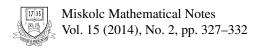


A new result on the quasi power increasing sequences

Hüseyin Bor, Dansheng Yu, and Ping Zhou



A NEW RESULT ON THE QUASI POWER INCREASING SEQUENCES

HÜSEYIN BOR, DANSHENG YU, AND PING ZHOU

Received 14 November, 2013

Abstract. In this paper, we prove a general theorem dealing with generalized absolute convolution Cesàro mean summability factors under weaker conditions by using a general class of increasing sequences instead of an almost increasing sequence. Some new results have also been obtained.

2010 Mathematics Subject Classification: 26D15; 40D15; 40F05; 40G99

Keywords: convolution Cesàro mean, power increasing sequences, summability factors, Hölder inequality, Minkowski inequality, infinite series

1. Introduction

A positive sequence (b_n) is said to be an almost increasing sequence if there exists a positive increasing sequence (c_n) and two positive constants M and N such that $Mc_n \leq b_n \leq Nc_n$ (see [1]). A positive sequence $X = (X_n)$ is said to be a quasi- σ -power increasing sequence if there exists a constant $K = K(\sigma, X) \geq 1$ such that $Kn^{\sigma}X_n \geq m^{\sigma}X_m$ for all $n \geq m \geq 1$ and $0 < \sigma < 1$. Every almost increasing sequence is quasi- σ -power increasing sequence for any nonnegative σ , but the converse is not true for $\sigma > 0$ (see[9]). Let $\sum a_n$ be a given infinite series. We denote by $t_n^{\alpha*\beta}$ the nth convolution Cesàro mean of order $(\alpha*\beta)$, with $\alpha+\beta>-1$, of the sequence (na_n) , that is (see [5])

$$t_n^{\alpha * \beta} = \frac{1}{A_n^{\alpha + \beta}} \sum_{v=1}^n A_{n-v}^{\alpha - 1} A_v^{\beta} v a_v, \tag{1.1}$$

where

$$A_n^{\alpha} = \frac{(\alpha+1)(\alpha+2)....(\alpha+n)}{n!} = O(n^{\alpha}), \quad A_{-n}^{\alpha} = 0 \quad for \quad n > 0.$$
 (1.2)

The second author is supported by NSF of China (10901044), and Program for Excellent Young Teachers in HZNU.

The third author is supported by NSERC of Canada.

Let $(\theta_n^{\alpha * \beta})$ be a sequence defined by

$$\theta_n^{\alpha * \beta} = \begin{cases} |t_n^{\alpha * \beta}|, & \alpha = 1, \beta > -1 \\ \max_{1 \le v \le n} |t_v^{\alpha * \beta}|, & 0 < \alpha < 1, \beta > -1 \end{cases}$$
(1.3)

The series $\sum a_n$ is said to be summable $|C, \alpha * \beta; \delta|_k, k \ge 1$ and $\delta \ge 0$, if (see [4])

$$\sum_{n=1}^{\infty} n^{\delta k - 1} \mid t_n^{\alpha * \beta} \mid^k < \infty. \tag{1.4}$$

If we take $\delta=0$, then $\mid C,\alpha*\beta;\delta\mid_k$ summability reduces to $\mid C,\alpha*\beta\mid_k$ summability (see [6]). Also, if we take $\beta=0$ and $\delta=0$, then $\mid C,\alpha*\beta;\delta\mid_k$ summability reduces to $\mid C,\alpha\mid_k$ summability (see [7]). If we set $\beta=0$, then we get $\mid C,\alpha;\delta\mid_k$ summability (see [8]).

