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1. I

We consider the differential equation

uxx− g(t, x) f (u(k)
t ,ux) = 0, (1.1)

wherek = 1,2,

u = u(t, x), u(k)
t =

∂ku

∂tk
, (t, x) ∈ � ×�.

Throughout the paper we shall assume that the functiong(t, x) > 0 and functionf are
homogeneous of the first degree, more precisely,

f (λu, λv) = λ f (u, v) for λ > 0, uv , 0,

and, moreover, the functionf satisfies the condition

u f (u, v) > 0, uv , 0

and all the functions and derivatives involved here exist and are continuous in�×�.
Whenk = 1, equation (1.1) is a parabolic second order partial differential equation
and ifk = 2, it is a hyperbolic one.

For g(t, x) = −q(x), equation (1.1) has solutions of the formu(t, x) = etv(x) and
v = v(x) satisfies the second order differential equation

v′′ + q(x) f (v, v′) = 0. (1.2)
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A special case of equation (1.1) is the nonlinear parabolic differential equation
(
Φp (ux)

)
x − g(t, x) Φp (ut) = 0, (1.3)

whereΦp (w) = |w|p−1w, p > 0, and the functionΦp is increasing. The functionv in
the solutions of the formu(t, x) = etv(x) with g(t, x) = −q(x) satisfies the relation

(
Φp

(
v′
))′

+ q(x) Φp (v) = 0. (1.4)

We shall consider the solvability of equation (1.1) fork = 1 and that of equation
(1.3) with the conditions

u(0, x) = γ(x),

u(t,0) = α(t),

u(t, l) = β(t), l > 0
(1.5)

andγ(0) = α(0), γ(l) = β(0), γ ∈ C ([0, l]), α, β ∈ C ([0,T]), T > 0. We suppose that
u(t, x) has continuous derivatives in the domainD = {(t, x) : t ∈ [0,T] , x ∈ [0, l]}
andu(t, x) is continuous on the boundary ofD .

First we give three examples in which the solutions of (1.3) of some special forms
are presented. A maximum principle and some uniqueness results are given for the
solution of (1.1) and (1.3). In the last section, the approximate solution of (1.3) with
g(t, x) = 1 obtained by the difference method is examined.

2. S    

We give the solution of the parabolic partial differential equation (1.1) or (1.3)
provided the solution is of a special form.

Example1. Let us consider the solution of (1.3) of the formu(t, x) = exp(at+ bx),
wherea andb are constants. In this case, equation (1.3) gives

p |b|p+1 − g(t, x) Φp(a) = 0.

If g(t, x) > 0, then it is obvious thata > 0. If g(t, x) = 1, then

a = p
1
p |b| p+1

p or b = ±
(
ap

p

) 1
p+1

and the solution has the form

u(t, x) = exp

at±
(
ap

p

) 1
p+1

x



or

u(t, x) = exp
(
p

1
p |b| p+1

p t + bx
)
.

In the plane (t, x), the solutionu(t, x) = eC is constant on the straight linesat ±(
ap

p

) 1
p+1 x = C, C = const.
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Example2. Let us consider the solution of (1.3) of the formu(t, x) = v(x)τ(t) with
g(t, x) = r(x)s(t).

Substitutingu into equation (1.3) we have

p |v′|p−1v′′Φp(τ) = r(x)s(t)Φp(v)Φp(τ′).

We suppose thatv(x) , 0 andτ(t) , 0. Separating the variables, one can get forv

p |v′|p−1v′′ − µ r(x) Φp(v) = 0, µ = const, (2.1)

and forτ
τ′

τ
=

∣∣∣∣∣
µ

s(t)

∣∣∣∣∣
1
p−1 µ

s(t)
. (2.2)

For the solution of (2.1) we refer to [1–3]. The most important property of these
solutions is that for any given initial condition att0 ∈ I ,

x (t0) = x0,

x′ (t0) = x′0,

there exists a unique solutionx(t) defined for allt ∈ I . If µ r(x) < 0 (this yields that
µ s(t) < 0), thenv is oscillatory.

From this we can see that the solution of (2.2) has the form

τ(t) = K exp

(∫ t

0
Φ 1

p

(
µ

s(w)

)
dw

)
, K = const.

