D rv.t/´.t/��´.t/: (2.4)

All the variables and parameters of the model have the same meanings as given in
section 1. To account for the time lag between viral contacting an uninfected cell
and the production of new virus particles, two distributed intracellular delays are
introduced. It assumed that the uninfected cells are contacted by the virus particles
at time t � � become infected cells at time t; where � is a random variable with a
probability distribution f .�/ over the interval Œ0;h� and h is limit superior of this
delay. The factor e�m� account for the probability of surviving the time period of
delay, where m is the death rate of infected cells but not yet virus producer cells.
On the other hand, it is assumed that, a cell infected at time t � � starts to yield new
infectious virus at time t where � is distributed according to a probability distribution
g.�/ over the interval Œ0;!� and ! is limit superior of this delay. The factor e�n�

account for the probability of surviving the time period of delay, where n is a constant.
The incidence rate is given by a general function ˚.x;v/v where ˚ 2 C 1 .Œ0;1/�
Œ0;1/;R/ and satisfies the following assumptions [35]:

Assumption A1. ˚.x;v/ > 0 for all x > 0, v > 0, and ˚.0;v/D 0.

Assumption A2.
@˚.x;v/

@x
> 0 for all x > 0 and v > 0:

Assumption A3.
@˚.x;v/

@v
< 0 for all x > 0 and v > 0:

Assumption A4.
@.˚.x;v/v/

@v
> 0 for all x > 0 and v > 0:

The probability distribution functions f .�/ and g.�/ are assumed to satisfy f .�/>
0 and g.�/ > 0; and

hZ
0

f .�/d� D

!Z
0

g.�/d� D 1;

hZ
0

f .u/esudu <1;

!Z
0

g.u/esudu <1;
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where s is a positive number. Then

0 <

hZ
0

f .�/e�m�d� � 1; 0 <

!Z
0

g.�/e�n�d� � 1; m;n� 0.

Let us denote:

F D

hZ
0

f .�/e�m�d�; G D

!Z
0

g.�/e�n�d� .

The initial conditions for system (2.1)-(2.4) take the form

x.�/D '1.�/; y.�/D '2.�/;

v.�/D '3.�/; ´.�/D '4.�/;

'j .�/� 0; � 2 Œ��;0/; j D 1; :::;4; (2.5)

'j .0/ > 0; j D 1; :::;4;

where � D maxfh;!g; .'1.�/;'2.�/;'3.�/;'4.�// 2 C.Œ��;0�;R4
C
/; where

C.Œ��;0�;R4
C
/ is the Banach space of continuous functions mapping the interval

Œ��;0� into R4
C

. By the fundamental theory of functional differential equations [17],
system (2.1)-(2.4) has a unique solution satisfying the initial conditions (2.5).

2.1. Non-negativity and boundedness of solutions

In the following, we establish the non-negativity and boundedness of solutions of
(2.1)-(2.4) with initial conditions (2.5).

Proposition 1. Assume that Assumption A1 is satisfied. Let .x.t/;y.t/;v.t/;´.t//
be any solution of (2.1)-(2.4) satisfying the initial conditions (2.5), then x.t/;y.t/;v.t/
and ´.t/ are all non-negative for t � 0 and ultimately bounded.

Proof. First, we prove that x.t/ > 0 for all t � 0. Assume that x.t/ loses its non-
negativity on some local existence interval Œ0;`� for some constant ` and let t1 2 Œ0;`�
be such that x.t1/D 0. From Eq. (2.1) we have Px.t1/D � > 0. Hence, x.t/ > 0 for
some t 2 .t1; t1C "/ where " > 0 is sufficiently small. This leads to contradiction and
hence x.t/ > 0, for all t � 0: Now from Eqs. (2.2)-(2.4) we have

y.t/D y.0/e�at C

tZ
0

e�a.t��/
hZ
0

f .�/e�m�˚.x.�� �/;v.�� �//v.�� �/d�d�;

v.t/D v.0/e�
R t
0 .cCq´.�//d�CNa

tZ
0

e�
R t
� .cCq´.�//d�

!Z
0

g.�/e�n�y.�� �/d�d�;
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´.t/D ´.0/e�
R t
0 .��rv.�//d� ;

confirming that y.t/ � 0, v.t/ � 0 and ´.t/ � 0 for all t 2 Œ0;��. By a recursive
argument, we obtain y.t/� 0;v.t/� 0 and ´.t/� 0 for all t � 0:

