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Asstract. Our aim is to examine the nonlinear paraboliffeliential equationiy —

g(t, X) f(u, ux) = 0. We present three examples for the solution of the equation of
some special forms. A maximum principle and some uniqueness results are given.
Moreover, the approximate solution of the equation wifh x) = 1, obtained by

the diference method is investigated.

Mathematics Subject Classificatiol34A12, 34A45, 34K28

Keywords: Parabolic partial dferential equation, maximum principle, uniqueness,
difference method

1. INTRODUCTION
We consider the dierential equation
Uex— 9t T, 1) = 0, (1.1)
wherek = 1, 2,

k
K otu
u=uty. ul= =2

Throughout the paper we shall assume that the fungiipx) > 0 and functiorf are
homogeneous of the first degree, more precisely,

f(lu, ) =aAf(,v) fora>0 uw =0,

and, moreover, the functiohsatisfies the condition

(t,xX) e RxR.

uf(uo) >0, uw=0

and all the functions and derivatives involved here exist and are continu®us .
Whenk = 1, equation (1.1) is a parabolic second order partifiedential equation
and ifk = 2, it is a hyperbolic one

Forg(t,X) = —q(X), equation (1.1) has solutions of the fouft, x) = €'v(x) and
v = v(X) satisfies the second ordeffdrential equation

v +q(x)f(v, v') = 0. 1.2)
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A special case of equation (1.1) is the nonlinear parabofierdintial equation

(Dp (Ux))y — g(t, X) @p (W) = O, (1.3)
where®, (w) = lw|Ptw, p> 0, and the functiom, is increasingThe functionw in
the solutions of the form(t, X) = €'v(x) with ¢(t, X) = —q(X) satisfies the relation

(©p (v))" +a(X) Pp (v) = O. (1.4)
We shall consider the solvability of equation (1.1) koe 1 and that of equation
(1.3) with the conditions
u(0, x) = ¥(x),

u(t, 0) = a(t), (1.5)

ut,l)=p@), 1>0
andy(0) = a(0), y(I) = B(0), y € C([0,1]), @, B € C([0,T]), T > 0. We suppose that
u(t, x) has continuous derivatives in the domain= {(t,x) :t € [0,T], x < [0, 1]}
andul(t, x) is continuous on the boundary 6f.

First we give three examples in which the solutions of (1.3) of some special forms
are presented. A maximum principle and some uniqueness results are given for the
solution of (1.1) and (1.3). In the last section, the approximate solution of (1.3) with
g(t, X) = 1 obtained by the dlierence method is examined.

2. SOLUTIONS OF A SPECIAL FORM

We give the solution of the parabolic partialférential equation (1.1) or (1.3)
provided the solution is of a special form.

Examplel. Let us consider the solution of (1.3) of the foutt, X) = exp@t+ bx),
wherea andb are constants. In this case, equation (1.3) gives

pIbIP*L — g(t, X) Dp(a) = O.
If g(t, X) > O, then it is obvious thaa > 0. If ¢(t, x) = 1, then

1
+ p ﬂ
a:p%lblp_v1 or b:i(%)p

and the solution has the form
aP ﬁ
u(t, x) = exp|at + (F) X

or
1o
u(t, x) = exp(pp b P t+ bx).
In the plane 1 x), the solutionu(t,x) = € is constant on the straight lineg +

(a—;)"%l x = C, C = const.
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Example2. Let us consider the solution of (1.3) of the fouft, X) = v(X)7(t) with
g(t, x) = r(x)s(t).