2. The known result

Theorem 1 ([4]). Let (X_n) be an almost increasing sequence and let there be sequences (η_n) and (λ_n) such that

$$|\Delta\lambda_n| \le \eta_n,\tag{2.1}$$

$$\eta_n \to 0 \quad as \quad n \to \infty,$$
 (2.2)

$$\sum_{n=1}^{\infty} n \mid \Delta \eta_n \mid X_n < \infty, \tag{2.3}$$

$$|\lambda_n| X_n = O(1) \quad as \quad n \to \infty.$$
 (2.4)

If the condition

$$\sum_{n=1}^{m} n^{\delta k} \frac{(\theta_n^{\alpha * \beta})^k}{n} = O(X_m) \quad as \quad m \to \infty$$
 (2.5)

satisfies, then the series $\sum a_n \lambda_n$ is summable $|C, \alpha * \beta; \delta|_k$, $0 < \alpha \le 1$, $\beta > -1$, $k \ge 1$, $\delta \ge 0$ and $(\alpha + \beta - \delta) > 0$.

It should be noted that if we take $\beta = 0$, then we get the result of Bor (see [2]).

3. The main result

The aim of this paper is to generalize Theorem 1 under weaker conditions to the $|C, \alpha * \beta; \delta|_k$ summability by using a quasi- σ -power increasing sequence, which is a wider class of sequences, instead of an almost increasing sequence. We shall prove the following main theorem.

Theorem 2. Let (X_n) be a quasi- σ -power increasing sequence for some σ $(0 < \sigma < 1)$ and let there be sequences (η_n) and (λ_n) such that conditions (2.1)-(2.4) of Theorem A are satisfied. If the condition

$$\sum_{n=1}^{m} n^{\delta k} \frac{(\theta_n^{\alpha * \beta})^k}{n \ X_n^{k-1}} = O(X_m) \quad as \quad m \to \infty$$
 (3.1)

is satisfies, then the series $\sum a_n \lambda_n$ is summable $|C, \alpha * \beta; \delta|_k$ for $0 < \alpha \le 1$, $\delta \ge 0$, $\beta > -1$, $k \ge 1$ and $(\alpha + \beta - \delta - 1) > 0$.

Remark 1. It should also be noted that condition (3.1) is the same as condition (2.5) when k=1. When k > 1, condition (3.1) is weaker than condition (2.5) but the converse is not true. As in [10] we can show that if (2.5) is satisfied, then we get that

$$\sum_{n=1}^m n^{\delta k} \frac{(\theta_n^{\alpha*\beta})^k}{n \ X_n^{k-1}} = O(\frac{1}{X_1^{k-1}}) \sum_{n=1}^m n^{\delta k} \frac{(\theta_n^{\alpha*\beta})^k}{n} = O(X_m).$$

Also if (3.1) is satisfied, then for k > 1 we obtain that

$$\sum_{n=1}^{m} n^{\delta k} \frac{(\theta_n^{\alpha * \beta})^k}{n} = \sum_{n=1}^{m} \frac{(\theta_n^{\alpha * \beta})^k}{n \ X_n^{k-1}} X_n^{k-1} = O(X_m^{k-1}) \sum_{n=1}^{m} n^{\delta k} \frac{(\theta_n^{\alpha * \beta})^k}{n \ X_n^{k-1}}$$
$$= O(X_m^k) \neq O(X_m).$$

We need the following lemmas for the proof of our theorem.

Lemma 1 ([3]). *If* $0 < \alpha \le 1$, $\beta > -1$ *and* $1 \le v \le n$, *then*

$$\left| \sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p} \right| \leq \max_{1 \leq m \leq v} \left| \sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p} \right|. \tag{3.2}$$

Lemma 2 ([9])). Under the conditions on (X_n) , (η_n) and (λ_n) as expressed in the statement of the theorem, we have the following;

$$nX_n\eta_n = O(1), (3.3)$$

$$\sum_{n=1}^{\infty} \eta_n X_n < \infty. \tag{3.4}$$

4. Proof of the theorem

Let $(T_n^{\alpha*\beta})$ be the *n*th $(C, \alpha*\beta)$ mean of the sequence $(na_n\lambda_n)$. Then, by (1.1), we have

$$T_n^{\alpha*\beta} = \frac{1}{A_n^{\alpha+\beta}} \sum_{v=1}^n A_{n-v}^{\alpha-1} A_v^{\beta} v a_v \lambda_v.$$