Next we show the boundedness of the solutions of the system. From Eq. (2.1)

we have Px.t/� ��dx.t/ and thus limsupt!1x.t/�
�
d

. Let X1.t/D
hR
0

f .�/e�m�

x.t � �/d�Cy.t/, then

PX1.t/D

hZ
0

f .�/e�m� .��dx.t � �/�˚.x.t � �/;v.t � �//v.t � �//d�

C

hZ
0

f .�/e�m�˚.x.t � �/;v.t � �//v.t � �/d� �ay.t/;

D �

hZ
0

f .�/e�m�d� �d

hZ
0

f .�/e�m�x.t � �/d� �ay.t/

� �

hZ
0

f .�/e�m�d� ��1

24 hZ
0

f .�/e�m�x.t � �/d�Cy.t/

35
D �

hZ
0

f .�/e�m�d� ��1X1.t/� ���1X1.t/;

where �1 D minfd;ag. Hence limsupt!1X1.t/ � L1, where L1 D
�

�1
. Since

hR
0

f .�/e�m�x.t � �/d� > 0, then limsupt!1y.t/ � L1. On the other hand, let

X2.t/D v.t/C
q
r
´.t/, then

PX2.t/DNa

!Z
0

g.�/e�n�y.t � �/d� � cv.t/�
q�

r
´.t/

�NaL1

!Z
0

g.�/e�n�d� ��2.v.t/C
q

r
´.t//
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DNaL1

!Z
0

g.�/e�n�d� ��2X2.t/�NaL1��2X2.t/;

where �2 D minfc;�g. Hence limsupt!1X2.t/ � L2, where L2 D
NaL1

�2
. Since

v.t/� 0 and y.t/� 0, then limsupt!1 v.t/�L2 and limsupt!1´.t/�L3, where
L3 D

r
q
L2. Therefore, x.t/;y.t/;v.t/ and ´.t/ are ultimately bounded. �

2.2. Steady states

We define the basic reproduction number for system (2.1)-(2.4) as

R0 D
NFG˚.x0;0/

c
;

where x0 D �=d . To calculate the steady state, we let the right-hand side of Eqs.
(2.1)-(2.4) be zero:

��dx�˚.x;v/v D 0; (2.6)

F˚.x;v/v�ay D 0; (2.7)
NaGy� cv�qv´D 0; (2.8)

rv´��´D 0: (2.9)

From (2.9), either ´D 0 or ´¤ 0. If ´D 0, then from (2.6)-(2.8) we get

y D
F.��dx/

a
D

c

NaG
v; v D

NFG.��dx/

c
: (2.10)

Substituting from (2.10) into (2.7) we get:�
˚

�
x;
NFG.��dx/

c

�
�

c

NFG

�
v D 0: (2.11)

Eq. (2.11) has two possible solutions v D 0 or v ¤ 0. If v D 0; then from Eqs.
(2.6) and (2.7), we get x D x0 and y D 0 which leads to the uninfected steady state
E0.x0;0;0;0/. If v ¤ 0; then we have

˚

�
x;
NFG.��dx/

c

�
�

c

NFG
D 0:

Let

M .x/D ˚

�
x;
NFG.��dx/

c

�
�

c

NFG
:

From Assumptions A1 and A2, function M.x/ is strictly increasing with respect
to x. Moreover, M.0/ D ˚.0; NFG�

c
/� c

NFG
D �

c
NFG

< 0. Also, M.x0/ D
˚.x0;0/�

c
NFG

D
c

NFG
.R0 � 1/: Therefore, if R0 > 1; then there exist a unique

x1 2 .0;x0/ such that M.x1/ D 0. From Eq. (2.10) we obtain y1 > 0 and v1 > 0.
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It follows that, if R0 > 1, then there is an infected steady state without immune re-
sponse E1.x1;y1;v1;0/.
The other possibility of Eq. (2.9) ´¤ 0 leads to

v2 D
�

r
; y2 D

F˚.x2;v2/v2

a
; ´2 D

NFG˚.x2;v2/

q
�
c

q
:

Let
M1.x/D ��dx�˚.x;v2/v2:

From Assumptions A1 and A2, function M1 is strictly decreasing with respect to x.
We have also M1.0/D � > 0 and M1.x0/D �˚.x0;v2/v2 < 0. Thus, there exist a
unique x2 2 .0;x0/ such that M1.x2/D 0. Now we are ready to define the humoral
immune response reproduction number as:

R1 D
NFG˚.x2;v2/

c
:

Hence, ´2 cab be rewritten as ´2 D
c

q
.R1�1/. It follows that, if R1 > 1, then there

is an infected steady state with immune response E2.x2;y2;v2;´2/.
From above we have the following result.