Substitutingu into equation (1.3) we have
Pl P @p(r) = (XS Pp()@p(7").
We suppose tha{x) # 0 andr(t) # 0. Separating the variables, one can getfor
plv' P — pr(x) Dp(v) =0, 4 = const (2.1)
and forr

(2.2)

’ 1—1
r_ ‘L PR
T sl s(b)
For the solution of (2.1) we refer td+3. The most important property of these
solutions is that for any given initial condition fate I,
X(to) = Xo,
X (to) = X
there exists a unique solutiotft) defined for allt € I. If ur(x) < O (this yields that

1 s(t) < 0), thenv is oscillatory.
From this we can see that the solution of (2.2) has the form

() = K exp(jjcp% (S(/;)) dw), K = const

Let us consider the special case where O, r(x) > 0, s(t) > 0, and
at)y =1+t te[0,T],
v(0) =1,
7(0)=1,

then from this it follows that

S(t) =u(@+1P°,

v(X) = ¥(),

() =1+t,

B =1 +1)y()
and functiony (x € [0,1]) satisfies equation (2.1). For the solution offéiential
equation (1.3) of the form(t, xX) = v(X) 7(t), the relation

u(t, ) = (1+ 179

holds.

Example3. Let us consider the solution of (1.3) of the foutt, X) = v(X) + 7(t)
with g(t, X) = r(x) s(t).
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In this case, equation (1.3) gives
PP = r()s(t) @p(r).
Separating the variables, we obtain
plv|P W’ =kr(x),  «=const (2.3)

and
S(t) Pp(7) = «. (2.4)
From equation (2.3), we get

009 =560 [0 ( ['r0 de] oy

t
7(t) = QP(K)L (D;,l(s(‘r)) dr.
In the special case wheréx) = s(t) = 1 (g(t, X) = 1), we have

009 = 05(6) [ @3 (o) dy = P50 X7
o) = B

and from (2.4),

and, therefore the solution of (1.3) has the form

u(t, x) = Do) | —P— x5 +t
A Y]

3. REesuLrs

Theorem 1. Let us suppose that there exists a solutiorflofl) for k = 1 or (1.3)
in the domainzy = {(t,X) : t € [0, T), X € [0, 1]} with the boundary conditiond..5).
Then the solution assumes its maximund 64y, the boundary of,.

Proor. We suppose the opposite that solutioassumes its maximum at an inner
point (*, x*) of %y or on the linet = T. By this assumption,

u(t™, x*) = max u(t,x) =6 > 0.
( ) (t.X)€d %0 (%)

For the auxiliary function
0T -t

t,X) = u(t, X) + = ——
w(t,X) = U(t, %) + 5—=—.

we have

u(t, X) < w(t, X) < u(t, X) + g
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For any point{,X) on % = {(t,X) : t =0, x= 0, x = I}, we see that
w(t*, X) > u(t*, x*) = max u(t,x) + 5 > u(t,X) + o
(t.X)€d%

— oT —t — 0 —
ZU)(t,)_()—é?-l-é‘ZU)(t,)_()-l-E>U)(t,)_().

Thereforeu(t, X) assumes its maximum €t X) € Zp \ 4. At this point,
wy=0, wyx<0, w;=>0,

which implies that

0
Ux = O, UXX < O, ut = wt + 2_T > O (31)

From this observation, it follows that
Uxx — g(t, X) (U, u) <0 or (Dp(Ux))y — g(t,X) Pp(w) <0 at (£ %),

which is a contradiction.
We remark thaty; > 0 and alsax > 0 atf = T. ]

For the minimum of the solution of (1.1) or (1.3) #y we can formulate a similar
statement, namely thaft, X) assumes its minimum o in both cases.

Theorem 2. There are no any two solutions v of (1.3)with g(t, X) = 1 such that
u=von% andu # v, Uy > vy andu; > v in 2.

Proor. We suppose that andv are diferent solutions of the fferential equation
with g(t, X) = 1, then
(Pp (Ux)x — Pp () =0
and
(p (0x))y — Pp (v) = 0,
which gives that

(ch (uy) — ®, (vx))y — ((Dp (W) - D, (v)) = 0. (3.2)
By the Lagrange Mean Value Theorem, there exists soméa, b) such that
Dp(b) - Dp(@) = (b—-a) p 1P, (3.3)
Let us introduce the notatian = u — v; for equation (3.2) we can write
(A(t, X) wx)x — B(t, X) wy = 0, (3.4)

whereA(t, x) = pl&|P L for vy < & < ux andB(t, X) = pl&|P~t for o < & < .
Introducing the new variabl& instead ofx, by

X dé«
o= | .
f At.2)

we get forw(t, X) = w(t, #) thatA(t, X) wx = wy and equation (3.4) is transformed to
wyy — Q(t, ) wy = 0 (3.5)
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whereQ(t, ) = A(t, 9) B(t, ), A(t, X) = A(t, ) andB(t, X) = B(t, 9).

