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AsstrAct. Sufficient conditions for the existence of a solution of the equation

(g(xX (1)) = F(t. x(t), X' (1))
with the antiperiodic conditiong(0) + x(T) = 0, X'(0) + X(T) = 0 are established.
Our nonlinearityf may be singular at its phase variables. The proofs are based
on a combination of regularity and sequential techniques and use the topological
transversality principle.

Mathematics Subject Classificatiorl34B15, 34B16

Keywords: singular second-order fiierential equation, g-Laplacian, antiperiodic
boundary conditions, topological transversality principle, Vitali’s convergence the-
orem

1. |NTRODUCTION

Let T be a positive numbed = [0, T], Ry = (0,) andRg = R \ {0}. We will
consider the dierencial equation

(g(X(1)))" = f(t. x(¥), X' (1)), (1.1)
together with the boundary conditions of the antiperiodic type
X0)+x(T)=0, X(0)+x(T)=0. (1.2)

Here f satisfies the local Caratlory conditions ol x ]RS (f e Car@ x ]R(Z))) andf
may be singular at the zero value of its phase variables.

A function x € C(J) is said to be @olution of the boundary value probleiBVP
for short) (1.1), (1.2) ik(X") € AC(J) (that isg(X’) is absolutely continuous ad), x
satisfies the boundary conditions (1.2) and (1.1) is satisfied a. &. on

The object of the work is to give assumptions on the functigrasid f in (1.1)
which guarantee the solvability of BVP (1.1), (1.2). We recall that by our definition,
solutions of BVP (1.1), (1.2) have the “maximal” smoothness (thak is, C1(J)
andg(x’) € AC(J)). Also any solution and its derivative ‘pass through’ the singular
points of f at inner points of the interval. Since our existence results are proved
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48 OTO RIBYL

by regularization and sequential methods, we will use Vitali's convergence theorem
(see [3]) in limiting processes since it is impossible to find an integrable majorant for
applying the Lebesgue Dominated Convergence Theorem. Boundary conditions of
the antiperiodic type appear in the literature usually as the special case of nonlocal
boundary conditions. They were considered for regular (in phase variabteder
differential equations (see, e. g., [4, 5]), systems fie@ntial equations (see, €. g.,

[8]) and second-order functionalfterential equations (see, e. g., [11]). In the litera-
ture there are only a few papers dealing with BVPs whose nonlinearities are singular
at the phase variables and their solutinos and their derivatives ‘pass through’ singular
points at inner points of the intervdl Such BVPs were discussed for higher order
differential equations (see, €. g., [1, 9]) and second-ordkarential equations (see,

e. d., [2,10,12-14]). From now ofix|| = max{|x(t)|; t € J}, [IXl|. = foT [X(t)| dt and

IXlo = ess suglx(t)]; t € J} stands for the norm i€°(J), L1(J) andL..(J), respec-
tively. For a measurable s#il c R, u(M) denotes the Lebesgue measureMf
Throughout the paper, we assume that the following assumptions are satisfied:

(H1) g € CO(R) is an increasing and odd function Bnand lim,_,. g(u) = oo;
(H) f e Car(@xR3) and there exista € R, such that
a< f(t,u,v) fora. e.t € Jand all {4, v) € RZ;

(H3) Fora.ete Jandall (,v) € R?,

f(tu) < QU] walg(oD) + w2lg(bD)

wherews : [0, ) — R, is continuous and increasing and

< 1
ds= oo, 1.3
fo w1(S) (1-3)
h, w> : Ry — R, are continuous and decreasing and
1 1
f h(s)ds < oo, f wa(9ds < 00" (1.4)
0 0

The paper is organized as follows. Section 2 deals with a sequence of auxil-
iary regular BVPs to problem (1.1), (1.2). We give a priori bounds for their solu-
tions x, and prove their existence by the topological transversality principle (see,
e. g., [6] or [7]). In addition, we prove that the sequefiGt, x,(t), x,(t))} is uni-
formly integrable onJ. In Section 3, applying Vitali's convergence theorem, exis-
tence results to BVP (1.1), (1.2) are proved. We also include an example to illustrate
our theory.