Lemma 1. Assume that Assumptions A1 and A2 are satisfied and
(i) if R0 � 1; then there exists only one positive steady state E0,
(ii) if R0 > 1; then there exist two positive steady states E0 and E1, and
(iii) if R1 > 1; then there exist three positive steady states E0, E1 and E2.

2.3. Global stability

In this section, we prove the global stability of the steady states of system (2.1)-
(2.4) employing the method of Lyapunov functional and LaSalle’s invariance prin-
ciple. Next we shall use the following notation: u D u.t/, for any u 2 fx;y;v;´g.
Throughout the paper, we let

H.u/D u�1� lnu:

whereH W .0;1/! Œ0;1/,H.u/� 0 for any u> 0 andH has the global minimum
H.1/D 0.

Theorem 1. If Assumptions A1-A3 hold true and R0 � 1; then E0 is GAS.

Proof. Define a Lyapunov functional W0 as follows:

W0 DNFG

�
x�x0�

Z x

x0

˚.x0;0/

˚.�;0/
d�C

1

F
y

C
1

F

hZ
0

f .�/e�m�
�Z
0

˚.x.t ��/;v.t ��//v.t ��/d�d�
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C
a

FG

!Z
0

g.�/e�n�
�Z
0

y.t ��/d�d�

35CvC q
r
´: (2.12)

The time derivative of W0 along the trajectories of (2.1)-(2.4) satisfies

dW0

dt
DNFG

��
1�

˚.x0;0/

˚.x;0/

�
.��dx�˚.x;v/v/

C
1

F

hZ
0

f .�/e�m�˚.x.t � �/;v.t � �//v.t � �/d� �
a

F
y

C
1

F

hZ
0

f .�/e�m� .˚.x;v/v�˚.x.t � �/;v.t � �//v.t � �//d�

C
a

FG

!Z
0

g.�/e�n� .y�y.t � �//d�

35
CNa

!Z
0

g.�/e�n�y.t � �/d� � cv�qv´Cqv´�
q�

r
´;

D
NFGd

˚.x;0/
.x0�x/.˚.x;0/�˚.x0;0//

C

�
NFG˚.x;v/

˚.x0;0/

˚.x;0/
� c

�
v�

q�

r
´;

D
NFGd

˚.x;0/
.x0�x/.˚.x;0/�˚.x0;0//C c

�
R0
˚.x;v/

˚.x;0/
�1

�
v�

q�

r
´:

(2.13)

From Assumptions A2-A3 we have

.x0�x/.˚.x;0/�˚.x0;0//� 0; x 2 .0;x0�;

˚.x;v/� ˚.x;0/, x;v > 0

Therefore, if R0 � 1, we get R0
˚.x;v/
˚.x;0/

� 1 and then dW0
dt
� 0 for all x;v;´ > 0.

By Theorem 5.3.1 in [17], the solutions of system (2.1)-(2.4) limit to M , the largest
invariant subset of

n
dW0
dt
D 0

o
. Clearly, it follows from (2.13) that dW0

dt
D 0 if and

only if x D x0, v D 0 and ´D 0. Noting that M is invariant, for each element of M
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we have v D 0, and ´D 0; then Pv D 0. From Eq. (2.3) we drive that

0D Pv DNa

!Z
0

g.�/e�n�y.t � �/d�:

This yields y D 0. Hence dW0
dt
D 0 if and only if x D x0, y D 0, v D 0 and ´D 0.

From LaSalle’s invariance principle, E0 is GAS. �

Theorem 2. If Assumptions A1-A4 hold true and R1 � 1 < R0, then E1 is GAS.