From the conditioru = v on 4, it follows thatw(t,}) = 0 on %, which, by
Theorem 1, implies thai(t, ) = 0 andu = v in 2. This contradicts the assumption
onuandv. O

4. APPLICATION OF THE DIFFERENCE METHOD

We shall use the flierence method for the determination of the approximate solu-
tion of the parabolic dferential equation

(Dp (Ux))y — Pp () =0 (4.1)

with conditions(1.5) .
Let mbe a positive integer and

[
m

X = ih, i=0,12....,m

Obviously,xp = 0 andxmy, = 1.
Let us denote by;(t) the solution of the first order system of ordinarffeience-
differential equations

o[t = 7o) - ()

or equivalently

Dp (O(lj—l:) = hp_1+1 | ©p (U1 = i) = ©p (U = Uia)] (4.2)
with the initial conditions
U (0) = y(x), i=12,...,.m-1,
uo(t) = af(t), (4.3)
Um(t) = B(Y).

Thus, system (4.2) involvas — 1 equations withm — 1 unknowns.

We intend to show that for an arbitrafyproblem(4.2) (4.3) has a uniquely deter-
mined solution. We also show tha(, x;) can be approximated hy(t) with arbitrary
accuracy, i. e., for every > 0, there exists ah(¢) > 0 such thatu(t, x) — u(t)] < €
whenh<h(g)in0<t<T,i=12,...,m-1

Lemma 1. For p > 0, the functioru;(t) = u(t, x;) satisfies the system
dui 1
Qi(t) = dp (a) ~ e

where|Q;(t)| £ Qo(h), with Qg(h) - Oash — 0.

|@p (U1~ B) - @p (G - Uia)], 1=12....m-1
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Proor. Applying the Taylor formula fou;i,; andu;j_;

_ h?
Uir2(t) = u(t, x + h) = u(t, X)) + hux(t, x) + Euxx(t, Xi + 61h),

_ h2
Ui—1(t) = u(t, x — h) = u(t, ;) — huy(t, x) + Euxx(t, Xi — 62h),

where 0< 64, 6> < 1 we have

Ui+ (t) — Ui(t) = hux(t, x) + h;uxx(t, X + 61h), (4.4)
Ui (t) — Ui—1(t) = hux(t, x) - h—;uxx(t, X — 62h). (4.5)

We rewrite problen{4.1) by
©p ((U)y) = (Pp (U (t, X)),
= Plux (&, X)IP Uy (t, X;) -

From this, together wit4.4) and(4.5), it follows that

2
Qi(t) = plux (t, X)IP ™ U (t, %) — hp—1+1 [Cbp(hux(t, Xi) + h?uxx(t, Xi + elh))

hZ
- @y (hux(t’ Xi) — Euxx(t’ Xi — 92h))] .

By the Lagrange Mean Value Theorem (3.3), we can write

h? h?
D) (hux(t, Xi) + Euxx(t, Xi + 61h)) - @, (hux(t, Xi) — Euxx(t, Xi — 92h))

h2
= > [Uxx(t, Xi + 61h) + uxx(t, X — 62h)] pI€] p-1 )

where
h2
€ = huy(t, ) + 7Uxx(t’ X +63h), —62<63<6;.
Then we have
Qi (t) = p |uX (t7 Xl)lp_l uXX (t’ XI) - g [uXX(ta Xl + glh) + uXX(t’ Xi - th)] |77|p_1 s
where

h
n = Ux(t, x) + Euxx(t, Xi + 63h) = ux(t, x;) + O(h), h— 0,
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and

Qi(t) = plux(t, Xi)|p_1 Uxx (t, Xi)
- g [Uxx(t, % + 610) + Uxx(t, X — 620)] ux(t, %) + O(h)[P~*

= 20 (6 X0 [ (6 ) = Ut X+ )
+ Uy (6 36) = Ut X, = 620)] + O(hP).