Let us consider the special case whereµ > 0, r(x) > 0, s(t) > 0, and

α(t) = 1 + t, t ∈ [0,T] ,

v(0) = 1,

τ(0) = 1,

then from this it follows that

s(t) = µ (1 + t)p ,

v(x) = γ(x),

τ(t) = 1 + t,

β(t) = (1 + t) γ(l)

and functionγ (x ∈ [0, l]) satisfies equation (2.1). For the solution of differential
equation (1.3) of the formu(t, x) = v(x) τ(t), the relation

u(t, x) = (1 + t) γ(x)

holds.
Example3. Let us consider the solution of (1.3) of the formu(t, x) = v(x) + τ(t)

with g(t, x) = r(x) s(t).
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In this case, equation (1.3) gives

p |v′|p−1v′′ = r(x)s(t) Φp(τ).

Separating the variables, we obtain

p |v′|p−1v′′ = κ r(x), κ = const, (2.3)

and

s(t) Φp(τ) = κ. (2.4)

From equation (2.3), we get

v(x) = Φp(κ)
∫ x

0
Φ 1

p

(∫ η

0
r(ξ) dξ

)
dη

and from (2.4),

τ(t) = Φp(κ)
∫ t

0
Φ−1

p (s(τ)) dτ.

In the special case wherer(x) = s(t) = 1 (g(t, x) = 1), we have

v(x) = Φp(κ)
∫ x

0
Φ 1

p
(η) dη =

p
p + 1

Φp(κ) x
p+1

p ,

τ(t) = Φp(κ) t,

and, therefore the solution of (1.3) has the form

u(t, x) = Φp(κ)

[
p

p + 1
x

p+1
p + t

]
.

3. R

Theorem 1. Let us suppose that there exists a solution of(1.1) for k = 1 or (1.3)
in the domainD0 = {(t, x) : t ∈ [0,T) , x ∈ [0, l]} with the boundary conditions(1.5).
Then the solution assumes its maximum on∂D0, the boundary ofD0.

P. We suppose the opposite that solutionu assumes its maximum at an inner
point (t∗, x∗) of D0 or on the linet = T. By this assumption,

u(t∗, x∗) − max
(t,x)∈∂D0

u(t, x) = δ > 0.

For the auxiliary function

w(t, x) = u(t, x) +
δ

2
T − t

T
,

we have

u(t, x) < w(t, x) < u(t, x) +
δ

2
.
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For any point (̄t, x̄) onB = {(t, x) : t = 0, x = 0, x = l}, we see that

w(t∗, x∗) ≥ u(t∗, x∗) = max
(t,x)∈∂D0

u(t, x) + δ ≥ u(t̄, x̄) + δ

≥ w(t̄, x̄) − δ
2

T − t
T

+ δ ≥ w(t̄, x̄) +
δ

2
> w(t̄, x̄).

Therefore,w(t, x) assumes its maximum at
(
t̃, x̃

) ∈ D0 \B. At this point,

wx = 0, wxx ≤ 0, wt ≥ 0,

which implies that

ux = 0, uxx ≤ 0, ut = wt +
δ

2T
> 0. (3.1)

From this observation, it follows that

uxx− g(t, x) f (ut, ux) < 0 or
(
Φp (ux)

)
x − g(t, x) Φp (ut) < 0 at

(
t̃, x̃

)
,

which is a contradiction.
We remark thatwt > 0 and alsout > 0 at t̃ = T. �

For the minimum of the solution of (1.1) or (1.3) inD0 we can formulate a similar
statement, namely thatu(t, x) assumes its minimum onB in both cases.

Theorem 2. There are no any two solutionsu, v of (1.3)with g(t, x) = 1 such that
u = v onB andu , v, ux > vx andut > vt in D0.

P. We suppose thatu andv are different solutions of the differential equation
with g(t, x) = 1, then (

Φp (ux)
)
x − Φp (ut) = 0

and (
Φp (vx)

)
x − Φp (vt) = 0,

which gives that
(
Φp (ux) − Φp (vx)

)
x −

(
Φp (ut) − Φp (vt)

)
= 0. (3.2)

By the Lagrange Mean Value Theorem, there exists someξ ∈ (a,b) such that

Φp(b) − Φp(a) = (b− a) p |ξ|p−1 . (3.3)

Let us introduce the notationw = u− v; for equation (3.2) we can write

(A(t, x) wx)x − B(t, x) wt = 0, (3.4)

whereA(t, x) = p |ξ1|p−1 for vx < ξ1 < ux andB(t, x) = p |ξ2|p−1 for vt < ξ2 < ut.
Introducing the new variableϑ instead ofx, by

ϑ =

∫ x dζ
A(t, ζ)

,

we get forw(t, x) = w̄(t, ϑ) thatA(t, x) wx = w̄ϑ and equation (3.4) is transformed to

w̄ϑϑ − Q(t, ϑ) w̄t = 0 (3.5)
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whereQ(t, ϑ) = Ā(t, ϑ) B̄(t, ϑ), A(t, x) = Ā(t, ϑ) andB(t, x) = B̄(t, ϑ).
From the conditionu = v on B, it follows that w̄(t, ϑ) = 0 on B, which, by

Theorem 1, implies that ¯w(t, ϑ) = 0 andu = v in D0. This contradicts the assumption
onu andv. �

4. A    

We shall use the difference method for the determination of the approximate solu-
tion of the parabolic differential equation

(
Φp (ux)

)
x − Φp (ut) = 0 (4.1)

with conditions(1.5) .
Let mbe a positive integer and

l
m

= h,

xi = ih, i = 0,1,2, . . . ,m.