Proof. We construct the following Lyapunov functional

W1 DNFG

�
x�x1�

Z x

x1

˚.x1;v1/

˚.�;v1/
d�C

1

F
y1H

�
y

y1

�

C
˚.x1;v1/v1

F

hZ
0

f .�/e�m�
�Z
0

H

�
˚ .x.t ��/;v.t ��//v.t ��/

˚.x1;v1/v1

�
d�d�

C
ay1

FG

!Z
0

g.�/e�n�
�Z
0

H

�
y.t ��/

y1

�
d�d�

35Cv1H �
v

v1

�
C
q

r
´: (2.14)

The time derivative of W1 along the trajectories of (2.1)-(2.4) is given by

dW1

dt
DNFG

��
1�

˚.x1;v1/

˚.x;v1/

�
.��dx�˚.x;v/v/

C
1

F

�
1�

y1

y

�0@ hZ
0

f .�/e�m�˚.x.t � �/;v.t � �//v.t � �/d� �ay

1A
C
1

F

hZ
0

f .�/e�m� .˚.x;v/v�˚.x.t � �/;v.t � �//v.t � �/

C˚.x1;v1/v1 ln
�
˚.x.t � �/;v.t � �//v.t � �/

˚.x;v/v

��
d�

C
a

FG

!Z
0

g.�/e�n�
�
y�y.t � �/Cy1 ln

�
y.t � �/

y

��
d�

35
C

�
1�

v1

v

�0@Na !Z
0

g.�/e�n�y.t � �/d� � cv�qv´

1ACqv´� q�
r
´:

(2.15)
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Using the steady state conditions for E1:

�D dx1C
a

F
y1; F˚.x1;v1/v1 D ay1; cv1 DNaGy1;

we have

dW1

dt
DNFG

�
d.x1�x/

�
1�

˚.x1;v1/

˚.x;v1/

�
C
a

F
y1

�
a

F
y1
˚.x1;v1/

˚.x;v1/
C
a

F
y1

˚.x;v/v

˚.x;v1/v1

�
a

F 2
y1

hZ
0

f .�/e�m�
y1˚.x.t � �/;v.t � �//v.t � �/

y˚.x1;v1/v1
d�C

a

F
y1

C
a

F 2
y1

hZ
0

f .�/e�m� ln
�
˚.x.t � �/;v.t � �//v.t � �/

˚.x;v/v

�
d�

C
ay1

FG

!Z
0

g.�/e�n� ln
�
y.t � �/

y

�
d� �

ay1

FG

!Z
0

g.�/e�n�
v1y.t � �/

vy1
d�

�
a

F
y1
v

v1
C
a

F
y1

�
Cq

�
v1�

�

r

�
´: (2.16)

Using the following equalities:

ln
�
˚.x.t � �/;v.t � �//v.t � �/

˚.x;v/v

�
D ln

�
y1˚.x.t � �/;v.t � �//v.t � �/

y˚.x1;v1/v1

�
C ln

�
˚.x1;v1/

˚.x;v1/

�
C ln

�
˚.x;v1/

˚.x;v/

�
C ln

�
v1y

vy1

�
;

ln
�
y.t � �/

y

�
D ln

�
vy1

v1y

�
C ln

�
v1y.t � �/

vy1

�
;

we obtain
dW1

dt
DNFG

�
d.x1�x/

�
1�

˚.x1;v1/

˚.x;v1/

�
�
ay1

F

�
˚.x1;v1/

˚.x;v1/
�1� ln

�
˚.x1;v1/

˚.x;v1/

��
C
ay1

F

�
˚.x;v/v

˚.x;v1/v1
�
v

v1
C
˚.x;v1/

˚.x;v/
�1

�
�
ay1

F

�
˚.x;v1/

˚.x;v/
�1� ln

�
˚.x;v1/

˚.x;v/

��

�
ay1

F 2

hZ
0

f .�/e�m�
�
y1˚.x.t � �/;v.t � �//v.t � �/

y˚.x1;v1/v1
�1
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� ln
�
y1˚.x.t � �/;v.t � �//v.t � �/

y˚.x1;v1/v1

��
d�

�
ay1

FG

!Z
0

g.�/e�n�
�
v1y.t � �/

vy1
�1� ln

�
v1y.t � �/

vy1

��
d�

35Cq�v1� �
r

�
´:

(2.17)