*Sinceh, w, : R, — R, are decreasing, the condition (1.4) implies tlﬁth(s)ds < oo and
V
Jy wa2(9)ds< e forallV > 0.
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2. AUXILIARY REGULAR BVPs AND THEIR PROPERTIES
For eactnh € N andA € [0, 1], definef, andh,(1;-) € Car (@ x R?) by
f(t,uo) for (tu.o) € Ix (R\ [, 2])°;
g[(u + %) f(t, 1/n,0) — (u - %) f(t,—1/n, v)]
fa(t,u,v) = for (t,u,v) € Jx[—%,%]x(]R\[—%,% );

A(o+3) fatu1/m) - (v=2)- fult.u.—1/n)]

for (t,u,v) € I X R x [—% %]

and
hn(A;t, u,0) = Afa(t,u,0) + (1 —a  for (t,u,v) € I x RZ
Then
a < hn(2;t,u,0) < fo(t,u,0) for a. e.t € J and eachy, v) € R? (2.1)
and
fa(t, U, v) < h(luD|wa(g(vl) + 9(1)) + w2(g(lvl)) (2.2)

for a. e.t € Jand eachi,v) € R3.
Consider the family of regular fierential equations

(9(X (1))’ = hn(4; 1, x(t), X (1)) (2.3)
depending on the parameters N andA € [0, 1].

Lemma 1. Let x be a solution of BVR2.3), (1.2) with somet € [0,1] andn € N
in (2.3). Then

(a) ¥ is increasing onJ and
g(IX(@®)]) >al¢é—-t| forte0,T] (2.4)

whereé € (0, T) is the unique zero of’;
(b) xhas a unique zergon[0,T), n # £ and if¢ < n then

St fort € [0,¢&]
IX()] = { (2.5)
Tglt—nl forte(£T]

and ifn < £ then

X0l > {%n -n  forte0,]

=25(T-1) forte(£T] (2.6)
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where
1 ¥
=% o
Proor. Since g(X'(1))) = hn(2;t, x(t), X' (t)) = afor a. e.t € J by (2.1) andy is
increasing ok, we see thax’ is increasing o and fromx’(0) = —x'(T) it follows
that X’ has a unique zeré € (0, T) and thenx’ < 0 on [0 ¢) andX > 0 on ¢, T].
Next, we have

-g(X() = f (g(X(s))dsza(s 1), te[0.4],

g Y(9)ds' (2.7)

t
g(X (1)) = ff (g(X(9))dsza(t-¢), te(£T]

which gives (2.4). Since is decreasing on [@] and increasing oné T], we see
that if x(0) < 0 (resp.x(0) > 0), thenx(T) = —x(0) > 0 (resp.x(T) < 0), and sox
vanishes at a uniqug € (£, T) (resp.n € (0,£)). In the case ok(0) = 0, we have
X(T) = 0andx < 0 on (QT). We have proved that has a unique zerg in the
interval [Q, T). Now from (2.4) we get

T T a(T—f)
X(T) - X(&) = L X (1) dt > L o alt - &) dt = fo (9 ds

’ -1 1 * -1
KO -x0)= [ x@dts- ["giae-nd=-3 [ H9ds

and so

at a(T-£)
Q-3 [ H9dsz @ =xM X+ [ gH9ds

We get

1 s a(T—¢)

X(¢€) < - [ f g (9 ds+ f R C) ds]
2a 0 0
1 amaxé, T—¢} . d
< ~%a S g ~(s)ds

Since maxé, T — &} > T/2, we havex(é)| = S whereS is defined by (2.7). (2.5) for
& < nor(2.6) forn < £ now follows from the convexity ok on J. O