Applying Abel's transformation first and then using Lemma 1, we have that

$$T_n^{\alpha * \beta} = \frac{1}{A_n^{\alpha + \beta}} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^{v} A_{n-p}^{\alpha - 1} A_p^{\beta} p a_p + \frac{\lambda_n}{A_n^{\alpha + \beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha - 1} A_v^{\beta} v a_v,$$

thus,

$$|T_{n}^{\alpha*\beta}| \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} |\Delta \lambda_{v}| |\sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}| + \frac{|\lambda_{n}|}{A_{n}^{\alpha+\beta}} |\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}|$$

$$\leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{(\alpha+\beta)} \theta_{v}^{\alpha*\beta} |\Delta \lambda_{v}| + |\lambda_{n}| \theta_{n}^{\alpha*\beta}$$

$$= T_{n,1}^{\alpha*\beta} + T_{n,2}^{\alpha*\beta}.$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$\sum_{n=1}^{\infty} n^{\delta k - 1} \mid T_{n,r}^{\alpha * \beta} \mid^{k} < \infty, \quad for \quad r = 1, 2.$$

Whenever k > 1, we can apply Hölder's inequality with indices k and k', where $\frac{1}{k} + \frac{1}{k'} = 1$, we get that

$$\sum_{n=2}^{m+1} n^{\delta k - 1} | T_{n,1}^{\alpha * \beta} |^{k}$$

$$\leq \sum_{n=2}^{m+1} n^{\delta k - 1} (A_{n}^{\alpha + \beta})^{-k} \{ \sum_{v=1}^{n-1} (A_{v}^{\alpha + \beta})^{k} (\theta_{v}^{\alpha * \beta})^{k} | \Delta \lambda_{v} |^{k} \} \times \{ \sum_{v=1}^{n-1} 1 \}^{k - 1}$$

$$= O(1) \sum_{n=2}^{m+1} n^{\delta k - 2 + k - (\alpha + \beta)k} \{ \sum_{v=1}^{n-1} v^{(\alpha + \beta)k} (\theta_{v}^{\alpha * \beta})^{k} \eta_{v}^{k} \}$$

$$= O(1) \sum_{v=1}^{m} v^{(\alpha + \beta)k} (\theta_{v}^{\alpha * \beta})^{k} \eta_{v}^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2 + (\alpha + \beta - \delta - 1)k}}$$

$$= O(1) \sum_{v=1}^{m} v^{(\alpha + \beta)k} (\theta_{v}^{\alpha * \beta})^{k} \eta_{v}^{k} \int_{v}^{\infty} \frac{dx}{x^{2 + (\alpha + \beta - \delta - 1)k}}$$

$$= O(1) \sum_{v=1}^{m} (\theta_{v}^{\alpha * \beta})^{k} \eta_{v} \eta_{v}^{k - 1} v^{\delta k + k - 1}$$

$$= O(1) \sum_{v=1}^{m} (\theta_{v}^{\alpha * \beta})^{k} \eta_{v} \left(\frac{1}{v X_{v}}\right)^{k - 1} v^{\delta k + k - 1}$$

$$= O(1) \sum_{v=1}^{m-1} \Delta(v\eta_v) \sum_{r=1}^{v} r^{\delta k} \frac{(\theta_r^{\alpha*\beta})^k}{rX_r^{k-1}} + O(1) m\eta_m \sum_{v=1}^{m} v^{\delta k} \frac{(\theta_v^{\alpha*\beta})^k}{vX_v^{k-1}}$$

$$= O(1) \sum_{v=1}^{m-1} |\Delta(v\eta_v)| X_v + O(1) m\eta_m X_m$$

$$= O(1) \sum_{v=1}^{m-1} v |\Delta\eta_v| X_v + O(1) \sum_{v=1}^{m-1} \eta_v X_v + O(1) m\eta_m X_m$$