Eq. (2.17) can be rewritten as:

dW1

dt
DNFG

�
d

˚.x;v1/
.x1�x/.˚.x;v1/�˚.x1;v1//

C
˚.x1;v1/

˚.x;v/˚.x;v1/
.˚.x;v/�˚.x;v1//.˚.x;v/v�˚.x;v1/v1/

�
ay1

F
H

�
˚.x1;v1/

˚.x;v1/

�
�
ay1

F
H

�
˚.x;v1/

˚.x;v/

�

�
ay1

F 2

hZ
0

f .�/e�m�H

�
y1˚.x.t � �/;v.t � �//v.t � �/

y˚.x1;v1/v1

�
d�

�
ay1

FG

!Z
0

g.�/e�n�H

�
v1y.t � �/

vy1

�
d�

35
Cq´

�
v1�

�

r

�
: (2.18)

From Assumptions A3-A4, we have

.x1�x/.˚.x;v1/�˚.x1;v1//� 0;

.˚.x;v/�˚.x;v1//.˚.x;v/v�˚.x;v1/v1/� 0:

Now we show that if R1 � 1 then v1 �
�
r
D v2. Let R0 > 1, then we want to show

that
sgn.x2�x1/D sgn.v1�v2/D sgn.R1�1/ :

From Assumptions A2-A4, for x1;x2;v1;v2 > 0, we have:

.˚.x2;v1/�˚.x1;v1//.x2�x1/ > 0; (2.19)

.˚.x2;v2/v2�˚.x2;v1/v1/.v2�v1/ > 0; (2.20)

.˚.x2;v2/�˚.x2;v1//.v1�v2/ > 0: (2.21)
Suppose that, sgn.x2�x1/ D sgn.v2�v1/. Using the conditions of the steady
states E1 and E2 we have

.��dx2/� .��dx1/D ˚.x2;v2/v2�˚.x1;v1/v1

D ˚.x2;v2/v2�˚.x2;v1/v1C Œ˚.x2;v1/�˚.x1;v1/�v1;
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but
Œ.��dx2/� .��dx1/� .x1�x2/D d .x2�x1/

2 > 0: (2.22)

Then from (2.19) and (2.20) we get:

sgn.x1�x2/D sgn.x2�x1/ ;

which leads to contradiction. Thus, sgn.x2�x1/D sgn.v1�v2/ : Using the steady
state conditions for E1 we have NFG˚.x1;v1/

c
D 1, then

R1�1D
NFG

c
.˚.x2;v2/�˚.x1;v1//

D
NFG

c
.˚.x2;v2/�˚.x2;v1/C˚.x2;v1/�˚.x1;v1//

D
NFG

c
Œ˚.x2;v2/�˚.x2;v1/C˚.x2;v1/�˚.x1;v1/� :

From (2.19) and (2.21), we get

sgn.R1�1/D sgn.v1�v2/ :

Hence, if R0 > 1; then x1;y1;v1 > 0, and if R1 � 1, then v1 � v2 D
�
r

and dW1
dt
� 0

for all x;y;v;´ > 0. By Theorem 5.3.1 in [17], the solutions of system (2.1)-(2.4)
limit to M , the largest invariant subset of

n
dW1
dt
D 0

o
. It can be seen that dW1

dt
D 0 if

and only if x D x1;v D v1; ´D 0 and H D 0 i.e.

y1˚.x.t � �/;v.t � �//v.t � �/

y˚.x1;v1/v1
D
v1y.t � �/

vy1
D 1 for almost all � 2 Œ0;��: (2.23)

From Eq. (2.23), if vD v1 then y D y1 and hence dW1
dt

equal to zero atE1. LaSalle’s
invariance principle implies global stability of E1. �

Theorem 3. If Assumptions A1-A4 hold true and R1 > 1, then E2 is GAS.

Proof. We construct the following Lyapunov functional

W2 DNFG

�
x�x2�

Z x

x2

˚.x2;v2/

˚.�;v2/
d�C

1

F
y2H

�
y

y2

�

C
˚.x2;v2/v2

F

hZ
0

f .�/e�m�
�Z
0

H

�
˚ .x.t ��/;v.t ��//v.t ��/

˚.x2;v2/v2

�
d�d�

C
ay2

FG

!Z
0

g.�/e�n�
�Z
0

H

�
y.t ��/

y2

�
d�d�

35Cv2H �
v

v2

�
C
q

r
´2H

�
´

´2

�
:

