On a nonlinear parabolic differential equation

Gabriella Bognár
ON A NONLINEAR PARABOLIC DIFFERENTIAL EQUATION

GABRIELLA BOGNÁR

[Received: February 22, 2004]

Abstract. Our aim is to examine the nonlinear parabolic differential equation \(u_{xx} - g(t, x)f(u_t, u_x) = 0 \). We present three examples for the solution of the equation of some special forms. A maximum principle and some uniqueness results are given. Moreover, the approximate solution of the equation with \(g(t, x) = 1 \), obtained by the difference method is investigated.

Mathematics Subject Classification: 34A12, 34A45, 34K28

Keywords: Parabolic partial differential equation, maximum principle, uniqueness, difference method

1. Introduction

We consider the differential equation

\[
 u_{xx} - g(t, x)f(u_t^{(k)}, u_x) = 0, \tag{1.1}
\]

where \(k = 1, 2 \),

\[
 u = u(t, x), \quad u_t^{(k)} = \frac{\partial^k u}{\partial t^k}, \quad (t, x) \in \mathbb{R} \times \mathbb{R}.
\]

Throughout the paper we shall assume that the function \(g(t, x) > 0 \) and function \(f \) are homogeneous of the first degree, more precisely,

\[
 f(\lambda u, \lambda v) = \lambda f(u, v) \quad \text{for } \lambda > 0, \quad uv \neq 0,
\]

and, moreover, the function \(f \) satisfies the condition

\[
 uf(u, v) > 0, \quad uv \neq 0
\]

and all the functions and derivatives involved here exist and are continuous in \(\mathbb{R} \times \mathbb{R} \). When \(k = 1 \), equation (1.1) is a parabolic second order partial differential equation and if \(k = 2 \), it is a hyperbolic one.

For \(g(t, x) = -q(x) \), equation (1.1) has solutions of the form \(u(t, x) = e^t v(x) \) and \(v = v(x) \) satisfies the second order differential equation

\[
 v'' + q(x)f(v, v') = 0. \tag{1.2}
\]
A special case of equation (1.1) is the nonlinear parabolic differential equation
\[(\Phi_p(u_x))_x - g(t,x)\Phi_p(u_t) = 0,\]
where \(\Phi_p(w) = |w|^{p-1}w, p > 0,\) and the function \(\Phi_p\) is increasing. The function \(v\) in the solutions of the form \(u(t,x) = e^tv(x)\) with \(g(t,x) = -q(x)\) satisfies the relation
\[(\Phi_p(v'))' + q(x)\Phi_p(v) = 0.\]
(1.4)

We shall consider the solvability of equation (1.1) for \(k = 1\) and that of equation (1.3) with the conditions
\[u(0,x) = \gamma(x), \quad u(t,0) = \alpha(t), \quad u(t,l) = \beta(t), \quad l > 0, \quad \gamma(0) = \alpha(0), \quad \gamma(l) = \beta(0), \quad \alpha, \beta \in C([0,l]), \quad T > 0.\]
(1.5)

We suppose that \(u(t,x)\) has continuous derivatives in the domain \(D = \{(t,x) : t \in [0,T], x \in [0,l]\}\) and \(u(t,x)\) is continuous on the boundary of \(D\).

First we give three examples in which the solutions of (1.3) of some special forms are presented. A maximum principle and some uniqueness results are given for the solution of (1.1) and (1.3). In the last section, the approximate solution of (1.3) with \(g(t,x) = 1\) obtained by the difference method is examined.

2. Solutions of a special form

We give the solution of the parabolic partial differential equation (1.1) or (1.3) provided the solution is of a special form.