Obviously,x0 = 0 andxm = l.
Let us denote byui(t) the solution of the first order system of ordinary difference-

differential equations

Φp

(
dui

dt

)
=

1
h

[
Φp

(ui+1 − ui

h

)
− Φp

(ui − ui−1

h

)]

or equivalently

Φp

(
dui

dt

)
=

1
hp+1

[
Φp (ui+1 − ui) − Φp (ui − ui−1)

]
(4.2)

with the initial conditions
ui (0) = γ(xi), i = 1, 2, . . . ,m− 1,

u0(t) = α(t),

um(t) = β(t).
(4.3)

Thus, system (4.2) involvesm− 1 equations withm− 1 unknowns.
We intend to show that for an arbitraryT problem(4.2) (4.3) has a uniquely deter-

mined solution. We also show thatu(t, xi) can be approximated byui(t) with arbitrary
accuracy, i. e., for everyε > 0, there exists anh(ε) > 0 such that|u(t, xi) − ui(t)| < ε
whenh < h (ε) in 0 ≤ t ≤ T, i = 1, 2, . . . ,m− 1.

Lemma 1. For p > 0, the functionūi(t) = u(t, xi) satisfies the system

Qi(t) = Φp

(
dūi

dt

)
− 1

hp+1

[
Φp (ūi+1 − ūi) − Φp (ūi − ūi−1)

]
, i = 1, 2, . . . ,m− 1

where|Qi(t)| ≤ Q0(h), with Q0(h)→ 0 ash→ 0.
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P. Applying the Taylor formula for ¯ui+1 andūi−1

ūi+1(t) = u(t, xi + h) = u(t, xi) + hux(t, xi) +
h2

2
uxx(t, xi + θ1h),

ūi−1(t) = u(t, xi − h) = u(t, xi) − hux(t, xi) +
h2

2
uxx(t, xi − θ2h),

where 0< θ1, θ2 < 1 we have

ūi+1(t) − ūi(t) = hux(t, xi) +
h2

2
uxx(t, xi + θ1h), (4.4)

ūi(t) − ūi−1(t) = hux(t, xi) − h2

2
uxx(t, xi − θ2h). (4.5)

We rewrite problem(4.1) by

Φp ((ūi)t) =
(
Φp (ux (t, xi))

)
x

= p |ux (t, xi)|p−1 uxx (t, xi) .

From this, together with(4.4) and(4.5), it follows that

Qi(t) = p |ux (t, xi)|p−1 uxx (t, xi) − 1
hp+1

[
Φp

(
hux(t, xi) +

h2

2
uxx(t, xi + θ1h)

)

− Φp

(
hux(t, xi) − h2

2
uxx(t, xi − θ2h)

)]
.

By the Lagrange Mean Value Theorem (3.3), we can write

Φp

(
hux(t, xi) +

h2

2
uxx(t, xi + θ1h)

)
− Φp

(
hux(t, xi) − h2

2
uxx(t, xi − θ2h)

)

=
h2

2
[uxx(t, xi + θ1h) + uxx(t, xi − θ2h)] p |ξ|p−1 ,

where

ξ = hux(t, xi) +
h2

2
uxx(t, xi + θ3h), −θ2 < θ3 < θ1.

Then we have

Qi(t) = p |ux (t, xi)|p−1 uxx (t, xi) − p
2

[uxx(t, xi + θ1h) + uxx(t, xi − θ2h)] |η|p−1 ,

where

η = ux(t, xi) +
h
2

uxx(t, xi + θ3h) = ux(t, xi) + O(h), h→ 0,
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and

Qi(t) = p |ux (t, xi)|p−1 uxx (t, xi)

− p
2

[uxx(t, xi + θ1h) + uxx(t, xi − θ2h)] |ux(t, xi) + O(h)|p−1

=
p
2
|ux (t, xi)|p−1

[
uxx (t, xi) − uxx(t, xi + θ1h)

+ uxx (t, xi) − uxx(t, xi − θ2h)
]

+ O(hp−1).