(2.24)
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Calculating the time derivative of W2 along the solution of (2.1)-(2.4) we obtain

dW2

dt
DNFG

��
1�

˚.x2;v2/

˚.x;v2/

�
.��dx�˚.x;v/v/

C
1

F

�
1�

y2

y

�0@ hZ
0

f .�/e�m�˚.x.t � �/;v.t � �//v.t � �/d� �ay

1A
C
1

F

hZ
0

f .�/e�m� .˚.x;v/v�˚.x.t � �/;v.t � �//v.t � �/

C˚.x2;v2/v2 ln
�
˚.x.t � �/;v.t � �//v.t � �/

˚.x;v/v

��
d�

C
a

FG

!Z
0

g.�/e�n�
�
y�y.t � �/Cy2 ln

�
y.t � �/

y

��
d�

35
C

�
1�

v2

v

�0@Na !Z
0

g.�/e�n�y.t � �/d� � cv�qv´

1A
C

�
1�

´2

´

��
qv´�

q�

r
´
�
: (2.25)

Applying �D dx2C˚.x2;v2/v2 we obtain

dW2

dt
DNFG

�
d.x2�x/

�
1�

˚.x2;v2/

˚.x;v2/

�
C˚.x2;v2/v2�˚.x2;v2/v2

˚.x2;v2/

˚.x;v2/

C˚.x;v/v
˚.x2;v2/

˚.x;v2/

�
1

F
˚.x2;v2/v2

hZ
0

f .�/e�m�
y2˚.x.t � �/;v.t � �//v.t � �/

y˚.x2;v2/v2
d�C

a

F
y2

C
1

F
˚.x2;v2/v2

hZ
0

f .�/e�m� ln
�
˚.x.t � �/;v.t � �//v.t � �/

˚.x;v/v

�
d�

C
ay2

FG

!Z
0

g.�/e�n� ln
�
y.t � �/

y

�
d� �

ay2

FG

!Z
0

g.�/e�n�
v2y.t � �/

vy2
d�

35
� cvC cv2Cqv2´�qv´2�

q�

r
´C

q�

r
´2: (2.26)
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Using the steady state conditions of E2

F˚.x2;v2/v2 D ay2; cv2 D NaGy2�qv2´2; �D rv2;

and the following equalities:

cv D cv2
v

v2
DNFG

�
a

F
y2
v

v2

�
�qv´2;

ln
�
˚.x.t � �/;v.t � �//v.t � �/

˚.x;v/v

�
D ln

�
y2˚.x.t � �/;v.t � �//v.t � �/

y˚.x2;v2/v2

�
C ln

�
˚.x2;v2/

˚.x;v2/

�
C ln

�
˚.x;v2/

˚.x;v/

�
C ln

�
v2y

vy2

�
;

ln
�
y.t � �/

y

�
D ln

�
vy2

v2y

�
C ln

�
v2y.t � �/

vy2

�
;

we obtain
dW2

dt
DNFG

�
d.x2�x/

�
1�

˚.x2;v2/

˚.x;v2/

�
�
ay2

F

�
˚.x2;v2/

˚.x;v2/
�1� ln

�
˚.x2;v2/

˚.x;v2/

��

�
ay2

F 2

hZ
0

f .�/e�m�
�
y2˚.x.t � �/;v.t � �//v.t � �/

y˚.x2;v2/v2
�1

� ln
�
y2˚.x.t � �/;v.t � �//v.t � �/

y˚.x2;v2/v2

��
d�

�
ay2

FG

!Z
0

g.�/e�n�
�
v2y.t � �/

vy2
�1� ln

�
v2y.t � �/

vy2

��
d�

�
ay2

F

�
˚.x;v2/

˚.x;v/
�1� ln

�
˚.x;v2/

˚.x;v/

��
C
ay2

F

�
˚.x;v/v

˚.x;v2/v2
C
˚.x;v2/

˚.x;v/
�
v

v2
�1

��
: (2.27)

We can rewrite (2.27) as
dW2

dt
DNFG

�
d

˚.x;v2/
.x2�x/.˚.x;v2/�˚.x2;v2//�

ay2

F
H

�
˚.x2;v2/

˚.x;v2/

�

�
ay2

F 2

hZ
0

f .�/e�m�H

�
y2˚.x.t � �/;v.t � �//v.t � �/

y˚.x2;v2/v2

�
d�

�
ay2

FG

!Z
0

g.�/e�n�H

�
v2y.t � �/

vy2

�
d� �

ay2

F
H

�
˚.x;v2/

˚.x;v/

�

C
˚.x2;v2/

˚.x;v/˚.x;v2/
.˚.x;v/�˚.x;v2//.˚.x;v/v�˚.x;v2/v2/

�
: (2.28)
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From Assumptions A3-A4, we have