Example 1. Let us consider the solution of (1.3) of the form \(u(t,x) = \exp(at + bx)\), where \(a\) and \(b\) are constants. In this case, equation (1.3) gives
\[p |b|^{p+1} - g(t,x) \Phi_p(a) = 0.\]

If \(g(t,x) > 0\), then it is obvious that \(a > 0\). If \(g(t,x) = 1\), then
\[a = p^{\frac{1}{p}} |b|^{\frac{p+1}{p}} \quad \text{or} \quad b = \pm \left(\frac{a^p}{p}\right)^{\frac{1}{p+1}}\]
and the solution has the form
\[u(t,x) = \exp \left(at \pm \left(\frac{a^p}{p}\right)^{\frac{1}{p+1}} x\right)\]
or
\[u(t,x) = \exp \left(p^{\frac{1}{p}} |b|^{\frac{p+1}{p}} t + bx\right).\]

In the plane \((t,x)\), the solution \(u(t,x) = e^C\) is constant on the straight lines \(at \pm \left(\frac{a^p}{p}\right)^{\frac{1}{p+1}} x = C, C = \text{const.}\)
Example 2. Let us consider the solution of (1.3) of the form \(u(t, x) = v(x) \tau(t) \) with \(g(t, x) = r(x)s(t) \).

Substituting \(u \) into equation (1.3) we have

\[
 p |v'|^{p-1}v'' \Phi(p) = r(x)s(t)\Phi_p(v)\Phi_p(\tau').
\]

We suppose that \(v(x) \neq 0 \) and \(\tau(t) \neq 0 \). Separating the variables, one can get for \(v \)

\[
 p |v'|^{p-1}v'' - \mu r(x) \Phi_p(v) = 0, \quad \mu = \text{const}, \quad (2.1)
\]

and for \(\tau \)

\[
 \frac{\tau'}{\tau} = \left| \frac{\mu}{s(t)} \right|^{\frac{1}{p}-1} \frac{\mu}{s(t)}, \quad (2.2)
\]

For the solution of (2.1) we refer to [1–3]. The most important property of these solutions is that for any given initial condition at \(t_0 \in I \),

\[
 x(t_0) = x_0, \\
 x'(t_0) = x'_0,
\]

there exists a unique solution \(x(t) \) defined for all \(t \in I \). If \(\mu r(x) < 0 \) (this yields that \(\mu s(t) < 0 \)), then \(v \) is oscillatory.

From this we can see that the solution of (2.2) has the form

\[
 \tau(t) = K \exp \left(\int_0^t \Phi \left(\frac{\mu}{s(w)} \right) \, dw \right), \quad K = \text{const}.
\]

Let us consider the special case where \(\mu > 0, \ r(x) > 0, \ s(t) > 0, \) and

\[
 \alpha(t) = 1 + t, \quad t \in [0, T], \\
 v(0) = 1, \\
 \tau(0) = 1,
\]

then from this it follows that

\[
 s(t) = \mu (1 + t)^p, \\
 v(x) = \gamma(x), \\
 \tau(t) = 1 + t, \\
 \beta(t) = (1 + t) \gamma(t)
\]

and function \(\gamma \ (x \in [0, l]) \) satisfies equation (2.1). For the solution of differential equation (1.3) of the form \(u(t, x) = v(x) \tau(t) \), the relation

\[
 u(t, x) = (1 + t) \gamma(x)
\]

holds.

Example 3. Let us consider the solution of (1.3) of the form \(u(t, x) = v(x) + \tau(t) \) with \(g(t, x) = r(x) s(t) \).
In this case, equation (1.3) gives
\[p |v'|^{p-1} v'' = r(x) s(t) \Phi_p(\tau). \]
Separating the variables, we obtain
\[p |v'|^{p-1} v'' = \kappa r(x), \quad \kappa = \text{const}, \tag{2.3} \]
and
\[s(t) \Phi_p(\tau) = \kappa. \tag{2.4} \]
From equation (2.3), we get
\[v(x) = \Phi_p(\kappa) \int_0^x \Phi_{1/p} \left(\int_0^\eta r(\xi) d\xi \right) d\eta \]
and from (2.4),
\[\tau(t) = \Phi_p(\kappa) \int_0^t \Phi_{-1}^{-1}(s(\tau)) d\tau. \]
In the special case where \(r(x) = s(t) = 1 \) (\(g(t, x) = 1 \)), we have
\[v(x) = \Phi_p(\kappa) \int_0^x \Phi_{1/p} (\eta) d\eta = \frac{p}{p+1} \Phi_p(\kappa) x^{p+1}, \]
\[\tau(t) = \Phi_p(\kappa) t, \]
and, therefore the solution of (1.3) has the form
\[u(t, x) = \Phi_p(\kappa) \left[\frac{p}{p+1} x^{p+1} + t \right]. \]

3. RESULTS

Theorem 1. Let us suppose that there exists a solution of (1.1) for \(k = 1 \) or (1.3) in the domain \(D_0 = \{ (t, x) : t \in [0, T], \ x \in [0, l] \} \) with the boundary conditions (1.5). Then the solution assumes its maximum on \(\partial D_0 \), the boundary of \(D_0 \).