We note thatiy (t, X;) is boundeduxy (t, %) is uniformly continuous inZp andp > 1,
then for anye > 0 there exists a functiom(e) such thatQ;(t)] < Qo(h) whenh < h(e),
O<t<T. |

Now our goal is to state a maximum principle for problem (4(23) .

Theorem 3. Consider a solution(t), i = 1,2,...,m- 1, of (4.2), (4.3), where
the functiony is positive, increasing, and convex. Then the maximg;@®f, i =
1,2,...,m—1, cannot be greater than the maximaagt), 8(t) and h(x); moreover,
the minima ofi(t), i = 1,2,...,m— 1, cannot be less than the minimaddt), A(t),
andy(X).

Proor. Let us suppose that there existgé*) wheret* > 0 andk # 0, k # msuch
that max;ui(t) = u(t*). Then the following two cases are possible:

(i) At least one of the inequalitiag.1 — ux < 0 anduk — ux_1 > 0 holds, moreover
Ul(to) = 0if t* # T andu(t*) > 0 if t* = T. In (4.2) we have diferent signs on the
left side and on the right side, which is a contradiction. By the convexity of function
v we see that

@, (1/(0)) = hp_1+1 |®p (is1 = 0) = @p (i = vi-1)| > O,

then the maxima ofij(t) cannot be taken at = 0. This means that = 0 ork = m
can be taken for anty € (0, T].

(i) At least one of equalitiesy; 1 —ux = 0 anduk—uk_1 = 0 holds. We assume that
Uk+1 — Ux = 0. Then stepping from indek to k + 1, either we obtain a contradiction
or we get

U = Uge1 = -+ - = Um-1 = Um = B(17),

which we had to prove.
The proof concerning the minima is similar except ttiat 0 is also allowed as
u’(0) > 0. O

Now we consider the existence and uniqueness of a solution of problem (4.2),
4.3).
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Theorem 4. Let us suppose that functignis continuous, increasing, convex and

min; { s (9006 B = 0) - 00 600 = tx- )] > L

whereL is independent df, moreovery;(0) = y; withy; = y (ih) fori =1,2,...,m—
1, andug(t) = a(t), un(t) = B(t), wherea < B, @’ > 0,5 > Oforallt = 0. Then
problem(4.2), (4.3) has a uniquely determined solution for< t < T, whereT is
positive.

Proor. By the conditions ory, we get that

%—l: = 0, {% |©p (U1 - u) - p (Ui - ui_l)]} (4.6)

are continuous and satisfy the Lipschitz condition for aryr, with a smallr > 0.
This implies that the solution exists and is uniquetferr. The conditions ory also
gives that

duy 1
ot ) = EF {W [‘Dp (ier = 7i) = Pp (i — Vi—l)]} > L,
then

u(t) >0 for t <

Sinceu; (0) = y(x) > 0, i = 1,2,...,m- 1, then eithen/(t) remains positive for
t > 0 or there is a smallest valug for which u(7) = 0 for somek = i.
Taking the derivative 0f4.6) we obtain

71p=1, 7 _
lu ™ Uy =

o {IAUIP (Upyy — G) = 1AUP (U - b)) (A7)
whereAux = u, —u,_;. At t = 7, we have that\uk = Auk,1. For smalle > 0, in
interval (7, — &, h) we obtain thatAuy| > O, |Auk,1| > O, up = o(1), u;,, — U, > 0,
U, — U._, < 0. From these it follows that i¢.7) the right side is positive while the
left side is negative ag/ < O fort € (vh — &, 7).

In the casey, ,, (tn) = 0, passing fromk to k + 1 and carrying on, we obtain

Up-1 = Un =5 (tn) =0,

which is a contradiction. From the argument above, it follows that such a figite
does not exist.
Consequently, we have that

Aup < AUz < -+ < AUm-1 < AUp.
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