.x2�x/.˚.x;v2/�˚.x2;v2//� 0;

.˚.x;v/�˚.x;v2//.˚.x;v/v�˚.x;v2/v2/� 0:

Therefore, dW2
dt
� 0. One can easily show that dW2

dt
D 0 occurs at E2. LaSalle’s

invariance principle implies global stability of E2. �

3. NUMERICAL RESULTS AND DISCUSSIONS

In this section we first show two special forms of the general function ˚.x;v/
which satisfy Assumptions A1-A4, then perform some numerical simulations for
model (2.1)-(2.4) in case of discrete-time delays. Function ˚.x;v/ can be chosen
as:

(1) Beddington-DeAngelis functional response:

˚1.x;v/D
ˇx

1CxC˛v
;

where ˛; � 0. We have the following

˚1.x;v/ > 0 for all x > 0;v > 0; and ˚1.0;v/D 0;

@˚1.x;v/

@x
D

ˇ .1C˛v/

.1CxC˛v/2
> 0 for all v > 0;

@˚1.x;v/

@v
D

�ˇ˛x

.1CxC˛v/2
< 0 for all x > 0;

@.˚1.x;v/v/

@v
D

ˇx.1Cx/

.1CxC˛v/2
> 0 for all x > 0:

Then function ˚.x;v/ satisfies Assumptions A1-A4 and the global stability results
presented in Theorems 1-3 are valid.

(2) Crowley-Martin functional response:

˚2.x;v/D
ˇx

.1Cx/.1C˛v/
:

Function ˚2 satisfies the following:

˚2.x;v/ > 0 for all x > 0;v > 0, and ˚2.0;v/D 0;

@˚2.x;v/

@x
D

ˇ

.1C˛v/.1Cx/2
> 0 for all v > 0;

@˚2.x;v/

@v
D

�ˇ˛x

.1C˛v/2.1Cx/
< 0 for all x > 0;

@.˚2.x;v/v/

@v
D

ˇx

.1C˛v/2.1Cx/
> 0 for all x > 0:

Thus Assumption A1-A4 hold true and Theorems 1-3 are applicable.
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Next, we shall perform simulation studies for the model (2.1)-(2.4) with function
˚2.x;v/ and with particular distribution functions f .�/ and g.�/. All computations
are carried out by MATLAB. We are going to choose the probability distribution
functions f .�/ and g.�/ as f .�/D ı.� � �1/ and g.�/D ı.� � �2/; where ı.:/ is the
dirac delta function, �1 and �2 are constants and �1 2 Œ0;h�;�2 2 Œ0;!�: We can see
that, from the properties of dirac delta function, as h and ! tend to1;

1Z
0

f .�/d� D

1Z
0

g.�/d� D 1;

F D

1Z
0

ı.� � �1/e
�m�d� D e�m�1 ;

G D

1Z
0

ı.� � �2/e
�n�d� D e�n�2 :

Moreover, we have
1Z
0

ı.� � �1/e
�m�˚2 .x .t � �/ ;v .t � �//v .t � �/d�

D e�m�1˚2 .x .t � �1/ ;v .t � �1//v .t � �1/ ;

1Z
0

ı.� � �2/e
�n�y .t � �/d� D e�n�2y .t � �2/ :

Using these choices, model (2.1)-(2.4) becomes

Px.t/D ��dx.t/�
ˇx.t/v.t/

.1Cx.t//.1C˛v.t//
; (3.1)

Py.t/D e�m�1
ˇx.t � �1/v.t � �1/

.1Cx.t � �1//.1C˛v.t � �1//
�ay.t/; (3.2)

Pv.t/DNae�n�2y.t � �2/� cv.t/�qv.t/´.t/; (3.3)

Ṕ.t/D rv.t/´.t/��´.t/: (3.4)

As a result, the parameters R0 and R1 become

R0 D
e�.m�1Cn�2/Nˇx0

c.1Cx0/
;

R1 D
e�.m�1Cn�2/Nˇx2

c.1Cx2/.1C˛v2/
;
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where

x2 D
1

2.1C˛v2/
.x0.1C˛v2/� .1C �v2/

C

q
Œ.1C �v2/�x0.1C �v2/�

2
C4x0.1C˛v2/2

�
;

v2 D �=r;

and � D ˛C ˇ
d

.
Now we will perform some numerical simulations to testify our theoretical results.