Lemma 2. Let x be a solution of BV2.3), (1.2)with somel € [0, 1] andn e N
in (2.3). Then there exists a positive constant P independentof n such that

IX|| < P. (2.8)

"Here and subsequently;® : R — R denotes the inverse function go
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Proor. By Lemma 1,X’ is increasing od and has a unique ze&oe (0, T). Hence
X1l = max{—x'(0), x'(T)}. (2.9)
We are going to give upper bounds fex’(0) andx'(T). Since
(g(X'(1)))" = hn(2;t, X(t), X' (1)) < fa(t, X(1), X' (1))
fora. e.t € Jby (2.1), (2.2) shows that

(g(x ()
(g ) + g) + ol gle ) ) fora-etelde (210

and

(g(X ®)Y
1) + g0) + gy = XN fora.etels Tl (211)

because ok’ < 0 on [Q &), X (t) > 0 on ¢, T] andg is an odd function byH).
To find upper estimates fgf h(|x(t)]) dt andfgT h(|x(t)]) dt we must distinguish two
cases according to the valuestadndn: ‘

Casel. If £ < n, then by (2.5)

© (S T (°
foéh(|x(t)|)dt§fo‘h(gt) dtsgfo h(s) ds (2.12)

f; h(x()]) dt < f h(% it - n|) dt
sf:h(%(n—t))dt+fnTh($(t—n))dt

and

- S s 1

< — h(s)ds+ = f h(s)ds
S Jo 0
s

< il h(s)ds (2.13)

S Jo

Case2. If n < ¢, then by (2.6)
S

2T (S
gg‘f(; h(s)ds (2.14)
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and
T T S T S
L h(Ix(t)]) dt < L h(T——g (T —t)) dt < §fo h(s) ds (2.15)
Let S
Q=1+%fo h(s) ds
Since

ff (9(x ) "
0 @19 D) +9(D) + w29 (X D))

~9(X(0)) 1 ds (216
L e @9
and
f T (g(X (1))’
¢ wi(g(X(1) + 9(1)) + w2(g(x' (1))
9(X(T)) 1 ds (217
- ceramrems @1
integrating (2.10) over [&] and using (2.16) we get
-9(X(0)) 1 ] )18
L et (219
and integrating (2.11) ove&[T] and using (2.17) we get
9(X(T)) 1 . )19
L aeramreetee (2:49)

Since [J” st ds= co by (1.3), we see thaf” s—Lds= co and then

foo 1 ds
=
0 wi(s+g(1))+ wa(s)
as well. Therefore there exidts € R, such that
u
1
ds> for u> P;.
|, serimamts @ :
Now from the last inequality, (2.18) and (2.19) we deduce that
max-g(x'(0)), g(X'(T))} < P1.

Hence maj-x'(0), X'(T)} < g~1(P1) and then (2.9) shows that is true (2.8) with=
g~ (Py).

The lemma is proved. O

Lemma 3. For eachn € N there exists a solution of BVR2.3), (1.2) with A = 1
in (2.3).
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Proor. Fix n € N and letP be a positive constant given in Lemma 2. Set
Q = {xe C'(); Il < RT, IIXIl < R}

whereR = maxP, g 1(aT)}. ThenQ is an open, bounded and convex subset of
the Banach spad@'(J). Define the operators

M:[0,1]xQ — C%J) and K :[0,1]xQ — C*J)

by the formulas

t T
H(A,X)(t)=g_1(%j(; hn(/l;sx(s),x'(s))ds—%ft‘ hn(/l;s,x(s),x’(s))ds)
and t .
K(a, x)(t):%f0 H(/l,x)(s)ds—%ft‘ I1(1, X)(s)ds

It is easy to check thatis a solution of BVP (2.3), (1.2) with = 1 in (2.3) if and
only if x is a fixed point of the operatd((1, -). We now show thaf(1, -) has a fixed
point. By the topological transversality principle, it isiscent to verify that:

(i) K is a compact operator,
(i) K(1,x) # xfor each @, x) € [0, 1] x 9Q and B
(iii) K(0,-) is a constant operator afd(0, x) = X for x € Q with anX e Q.