Proof. We suppose the opposite that solution \(u \) assumes its maximum at an inner point \((t^*, x^*) \) of \(D_0 \) or on the line \(t = T \). By this assumption,
\[u(t^*, x^*) - \max_{(t, x) \in \partial D_0} u(t, x) = \delta > 0. \]
For the auxiliary function
\[w(t, x) = u(t, x) + \frac{\delta}{2} \frac{T - t}{T}, \]
we have
\[u(t, x) < w(t, x) < u(t, x) + \frac{\delta}{2}. \]
Introducing the new variable ϑ

By the Lagrange Mean Value Theorem, there exists some ξ, which gives that
\[
\begin{align*}
 w(t^*, x^*) &\leq \max_{(t, x) \in \partial \Omega} u(t, x) + \delta \\
 &\leq \frac{\delta}{2} T + \frac{\delta}{2} > w(\tilde{r}, \tilde{x}).
\end{align*}
\]

Therefore, $w(t, x)$ assumes its maximum at $(\tilde{r}, \tilde{x}) \in D_0 \setminus \bar{D}$. At this point,
\[
w_x = 0, \quad w_{xx} \leq 0, \quad w_t \geq 0,
\]
which implies that
\[
 u_x = 0, \quad u_{xx} \leq 0, \quad u_t = w_t + \frac{\delta}{2T} > 0. \tag{3.1}
\]

From this observation, it follows that
\[u_{xx} - g(t, x) f_u(t, u_x) \leq 0 \quad \text{or} \quad (\Phi_p(u_x))_x - g(t, x) \Phi_p(u_t) < 0 \quad \text{at} \quad (\tilde{r}, \tilde{x}),\]
which is a contradiction.

We remark that $w_t > 0$ and also $u_t > 0$ at $\tilde{t} = T$. Theorem 2.

There are no any two solutions u, v of (1.3) with $g(t, x) = 1$ such that $u = v$ on \mathbb{R} and $u \neq v, u_x > v_x$ and $u_t > v_t$ in D_0.

Proof. We suppose that u and v are different solutions of the differential equation with $g(t, x) = 1$, then
\[
(\Phi_p(u_x))_x - \Phi_p(u_t) = 0
\]
and
\[
(\Phi_p(v_x))_x - \Phi_p(v_t) = 0,
\]
which gives that
\[
(\Phi_p(u_x) - \Phi_p(v_x))_x - (\Phi_p(u_t) - \Phi_p(v_t)) = 0. \tag{3.2}
\]

By the Lagrange Mean Value Theorem, there exists some $\xi \in (a, b)$ such that
\[
\Phi_p(b) - \Phi_p(a) = (b - a) p |\xi|^{p-1}. \tag{3.3}
\]

Let us introduce the notation $w = u - v$; for equation (3.2) we can write
\[
(A(t, x) w_x)_x - B(t, x) w_t = 0, \tag{3.4}
\]
where $A(t, x) = p |\xi_1|^{p-1}$ for $v_x < \xi_1 < u_x$ and $B(t, x) = p |\xi_2|^{p-1}$ for $v_t < \xi_2 < u_t$. Introducing the new variable θ instead of x, by
\[
\theta = \int^t A(t, \zeta) \frac{d\zeta}{\zeta}.
\]
we get for $w(t, x) = \tilde{w}(t, \theta)$ that $A(t, x) w_x = \tilde{w}_\theta$ and equation (3.4) is transformed to
\[
\tilde{w}_{\theta \theta} - Q(t, \theta) \tilde{w}_\theta = 0 \tag{3.5}
\]
where \(Q(t, \vartheta) = \bar{A}(t, \vartheta) \bar{B}(t, \vartheta), A(t, x) = \bar{A}(t, \vartheta) \) and \(B(t, x) = \bar{B}(t, \vartheta). \)