$$= O(1) \quad as \quad m \to \infty,$$

by virtue of the hypotheses of the theorem and Lemma 2. Finally, we have that

$$\begin{split} \sum_{n=1}^{m} n^{\delta k - 1} \mid T_{n,2}^{\alpha * \beta} \mid^{k} &= \sum_{n=1}^{m} \mid \lambda_{n} \mid^{k - 1} \mid \lambda_{n} \mid n^{\delta k} \frac{(\theta_{n}^{\alpha * \beta})^{k}}{n} \\ &= O(1) \sum_{n=1}^{m - 1} \Delta \mid \lambda_{n} \mid \sum_{v=1}^{n} v^{\delta k} \frac{(\theta_{v}^{\alpha * \beta})^{k}}{v X_{v}^{k - 1}} \\ &+ O(1) \mid \lambda_{m} \mid \sum_{n=1}^{m} n^{\delta k} \frac{(\theta_{n}^{\alpha * \beta})^{k}}{n X_{n}^{k - 1}} \\ &= O(1) \sum_{n=1}^{m - 1} \eta_{n} X_{n} + O(1) \mid \lambda_{m} \mid X_{m} = O(1) \quad as \quad m \to \infty, \end{split}$$

by virtue of the hypotheses of the theorem and Lemma 2. This completes the proof of the theorem.

Remark 2. If we take (X_n) as an almost increasing sequence, $\beta=0$ and $\delta=0$, then we obtain a theorem dealing with the $|C,\alpha|_k$ summability factors. Also, if we take $\delta=0$, then we get a new result concerning the $|C,\alpha*\beta|_k$ summability factors of infinite series.

ACKNOWLEDGEMENT

The authors express their thanks to the referee for his/her valuable comments and suggestions.

REFERENCES

- [1] N. K. Bari and S. B. Stečkin, "Best approximation and differential properties of two conjugate functions," *Trudy. Moskov. Mat. Obšč.*, vol. 5, no. 1, pp. 483–522, 1956.
- [2] H. Bor, "An application of almost increasing sequences," *Math. Inequal. Appl.*, vol. 5, no. 1, pp. 79–83, 2002.
- [3] H. Bor, "On a new application of quasi power increasing sequences," *Proc. Est. Acad. Sci.*, vol. 57, no. 4, pp. 205–209, 2008.

- [4] H. Bor, "An application of almost increasing sequences," *Appl. Math. Lett.*, vol. 24, no. 3, pp. 298–301, 2011.
- [5] D. Borwein, "Theorems on some methods of summability," *Quart. J. Math. Oxford Ser.*(2), vol. 9, no. 1, pp. 310–316, 1958.
- [6] G. Das, "A tauberian theorem for absolute summability," *Proc. Camb. Phil. Soc.*, vol. 67, no. 2, pp. 321–326, 1970.
- [7] T. M. Flett, "On an extension of absolute summability and some theorems of littlewood and paley," *Proc. London Math. Soc.*, vol. 7, no. 1, pp. 113–141, 1957.
- [8] T. M. Flett, "Some more theorems concerning the absolute summability of fourier series," *Proc. London Math. Soc.*, vol. 8, no. 3, pp. 357–387, 1958.
- [9] L. Leindler, "A new application of quasi power increasing sequences," *Publ. Math. Debrecen*, vol. 58, no. 4, pp. 791–796, 2001.
- [10] W. T. Sulaiman, "A note on $|A|_k$ summability factors of infinite series," *Appl. Math. Comput.*, vol. 216, no. 9, pp. 2645–2648, 2010.

Authors' addresses

Hüseyin Bor

P. O. Box 121, 06502 Bahçelievler, Ankara Turkey

E-mail address: hbor33@gmail.com

Dansheng Yu

Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China *E-mail address:* dsyu_math@163.com

Ping Zhou

Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada

E-mail address: pzhou@stfx.ca