Sinceh,(1; ) € Car ( x R?), there exists| € L1(J) such that
Ihn(4;t, u, )] < q(t) (2.20)

fora.e.te Jand eacht € [0,1], ue [-RT,RT], v € [-R R].
Let {4} c [0, 1], {x} c Q be convergent sequences such thatlimAx = 4. and
Mk Xk = X.. Since

lg(IT(Ak, X)(1)) — g(TI(A., X ) (D))
< fo ' Ihn(Ak; S, Xk(S), X () — hn(As; S, X.(9), X ()| ds
using the Lebesgue dominated convergence theorem we see that
Jim {lg(T(2, %) = g(I1(4., X))l = O.
Then from the continuity of~* on R it follows that
lim [T %) = T Xl = Jim {lg™ gk %9) = g~ gL, )| = 0.

Now from the inequalities

.
K (A %) () = K (e, ) (O] < j; (k. X)(8) — TI(A., x.)(s) ds
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and

(K (A, %) (1) = (K (A, %)) (O] = Tk, )i)(E) — T, X,)(@)]
< Ak, Xi) = (A, %) (I,

we get lim_,c K (A, X<) = K(1., x.) in C1(J), which proves tha# is a continuous
operator. _ _
Let now{(Ak, Xk)} c [0, 1] x Q and consider the sequeng (1, x)}. Then (see
(2.20)) B B
K (e %O < Tg7HlalL),  |(K (%) ®) < g7 (lallL),
and

— , - t2
o[l %) )] -o](KCh ) @] < [ awat @2

forke N,te Jand 0< t, < t; < T. Therefore{K (A, %)} is bounded irCl(J) and
from (2.21) we deduce th&K(1x, X))’ (t)} is equicontinuous on J. By the Arzel
Ascoli theorem, there is a convergent subsequend&6ly, %)} in C1(J). Hence
K ([0, 1] x Q) is relatively compact and sinck is continuous, that is a compact
operator.

Assume thatk(1g, Xp) = Xo for some fg, Xo) € [0, 1] x Q. Thenxg is a solution
of BVP (2.3), (1.2) witha = o in (2.3), and sd|x;l| < P by Lemma 2. From
Xo0(0) = —xo(T) it follows thatxy has a zerg € J. Now

IXo(t)] = 1Xo(t) = Xo(m)] < [IXplI 1t = 7]

yields||Xo|l < PT, contrary toxp € Q. HenceK (4, X) # x for all (4, x) € [0, 1] X 0Q.
Finally, forx e Qandt € J

t T
%K (0, x)(t):%fog‘l(a(s—T/Z))ds—%ft g Ya(s-T/2))ds (2.22)

Sinceg~! is increasing and odd dR, we get
(KO, %) )] =lg~ (@t - T/2) = g Halt-T/2) < g~ (aT/2)

for t € J. Hence (iii) holds withx{t) € Q defined by the righthand side of equality
(2.22). |

Lemma 4. For eachn € N, let x, be a solution of BVR2.3), (1.2) with 2 = 1
in (2.3) and letn, be the unique zero of, lying in [0, T) andé&, be the unique zero of
x;,. Then there exists a positive constanndependent of such that

A< @ for neNN. (2.23)

Proor. Applying Lemmas 1 and 2, there exist positive const&asdP such that
XaE)l =S, IIxll<P.  neN.
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Next (forn € IN)
S < [Xn(én)l = [Xa(€n) = Xa(n)l < IIXGl IEn = 70l < Plén — 10l
Consequently (2.23) holds with = 5.

