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Abstract. In this paper, we prove a general theorem dealing with generalized absolute convo-
lution Cesaro mean summability factors under weaker conditions by using a general class of
increasing sequences instead of an almost increasing sequence. Some new results have also been
obtained.
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1. INTRODUCTION

A positive sequence (b,,) is said to be an almost increasing sequence if there exists
a positive increasing sequence (c,) and two positive constants M and N such that
Mc, < b, < Ncy(see [1]). A positive sequence X = (X,,) is said to be a quasi-
o-power increasing sequence if there exists a constant K = K(o, X) > 1 such that
Kn? X, >m°X,, foralln >m >1and 0 <o < 1. Every almost increasing sequence
is quasi-o-power increasing sequence for any nonnegative o, but the converse is not
true for 0 > 0 (see[9]). Let > _a, be a given infinite series. We denote by ty *£ the

nth convolution Cesaro mean of order (« * f8), with 4+ 8 > —1, of the sequence
(nay), that is (see [5])

1 n
ax*xB __ a—1 4B
t, 7= —AZH; E_lAn_vAvvav, (LD
where
1 2)....

n!
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Let (67 *B ) be a sequence defined by

121 a=18>—1
axf

maX15v5n tU

oe*h — (1.3)

, O<a<l,B>-—1

The series ) aj is said to be summable | C,a % ;8 |, k > 1 and § > 0, if (see [4])

o0
D kb k< o, (1.4)
n=1
If we take § =0, then | C,« * ;8 |, summability reduces to | C,« * B |, summability
(see [0]). Also, if we take f = 0 and § =0, then | C,« * B;§ | summability reduces
to | C,« |, summability (see [7]). If we set B = 0, then we get | C,«; 8 |, summability
(see [8]).

2. THE KNOWN RESULT

Theorem 1 ([4]). Let (X) be an almost increasing sequence and let there be
sequences (1) and (Ay) such that

| Adn |< Nn,s (2.1)
nm—0 as n— oo, 2.2)

o0
> 0l Any | Xn < 00, 2.3)

n=1
|[An | Xpn=0() as n— oo. 24)

If the condition
sk (B D)

ZnSk"T =0Xm) as m—o0 2.5

n=1
satisfies, then the series Y apApn is summable | C,axB;8 |, 0 <a <1, B> —1,
k>1,8>0and (a+pB—38) > 0.

It should be noted that if we take 8 = 0, then we get the result of Bor (see [2]).

3. THE MAIN RESULT

The aim of this paper is to generalize Theorem 1 under weaker conditions to the
| C,a % ;6 |, summability by using a quasi-o-power increasing sequence, which is
a wider class of sequences, instead of an almost increasing sequence.

We shall prove the following main theorem.
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Theorem 2. Let (X,,) be a quasi-o-power increasing sequence for some o (0 <
o < 1) and let there be sequences (1,) and (Ay) such that conditions (2.1)-(2.4) of
Theorem A are satisfied. If the condition

sk (Qa*,B)
Z A =0(Xm) as m— oo (3.1)
is satisfies, then the series ) apAp is summable | C,ox ;8 | for0 <a <1, 5 >0,
B>—-1Lk>land («+p—-56—1)>0.

Remark 1. It should also be noted that condition (3.1) is the same as condition
(2.5) when k=1. When k > 1, condition (3.1) is weaker than condition (2.5) but the
converse is not true. As in [10] we can show that if (2.5) is satisfied, then we get that

Ga*ﬂ k 1 m 9";‘*3 k
Z 5k ( Xk)1 _o(—L )Zn‘”‘%:O(Xm).

Also if (3.1) is satisfied, then for k > 1 we obtain that

(9"‘ Pye & (9:;‘*‘9)" (0P yk
Z o =D e Xn =0, 1>Z o » XE1

= 0(X) # O(Xm).

We need the following lemmas for the proof of our theorem.

Lemma 1 ([3]). fO<a <1, 8>—1land1 <v <n, then

v m
| ZA‘,’,‘:},Aﬁap |< max | ZA‘,"n__ll,Agap . (3.2)
= p=0

1<m<v

Lemma 2 ([9])). Under the conditions on (Xy), (n,) and (A,) as expressed in the
statement of the theorem, we have the following ;

nXnpn, = 0(1), 3.3)

o0
> nXn < o0, (3.4)

4. PROOF OF THE THEOREM

Let (T,;x*ﬂ) be the nth (C,« * ) mean of the sequence (nanA,). Then, by (1.1),
we have

a*ﬂ_ a—1 48
a+ﬂZA yAbvayA
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Applying Abel’s transformation first and then using Lemma 1, we have that

B _ 1 148
TP = HﬂZm ZA”‘ LA pa, + +BZA°‘ ABya,,

thus,

| T2 | <

1 n—1 v
p Z | ALy || ZAZ »AD

ﬂ |ZA°‘ 1Aﬁvav|

1
450 Z:
_ paxf a*ﬂ
=T, +T,," -
To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to
show that

o0
Zn‘Sk_l | T,f‘;ﬂ |k< oo, for r=1,2.
n=1
Whenever k > 1, we can apply Holder’s inequality with indices k and k', where
1+ =1, we get that
m+1
Z nﬁk—l | TOC*ﬂ |k

m+1

< ank 1 Aa—l—ﬂ) k{Z(AOH-ﬂ)k Qa*ﬂ)klAkv| }X{Z }k 1

m+1 n—1
=0(1) Z n8k—2+k—(a+ﬂ)k{2 U(a+ﬁ)k(93*ﬂ)kﬁlg}

n=2 v=1
m+1
1

m

— (a+B)k *B\k k

= 0(1)21) o (93‘ ) 771; Z n2+(a+ﬂ_3_1)k
v=1 n=v+1

(@B gasprk k[ dx
_ o a*
= 0(1) Zv (0,77) nv/v Y2+ @+ B—8—Dk

v=1

m
= 0(1) Y (65 ) oy~ 0P

v=1

“ Bk U ik
= 0(1 ea* - +k—1
oS et ()
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Bk
(6 65"
—0(1)ZA(vnv)Zr5k XF +0(1>mnmzv8k ;k -
r=1
m—1
=0() Y | A(wny) | Xy + O(D)mijy X
v=1
m—1 m—1
=0() > v]Any | Xy +0(1) Y ny Xy + O(1)mnmXm
v=1 v=1

=0() as m— oo,

by virtue of the hypotheses of the theorem and Lemma 2. Finally, we have that

¢ (Qa* )k
Znﬁk—l|T(X*ﬂ Z'A |k 1|A | Sk

9“*
—0(1>ZA|An|Z ‘”‘(Xk 1

a*ﬁ)k

+0<1>|Am|2 kal

m—1
=0(1) ) NuXn+O0) [ A | X =0(1) as m— oo,
n=1
by virtue of the hypotheses of the theorem and Lemma 2. This completes the proof
of the theorem.

Remark 2. 1f we take (X,) as an almost increasing sequence, 8 = 0 and § = 0,
then we obtain a theorem dealing with the | C,« [, summability factors. Also, if we
take § = 0, then we get a new result concerning the | C,« * 8 |, summability factors
of infinite series.
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