We note thatux (t, xi) is bounded,uxx (t, xi) is uniformly continuous inD0 andp > 1,
then for anyε > 0 there exists a functionh(ε) such that|Qi(t)| < Q0(h) whenh < h(ε),
0 ≤ t ≤ T. �

Now our goal is to state a maximum principle for problem (4.2),(4.3) .

Theorem 3. Consider a solutionui(t), i = 1,2, . . . ,m− 1, of (4.2), (4.3), where
the functionγ is positive, increasing, and convex. Then the maxima ofui(t), i =

1,2, . . . ,m− 1, cannot be greater than the maxima ofα(t), β(t) andh(x); moreover,
the minima ofui(t), i = 1, 2, . . . ,m− 1, cannot be less than the minima ofα(t), β(t),
andγ(x).

P. Let us suppose that there exists auk(t∗) wheret∗ > 0 andk , 0, k , msuch
that maxi,tui(t) = uk(t∗). Then the following two cases are possible:

(i) At least one of the inequalitiesuk+1− uk < 0 anduk− uk−1 > 0 holds, moreover
u′k(t0) ≥ 0 if t∗ , T andu′k(t

∗) > 0 if t∗ = T. In (4.2) we have different signs on the
left side and on the right side, which is a contradiction. By the convexity of function
γ we see that

Φp

(
u′i (O)

)
=

1
hp+1

[
Φp (γi+1 − γi) − Φp (γi − γi−1)

]
> 0,

then the maxima ofui(t) cannot be taken att∗ = 0. This means thatk = 0 or k = m
can be taken for anyt∗ ∈ (0,T] .

(ii) At least one of equalitiesuk+1−uk = 0 anduk−uk−1 = 0 holds. We assume that
uk+1 − uk = 0. Then stepping from indexk to k + 1, either we obtain a contradiction
or we get

uk = uk+1 = · · · = um−1 = um = β
(
t∗
)
,

which we had to prove.
The proof concerning the minima is similar except thatt∗ = 0 is also allowed as

u′i (0) > 0. �

Now we consider the existence and uniqueness of a solution of problem (4.2),
(4.3).
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Theorem 4. Let us suppose that functionγ is continuous, increasing, convex and

min
x,h

Φ 1
p

{
1

hp+1

[
Φp (γ(x + h) − γ(x)) − Φp (γ(x) − γ(x− h))

]}
> L,

whereL is independent ofh, moreover,ui(0) = γi with γi = γ (ih) for i = 1,2, . . . ,m−
1, andu0(t) ≡ α(t), um(t) ≡ β(t), whereα < β, α′ > 0, β′ > 0 for all t ≥ 0. Then
problem(4.2), (4.3) has a uniquely determined solution for0 ≤ t ≤ T, whereT is
positive.

P. By the conditions onγ, we get that

dui

dt
= Φ 1

p

{
1

hp+1

[
Φp (ui+1 − ui) − Φp (ui − ui−1)

]}
(4.6)

are continuous and satisfy the Lipschitz condition for anyt < τ, with a smallτ > 0.
This implies that the solution exists and is unique fort < τ. The conditions onγ also
gives that

dui

dt
(0) = Φ 1

p

{
1

hp+1

[
Φp (γi+1 − γi) − Φp (γi − γi−1)

]}
> L,

then

u′i (t) > 0 for t < τ.

Sinceui (0) = γ(xi) > 0, i = 1,2, . . . ,m− 1, then eitheru′i (t) remains positive for
t > 0 or there is a smallest valueτh for whichu′k(τh) = 0 for somek = i.

Taking the derivative of(4.6) we obtain

|u′k|p−1u′′k =
1

hp+1

{
|∆uk+1|p−1

(
u′k+1 − u′k

)
− |∆uk|p−1

(
u′k − u′k−1

)}
, (4.7)

where∆uk = uk − uk−1. At t = τh we have that∆uk = ∆uk+1. For smallε > 0, in
interval (τh − ε, τh) we obtain that|∆uk| > 0, |∆uk+1| > 0, u′k = o(1), u′k+1 − u′k > 0,
u′k − u′k−1 < 0. From these it follows that in(4.7) the right side is positive while the
left side is negative asu′′k < 0 for t ∈ (τh − ε, τh) .

In the caseu′k+1 (τh) = 0, passing fromk to k + 1 and carrying on, we obtain

u′m−1 = u′m = β′ (τh) = 0,

which is a contradiction. From the argument above, it follows that such a finiteτh

does not exist.
Consequently, we have that

∆u1 < ∆u2 < · · · < ∆um−1 < ∆um.

�
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