Lemma 5. For eachn € N, let x, be a solution of BVK2.3), (1.2) with 1 =
in (2.3) and let&, be the unique zero of,. Then for any subsequenge,} of {x
satisfying

m}
1
n}

X, (T)I < Ti+1 forne N (2.24)

with S given by(2.7), there exists its subsequenfg,} and a positive constart
independent af such that

c<§,<T-c forneN. (2.25)

Proor. By Lemma 1,[x,(&n)| = S for n € N and Lemma 2 guarantees the exis-
tence of a positive constaRtsuch thaf|x;|| < P for n € N. Let{x,} c {X,} be an
arbitrary subsequence satisfying (2.24). Consider the sequences

X ()} {X6,(T)} € [-PT, PT]. (2.26)
On account of the Bolzano—Weierstrass theorem, we see that there exists a subse-
quencegln} of {ka} such thafx,(&,)} and{x, (T)} are convergent iiR. Let

lim x,(6,) = a,  lim x,(T) = 5.

Naturally,
1Bl < Ti 1 < |a|. (2.27)
Also
1,(T) = X, (&1, < P(T = &) (2.28)
and
1%, (T) + X, (&)l = X, (&,) = %,(0) < Pé&,. (2.29)

Assume that sygi;n € N} = T (resp. inf&,;n € N} = 0). Then (2.28) (resp.
(2.29)) givesB — a = 0 (resp.B + a = 0). Therefore

laf = 18], (2.30)
contrary to (2.27). Hence there exists a positive constanth that relation (2.25) is
satisfied. O

Lemma 6. For eachn € N, let x, be a solution of BVH2.3), (1.2) with A = 1in
(2.3). Then there exists a subsequefxig} c {X,} such that the sequence

{fkn(t’ an(t)’ Xll(n(t))} - Ll(‘])
is uniformly integrable (Ul) on J, that is for eagh> 0 there exist$ > 0 such that

f | fia (. X, (), X (1))] It < &, neN
M
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wheneveM c J is a measurable set angd M) < 6.

Proor. Forn e N, letn, € [0, T) andé, € (0, T) be the unique zero of, on [0, T)
andx;, respectively. Let
: S
A = _ 2.31
min {a, T+ 1} (2.31)
wherea appears inKlz) andS is given by (2.7). By Lemmas 2 and 4, there exist
positive constant® andA such that

X[ <P 2A<|&-na  forneN. (2.32)
In addition (2.1), (2.2) and (2.32) give
a < fn(t, Xa(t), X3(1)) < h(Ixa (1)) [wl (9(P) + g(1)) + w2 (g(IX3(V))
fora. e.t € Jand eacn € N. Since
1 ,
() < s a0 w2(o(40D)

for a. e.t € Jand anyn € N, we see that to prove our lemma itfces to show that
there exists a subsequer{eg,} c {X,} such that the sequence

{h(1x6, (01) w2(g(1%, O)] (2.33)

isUlonJ.

From the structure of the measurable sefR we deduce that the sequence (2.33)
is Ul on J if for eache > 0 there exist$ > 0 such that for any at most countable
sequenceé(a;, b))}, of mutually disjoint intervalsd;, bj) c J such thaty’;c;(bj -
aj) < 6, we have

jel

bj
Z f h(]x, (D)) w2 (g(IX{(n(t)l)) dt< e, nen.

jel
For this, Iet{(aj,bj)}jeﬂ be an at most countable sequence of mutually disjoint
intervals @;, b;) ¢ J and assume that
bj—a; <A/2 for eachj € . (2.34)
In addition, by (2.32), we have

- A .
lf”—277"|2A>§zbj—aj forneN, jel. (2.35)

It is easy to see that there exists a subsequéxgec {xn} such that one of the
following two cases may occur, namely, Case 1 wligre- ny, forn € N, and Case 2
whereéy, < nx, forne IN.
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Casel. Let¢y, > ng, for n e N. Since (see (2.32))

gkq—tzgkq—gk”;nk” zgk”;nk” > A, tel0 (&, +m)/2|

and
&k, + 1 &k, — 1
tom > Bt Mo o oMo s te (6, + /2.0

we have (by Lemma 1)