The values of the parameters of model (3.1 )-(3.4) are given in Table 1.

TABLE 1. The values of the parameters of model (3.1 )-(3.4).

Parameter Value Parameter Value Parameter value
� 10 a 0.1 � 0.1
d 0.01 N 10 m 1
ˇ Varied c 3 n 3.4
 0.0001 q 0.01 �1 1
˛ 0.0001 r Varied �2 1.2

Now, we study the following cases:
� R0 � 1: We choose, ˇ D 0:001 and r D 0:01: Using these data, we compute

R0 D 0:0188 and R1 D 0:0101: According to Theorem 1, E0 is GAS. Figures 1-4
show that, the numerical results are consistent with Theorem 1. We can see that,
the concentration of uninfected cells is increased and converged to its normal value
�
d
D 1000, while the concentrations of infected cells, free viruses and B cells are

decaying and approaching zero. In this case the viruses can be cleared from the body.
� R1 � 1 < R0. We take ˇ D 0:1 and r D 0:01: In this case, R0 D 1:8848

and R1 D 0:0205: From Theorem 2, E1 is GAS. Figures 1-4 show that the nu-
merical results are consistent with Theorem 2. We can see that, the trajectory of
the system will tend to the infected steady state without humoral immune response
E1.506:77;18:1449;0:1023;0/, and the infection becomes chronic but with no per-
sistent humoral immune response.
� R1 > 1: We choose, ˇ D 0:1 and r D 1: Then, we compute R0 D 1:8848 and

R1 D 1:0107: From Theorem 3, E2 is GAS. Figures 1-4 demonstrate that, our simu-
lations are consistent with the theoretical results of Theorem 3. We observe that, the
trajectory of the system will tend to the infected steady state with humoral immune
response E2.512:4948;17:9343;0:1;3:2238/. Then, the infection becomes chronic
but with persistent humoral immune response. From Figures 1 and 3 we observe
that, ifR1 > 1 the humoral immune response reduce the concentration of free viruses
and increase the concentration of uninfected cells.



226 A. M. ELAIW, A. ALHEJELAN, AND A. M. SHEHATA

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Time

U
n

in
fe

c
te

d
 c

e
ll

s

 

 

R
0
≤1

R
1
≤1<R

0

R
1
>1

FIGURE 1. Evaluation of uninfected cells.
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FIGURE 2. Evaluation of infected cells.

We note that, the values of the parameters q, r and � have no impact on the value
of R0, since R0 is independent of those parameters. This fact seems to suggest
that, humoral immune response do not play a role in eliminating the viruses. From
above we can see that, R1 can be increased by increasing the parameter r . When we
compare the casesR1 � 1<R0 andR1 >1, we can see that, the presence of humoral
immune response (i.e. R1 > 1) reduce the concentration of free viruses and infected
cells and increase the concentration of uninfected cells. It means that, the humoral
immune response can play an important role in controlling the infection.

4. CONCLUSION

In this paper, we have proposed a virus infection model describing the interaction
of the virus with target cell taking into account the humoral immune response. The
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FIGURE 3. Evaluation of free virus particles.
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FIGURE 4. Evaluation of B cells.

infection rate is given by a general function. Two types of distributed time delays
describing the time needed for infection of target cell and virus replication have been
incorporated into the model. Using the method of Lyapunov functional, we have es-
tablished that the global dynamics of the model is determined by two threshold para-
meters R0 and R1. We have proven that if R0 � 1, then the uninfected steady state
E0 is GAS, and the viruses are cleared, ifR1 � 1 <R0, then the infected steady state
without humoral immune response E1 is GAS, and the infection becomes chronic
but with no persistent B cells response, and if R1 > 1, then the infected steady state
with B cells response E2 is GAS, and the infection is chronic with persistent B cells
response. Numerical simulations have been performed for the virus dynamics model
with discrete-time delays and special form of the function ˚.x;v/. Our simulation
results confirm the theoretical results given in Theorems 1-3.
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