From the condition \(u = v \) on \(\partial \), it follows that \(\bar{w}(t, \vartheta) = 0 \) on \(\partial \), which, by Theorem 1, implies that \(\bar{w}(t, \vartheta) = 0 \) and \(u = v \) in \(D_0 \). This contradicts the assumption on \(u \) and \(v \). \(\square \)

4. Application of the difference method

We shall use the difference method for the determination of the approximate solution of the parabolic differential equation

\[
(\Phi_p(u_x))_x - \Phi_p(u_t) = 0 \quad (4.1)
\]

with conditions \((1.5)\).

Let \(m \) be a positive integer and

\[
\frac{l}{m} = h, \quad x_i = ih, \quad i = 0, 1, 2, \ldots, m.
\]

Obviously, \(x_0 = 0 \) and \(x_m = l \).

Let us denote by \(u_i(t) \) the solution of the first order system of ordinary differential equations

\[
\Phi_p\left(\frac{du_i}{dt} \right) = \frac{1}{h} \left[\Phi_p\left(\frac{u_{i+1} - u_i}{h} \right) - \Phi_p\left(\frac{u_i - u_{i-1}}{h} \right) \right]
\]

or equivalently

\[
\Phi_p\left(\frac{du_i}{dt} \right) = \frac{1}{h^{p+1}} \left[\Phi_p\left(u_{i+1} - u_i \right) - \Phi_p\left(u_i - u_{i-1} \right) \right] \quad (4.2)
\]

with the initial conditions

\[
u_i(0) = \gamma(x_i), \quad i = 1, 2, \ldots, m - 1, \quad u_0(t) = \alpha(t), \quad u_m(t) = \beta(t). \quad (4.3)
\]

Thus, system \((4.2)\) involves \(m - 1 \) equations with \(m - 1 \) unknowns.

We intend to show that for an arbitrary \(T \) problem \((4.2)\) \((4.3)\) has a uniquely determined solution. We also show that \(u(t, x_i) \) can be approximated by \(u_i(t) \) with arbitrary accuracy, i. e., for every \(\varepsilon > 0 \), there exists an \(h(\varepsilon) > 0 \) such that \(|u(t, x_i) - u_i(t)| < \varepsilon \) when \(h < h(\varepsilon) \) in \(0 \leq t \leq T, \ i = 1, 2, \ldots, m - 1. \)

Lemma 1. For \(p > 0 \), the function \(\bar{u}_i(t) = u(t, x_i) \) satisfies the system

\[
Q_i(t) = \Phi_p\left(\frac{d\bar{u}_i}{dt} \right) - \frac{1}{h^{p+1}} \left[\Phi_p\left(\bar{u}_{i+1} - \bar{u}_i \right) - \Phi_p\left(\bar{u}_i - \bar{u}_{i-1} \right) \right], \ i = 1, 2, \ldots, m - 1
\]

where \(|Q_i(t)| \leq Q_0(h) \), with \(Q_0(h) \to 0 \) as \(h \to 0. \)
where $0 \leq \theta_1, \theta_2 < 1$ we have

$$\bar{u}_{i+1}(t) - \bar{u}_i(t) = hu_i(t, x_i) + \frac{h^2}{2} u_{xx}(t, x_i + \theta_1 h),$$

$$\bar{u}_{i-1}(t) - \bar{u}_{i-1}(t) = hu_i(t, x_i) - \frac{h^2}{2} u_{xx}(t, x_i - \theta_2 h).$$

We rewrite problem (4.1) by

$$\Phi_p((\bar{u}_i)_i) = \left(\Phi_p(u_i(t, x_i)) \right)_i = p |u_i(t, x_i)|^{p-1} u_{xx}(t, x_i).$$

From this, together with (4.4) and (4.5), it follows that

$$Q_i(t) = p |u_i(t, x_i)|^{p-1} u_{xx}(t, x_i) - \frac{1}{h^{p+1}} \left[\Phi_p \left(hu_i(t, x_i) + \frac{h^2}{2} u_{xx}(t, x_i + \theta_1 h) \right) \right.\nonumber$$

$$\left. - \Phi_p \left(hu_i(t, x_i) - \frac{h^2}{2} u_{xx}(t, x_i - \theta_2 h) \right) \right].$$