AA for t € [0, (m, + éi,)/2).
g(1%, (D) = (2.36)
Alt—&,l forte |, +&)/2.T]|

and
Alt =] for t € [0, (n, +&ic)/2];

Xl 21 AA for t € [ (n, + €k,)/2: €k (2.37)
A(T—1) forte g, T]

whereA is given by (2.31).
Forn e N, set

K, ={j €J; by <&}, L, =T\ Ky, (2.38)
If j € Kg, and (see (2.35))

(a) bj < nx,, then (see (2.36) and (2.37))

j bj
| b D walo, D)t < walad) [ hia, - 0)

_ w2(AA) Ak —2j) h(e ds
A Jpa-by)

(b) aj < nk, < bj < (nk, + éx,)/2, then

bj
fa‘. h(1xc, (DN w2(g(1% (D) dt

Tkn

A(’]knfa') A(b'*T]kn)
_w2AA) ( f " h9)ds+ f ' h(s)ds);
A 0 0

Mk bj
s@(AA)( | e~y dt [ - me) dt)
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(©) nk, < aj < bj < (7, + &,)/2, then

bj bj
| MO0 e, D) dt < wah) [ hUA =) e

_ w(AD) A(bj—7kn)

h(s) ds
A A@j~7ky)
(d) Mk, <Qj < (T]kn +§kn)/2 < bj, then
bj
f (1, (O w2(g(X, (D) dit
a;
(Ukn+§kn)/2
< wz(AA)f h(A(t — n,)) dt
a;
bj
+h(AA) w2(A (&, — 1)) dt
(Ukn""fkn)/z
A€k —1kn) /2 A(ékn—11kn) /2
_ @A A) h(gds+ A L) wa(9ds
A A@j—1ipn) A Ain—Dj)

(e) @k, +éx,)/2 < aj, then (see (2.38))

bj bj
| hs 0D vt D)t < hA®) [ wal e, - v) e

]

h(AA Aléin—2y)
= h(A4) wy(9) ds
A Jn@q-b)

Summarizing, we have proved that
bj

Y, [ hs D wataid o)t

jG]Kkn a

2 sm wa9ds+ 2220 [  M9ds (229

A

where M c [0, AT], (M, ) < A X jey(bj — &) for n € N andi = 1,2,

The situation is more complicated fpre LL,. Passing to a subsequence if neces-
sary, one of the following subcases of Case 1 occurs (see Lemma 5), namelym, Case
1.1 whergx,(T)| > A forn e N and Case 1.2 wheig(T)| < Aandc < &, <T-c
for n € N with a positive constart.

Casel.l Let |x(T)| > A for n € N. Since&, > nk, we see thatx| is
decreasing or¢f, T] and thenx, (t)| > A fort € [&,, T]. Let j € Ly,. If
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a)a; < &, < bj, then (see (2.37))

bj
_L:_h(|xkn(t)|)w2(g(le<n(t)|)) dt

kn bj
< h(A &) f wa(A (&, - H)dt+ h(A) L wa(A (t - &)t

j

A -2 A ~6i)
- @ f " wa(s)ds+ % T wa(9)ds
0 0
b) &k, < aj, then

bj bj

[ b D walol, Ot < () [ waln (0= i)
_h@) O gds

OVNCETS

It follows that
bj maxh(A), h(AA
Y, [ ) wnfatx, o) e« TEEEED [ g5 (240
. ai MS
j€Lk, ] kn
whereM; c [0, AT]andu(M; ) < A 3 jey(bj - aj) forne IN.
Casel.2 Let|x,(T)l < A forne N and

C<é,<T-c forneNlN. (2.41)
Since T T
ToteT- 138, T80y € e (6 + T)/20,
2 2 “2
and p T—e
+ - c
U= b >~ — 2 — 0 2 o, te [+ T2 T],

then from (2.36) and (2.37) we have

, At =&l forte[(n, +&.)/2 (6, +T)/2],
9(%, () = {AC/Z fort e [(é + T)/2, T] (2.42)
and
AA fort € [(m, + &k.)/2, &l
|X|<n(t)| ><AC/2 fort e [§kn, (é:kn + T)/Z], (2.43)

AT —-t) fortel(&, +T)/2, T].

Let j € Ly, and assume thé —a; < c/4. Then T - &,)/2 > ¢/2 > ¢/4 > bj - a;
forne N. If
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(@) aj < &, < bj < (&, + T)/2,} then (see (2.42))

bj
J;hGXWKODaa(gGX@(oD)dt

k

Skn bj
< h(AA) f walA(E, - 1) dt+ h(Ac/2) L walA(t - &) dt

A(fkn_a') A(b'_‘fkn)
_ _h(’[\\A) f " wa(9) ds+ NAC2) f T (9 ds
0 0

A
(b) &, < aj <bj < (&, +T)/2, then

bj bj
[ b Oatots On dt < acr2) [ watatt - &)

]
h(Ac/2) [Mbi~é)
A A(ai _‘fkn)

wy(s) ds

(C) éx, < aj < (ék, + T)/2 < bj, then (see (2.42) and (2.43))

bj
fa_h<Ian<t)|>wz<g<|x'kn<t)|»dt

(fkn +T)/2

< h(AC/Z)f w(A(t - &,)) dt

b;

+ wa(AC/2) h(A(T — 1)) dt
(EntT)/2
h(Ac/2) (AMT—6q)/2 AC/2) [AT—6q)/2
_ hac/2) wy(s)ds+ A2 h(s)ds
A JA@-é) A Alb—éi)

(d) &, +T)/2<aj, then

b bj
| B Daato, Ot < wa(acr2) [ BACT - ) e

|
A(T-a;)
_ w2(AC/2) h(s) ds
A A(T-b)

"We see thatthea; > bj — A > &, — A > &, — (& — T)/2 = (€ + k) /2.
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It follows that
bj
) [ hs ) wato, D)
jeLi, V2
h w
_2 (II:C/Z) kal wz(s)dﬁ%m/z) fN , N(9ds (249

whereN| < [0,AT], u(N} ) < A 3 jey(bj — &) for n e N andi = 1,2.

Summarizing, sinch, wz € L1([0, AT]), from (2.39), (2.40) and (2.44) we deduce
that{h(]xq, (1) w2(g(1x (B)I))} is Ul onJ.

Case2. Letny, > &, for n € N. Define (forn € N andt € J)

M =T =Mk & =T i
and
Yo () = X, (T = 1).
Thennﬁn <& My, andg—‘f;q is a zero ofyy, andy'kn, respectively. Next
M, = il = I(T =) = (T = &)l = Ik, = | 2 A/2, neN

whereA is given by Lemma 4. In addition, by Lemma 1 (see (2.4) and (2.5)) we have
(forne IN)

g(lyi, O = g%, (T =) = AT =) - &l = Alt—& |, te[0,T]
and
Wi O = X, (T = 1)
N {A|(T—t)—nkn| = Al —tl, &, <T-t<T (= te[0,&)),
“IA(T -1, 0<T-t<é, (= te(g.T).

By Case 1, the sequence

{h(lyk, (D) w2(g(lyy, (ON))
is Ul on J. Since

bj T-a;
> [ O watol @Dt = > [ (9D walolli, (9N ds

jel Y& jel

and

Dibj—a) =) [(T-a)-(T-bp],

jey jel
we see that the sequenitg|x, (t)[) wz(g(|x{<n(t)|))} isUlonJd.
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3. EXISTENCE RESULTS AND AN EXAMPLE

Theorem. Let assumptiongH;) — (H3) be satisfied. Then BVR.1),(1.2) has
a solution.