By the Lagrange Mean Value Theorem (3.3), we can write

$$\Phi_p \left(hu_i(t, x_i) + \frac{h^2}{2} u_{xx}(t, x_i + \theta_1 h) \right) - \Phi_p \left(hu_i(t, x_i) - \frac{h^2}{2} u_{xx}(t, x_i - \theta_2 h) \right) \nonumber$$

$$= \frac{h^2}{2} \left[u_{xx}(t, x_i + \theta_1 h) + u_{xx}(t, x_i - \theta_2 h) \right] p |\xi|^{p-1},$$

where

$$\xi = hu_i(t, x_i) + \frac{h^2}{2} u_{xx}(t, x_i + \theta_1 h), \quad -\theta_2 < \xi < \theta_1.$$

Then we have

$$Q_i(t) = p |u_i(t, x_i)|^{p-1} u_{xx}(t, x_i) - \frac{p}{2} \left[u_{xx}(t, x_i + \theta_1 h) + u_{xx}(t, x_i - \theta_2 h) \right] |\eta|^{p-1},$$

where

$$\eta = u_i(t, x_i) + \frac{h}{2} u_{xx}(t, x_i + \theta_1 h) = u_i(t, x_i) + O(h), \quad h \to 0,$$
and

$$Q(t) = p |u_x(t, x_i)|^{p-1} u_{xx}(t, x_i)$$

$$- \frac{p}{2} [u_{xx}(t, x_i + \theta_1 h) + u_{xx}(t, x_i - \theta_2 h)] |u_x(t, x_i) + O(h)|^{p-1}$$

$$= \frac{p}{2} |u_x(t, x_i)|^{p-1} \left[u_{xx}(t, x_i) - u_{xx}(t, x_i + \theta_1 h) + u_{xx}(t, x_i - \theta_2 h) \right] + O(h^{p-1}).$$

We note that $u_x(t, x_i)$ is bounded, $u_{xx}(t, x_i)$ is uniformly continuous in \mathcal{D}_0 and $p > 1$, then for any $\varepsilon > 0$ there exists a function $h(\varepsilon)$ such that $|Q(t)| < Q_0(h)$ when $h < h(\varepsilon)$, $0 \leq t \leq T$.

Now our goal is to state a maximum principle for problem (4.2), (4.3).

Theorem 3. Consider a solution $u_i(t)$, $i = 1, 2, \ldots, m - 1$, of (4.2), (4.3), where the function γ is positive, increasing, and convex. Then the maxima of $u_i(t)$, $i = 1, 2, \ldots, m - 1$, cannot be greater than the maxima of $\alpha(t)$, $\beta(t)$ and $h(x)$; moreover, the minima of $u_i(t)$, $i = 1, 2, \ldots, m - 1$, cannot be less than the minima of $\alpha(t)$, $\beta(t)$, and $\gamma(x)$.

Proof. Let us suppose that there exists a $u_k(t^*)$ where $t^* > 0$ and $k \neq m$ such that $\max_i u_i(t) = u_k(t^*)$. Then the following two cases are possible:

(i) At least one of the inequalities $u_{k+1} - u_k < 0$ and $u_k - u_{k-1} > 0$ holds, moreover $u'_k(t_0) \geq 0$ if $t^* \neq T$ and $u'_k(t^*) > 0$ if $t^* = T$. In (4.2) we have different signs on the left side and on the right side, which is a contradiction. By the convexity of function γ we see that

$$\Phi_p \left(u'_k(O) \right) = \frac{1}{h^{p+1}} \left[\Phi_p \left(\gamma_{i+1} - \gamma_i \right) - \Phi_p \left(\gamma_i - \gamma_{i-1} \right) \right] > 0,$$

then the maxima of $u_i(t)$ cannot be taken at $t^* = 0$. This means that $k = 0$ or $k = m$ can be taken for any $t^* \in (0, T]$.