Proor. By Lemma 3, for each € N, there exists a solutiox, of BVP (2.3), (1.2)
with 2 = 1in (2.3). Lety, € [0, T) andéy € (0, T) be the unique zero of, on [0, T)
andx;,, respectively. Without loss of generality, we can assumedhat n, (then
nn > 0) forn e N. Now Lemma 1 shows that, for eaohe N, we have

g = Alt =&l for ted (3.1)
and
At fort € [0, &nl,
(0l 2 {A t—mnl forte (&, T], (3.2)

whereA is given by (2.31). Applying Lemmas 2 and 4, there exist positive constants
P andA such that the inequalities (2.32) are satisfied. In addition, without loss of
generality we can also assume that the sequéfge X\(t), x,(t))} is Ul on J by
Lemma 6, which guarantees thHa(x;(t))} is equicontinuous od, and then from

X(t2) = (W)l = g~ (g(n(®) - g g0, ttoed

the uniform continuity o~ on [-g(P), g(P)] and the fact, thag ! is increasing, we
deduce thatx(t)} is equicontinuous od as well. On account of the ArzelAscoli

theorem and the Bolzano-Weierstrass theorem, passing to subsequences if necessary,
we can assume thét,} is convergent it€1(J) and{,}, {£n} are convergent iiR. Let

liMn oo X0 = X, lIMpe 70 = nand lim_. &, = & Thenx e CY(J), x satisfied (1.2)

andA < £ — n|. Lettingn — oo in (3.1) and (3.2), we get

XMz g (Alt-¢g)  for te (3.3)
and
At fort € [0, &],
X0l 2 {A t—nl forte (& T (34)

From the construction of the functioris € Car (J x R?) it follows the existence of
aU c J, u(U) = 0, such thatf,(t, -, -) is continuous orR? for eacht € J\ U and
n € IN. Then (see (3.3) and (3.4))

lim ot xa(0), X (0) = (L X0, X (1)),  te IN(UU{0.7.&)).

Thereforef (t, x(t), X' (1)) € L1(J) and

lim fo (8 %0(9). X.(S)d 5 = fo (s X(9. X (9)ds



SOLUTIONS OF SINGULAR ANTIPERIODIC BVP 63

fort € J by Vitali's convergence theorem. Now, taking the limitas> « in the equal-
ities .
s040) =904+ [ (s x(9%(9ds  ted ek,
we obtain .
oX ) =g O)+ [ Fax9 KOs ted

Hencey(x") € AC(J) andx s a solution of (1.1). We have proved thais a solution
of BVP (1.1), (1.2). O

If f € CO(J x R2), then the theorem given above immediately yields

Corollary. Let f € C%J x R3) and assumptiongH;) — (Hs) be satisfied. Then
there exists a solution of BVP (1.1),(1.2). If € [0,T) and¢ € (0, T) denotes
the (unique) zero of x of), T) and X', respectively, thep(x’) € C1(J \ U) and(1.1)
is satisfied fot € J \ U whereU ={0,£, T}if p=0andU = {n, &} if n > 0.

Example.Let p € (0,), g € L(J) be nonnegativeyj € (0, 1) andy; € (0, p)
(i=123andj =1 2). Consider the diierential equation

(X' (t)|P signX/(t))" = arctan(1+ |x(t)])

0 (t) , as(t)
+ + DIXO" + —m——. 3.5
X " OO S e )
Problem (3.5), (1.2) is the special case of BVP (1.1), (1.2) w(th = |u|P signu and
_ a(t) o, G
f(t,u,v) = arctan(1+ |u]) + e + () o]t + U op?

Assumptions ;) — (Hs) are satisfied witla = arctan 1w (U) = 2 + W/P, wy(u) =
1/u2/P and

h(u) = K (1 + 1/u* + 1/u®?)
whereK = max{g, lajll.; =12 3}. Applying the theorem, we show that there
exists a solution of BVP (3.5), (1.2).
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