(ii) At least one of equalities $u_{k+1} - u_k = 0$ and $u_k - u_{k-1} = 0$ holds. We assume that $u_{k+1} - u_k = 0$. Then stepping from index k to $k + 1$, either we obtain a contradiction or we get

$$u_k = u_{k+1} = \cdots = u_m = 0 = \beta(t^*),$$

which we had to prove.

The proof concerning the minima is similar except that $t^* = 0$ is also allowed as $u'_0(0) > 0$.

Now we consider the existence and uniqueness of a solution of problem (4.2), (4.3).
Theorem 4. Let us suppose that function γ is continuous, increasing, convex and
\[
\min_{x,h} \Phi_1 \left\{ \frac{1}{h^{p+1}} \left[\Phi_p (\gamma(x + h) - \gamma(x)) - \Phi_p (\gamma(x) - \gamma(x - h)) \right] \right\} > L,
\]
where L is independent of h, moreover, $u_i(0) = \gamma_i$ with $\gamma_i = \gamma(ih)$ for $i = 1, 2, \ldots, m - 1$, and $u_0(t) \equiv \alpha(t)$, $u_m(t) \equiv \beta(t)$, where $\alpha < \beta$, $\alpha' > 0$, $\beta' > 0$ for all $t \geq 0$. Then problem (4.2), (4.3) has a uniquely determined solution for $0 \leq t \leq T$, where T is positive.

Proof. By the conditions on γ, we get that
\[
\frac{du_i}{dt} = \Phi_1 \left\{ \frac{1}{h^{p+1}} \left[\Phi_p (u_{i+1} - u_i) - \Phi_p (u_i - u_{i-1}) \right] \right\}
\]
(4.6)
are continuous and satisfy the Lipschitz condition for any $t < \tau$, with a small $\tau > 0$. This implies that the solution exists and is unique for $t < \tau$. The conditions on γ also gives that
\[
\frac{du_i}{dt}(0) = \Phi_1 \left\{ \frac{1}{h^{p+1}} \left[\Phi_p (\gamma_{i+1} - \gamma_i) - \Phi_p (\gamma_i - \gamma_{i-1}) \right] \right\} > L,
\]
then
\[
u_i'(t) > 0 \text{ for } t < \tau.
\]
Since $u_i(0) = \gamma(x_i) > 0$, $i = 1, 2, \ldots, m - 1$, then either $u_i'(t)$ remains positive for $t > 0$ or there is a smallest value τ_k for which $u_i'(\tau_k) = 0$ for some $k = i$.

Taking the derivative of (4.6) we obtain
\[
|u_i'|^{p-1}u_i'' = \frac{1}{h^{p+1}} \left[|\Delta u_{k+1}|^{p-1} \left(u_{k+1}' - u_k' \right) - |\Delta u_k|^{p-1} \left(u_k' - u_{k-1}' \right) \right],
\]
(4.7)
where $\Delta u_k = u_k - u_{k-1}$. At $t = \tau_k$ we have that $\Delta u_k = \Delta u_{k+1}$. For small $\varepsilon > 0$, in interval $(\tau_k - \varepsilon, \tau_k)$ we obtain that $|\Delta u_k| > 0$, $|\Delta u_{k+1}| > 0$, $u_k' = o(1)$, $u_{k+1}' - u_k' > 0$, $u_k' - u_{k-1}' < 0$. From these it follows that in (4.7) the right side is positive while the left side is negative as $u_k'' < 0$ for $t \in (\tau_k - \varepsilon, \tau_k)$.

In the case $u_k''(\tau_k) = 0$, passing from k to $k + 1$ and carrying on, we obtain
\[
u_{m-1}' = u_m' = \beta' (\tau_h) = 0,
\]
which is a contradiction. From the argument above, it follows that such a finite τ_h does not exist.

Consequently, we have that
\[
\Delta u_1 < \Delta u_2 < \cdots < \Delta u_{m-1} < \Delta u_m.
\]
REFERENCES

Author’s Address

Gabriella Bognár:
Mathematical Institute, University of Miskolc, H-3515 Miskolc-Egyetemváros, Hungary
E-mail address: matvb@uni-miskolc.hu