Miskolc Mathematical Notes
HU e-ISSN 1787-2413
Vol. 15 (2014), No 1, pp. 153-158

# The Cauchy-Schwarz inequality in Cayley graph and tournament structures on finite fields 

## Stephan Foldes and László Major

# THE CAUCHY-SCHWARZ INEQUALITY IN CAYLEY GRAPH AND TOURNAMENT STRUCTURES ON FINITE FIELDS 

STEPHAN FOLDES AND LÁSZLÓ MAJOR

Received 03 November, 2013


#### Abstract

The Cayley graph construction provides a natural grid structure on a finite vector space over a field of prime or prime square cardinality, where the characteristic is congruent to 3 modulo 4 , in addition to the quadratic residue tournament structure on the prime subfield. Distance from the null vector in the grid graph defines a Manhattan norm. The Hermitian inner product on these spaces over finite fields behaves in some respects similarly to the real and complex case. An analogue of the Cauchy-Schwarz inequality is valid with respect to the Manhattan norm. With respect to the non-transitive order provided by the quadratic residue tournament, an analogue of the Cauchy-Schwarz inequality holds in arbitrarily large neighborhoods of the null vector, when the characteristic is an appropriate large prime.


2010 Mathematics Subject Classification: 05C12; 05C20; 05C25; 06F99; 11T99
Keywords: Cauchy-Schwarz inequality, triangle inequality, submultiplicativity, finite field, quadratic field extension, quadratic residue tournament, grid graph, Manhattan distance, discrete norm, Gaussian integers, graph product, graph quotient, Cayley graph

## 1. MANHATTAN NORMS AND GRID GRAPHS

We consider the finite fields $\mathbb{F}_{p}$ and $\mathbb{F}_{p^{2}}$ of prime and prime square cardinality, where $p \equiv 3 \bmod 4$. The field $\mathbb{F}_{p^{2}}$ has a natural graph structure with the field elements as vertices, two distinct vertices $u, z$ being adjacent if $(z-u)^{4}=1$. The subfield $\mathbb{F}_{p}$ of $\mathbb{F}_{p^{2}}$ then induces a subgraph in which $x$ and $y$ are adjacent if and only if $(y-x)^{2}=1$. The graph $\mathbb{F}_{p^{2}}$ is isomorphic to the Cartesian square $C_{p}^{2}=C_{p} \square C_{p}$, where $C_{p}$ is a $p$-cycle and within $\mathbb{F}_{p^{2}}$ the induced subgraph $\mathbb{F}_{p}$ is itself a $p$-cycle. Clearly the graph $\mathbb{F}_{p^{2}}$ is not planar, but can be drawn as a grid on the torus.

For any connected graph whose vertex set is a group, the distance of any vertex $z$ from the identity element of the group is called the norm of $z$, denoted $N(z)$. In general, distances and norms measured in connected subgraphs induced by subgroups can be larger than distances and norms measured with reference to the whole graph. However, with respect to the distance-preserving subgraph induced by $\mathbb{F}_{p}$ in $\mathbb{F}_{p^{2}}$, the norm of any $z \in \mathbb{F}_{p}$ is the same as its norm with respect to the whole graph $\mathbb{F}_{p^{2}}$ : this is simply the length of the shortest path from 0 to $z$ in the cycle induced by $\mathbb{F}_{p}$.

For $q=p$ or $q=p^{2}$, the $n$-dimensional vector space $\mathbb{F}_{q}^{n}$ is also endowed with the Cartesian product graph structure $\mathbb{F}_{q} \square \cdots \square \mathbb{F}_{q}$ isomorphic to $C_{p}^{n}$ or $C_{p}^{2 n}$. The norm of a vector $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ in $\mathbb{F}_{q}^{n}$ is then equal to the $\operatorname{sum} N\left(v_{1}\right)+\cdots+N\left(v_{n}\right)$ and we also write $N(\mathbf{v})$ for this vector norm.

The Gaussian integers $\mathbb{Z}[i]$ also constitute a graph in which $u$ and $z$ are adjacent if and only if $(z-u)^{4}=1$.

It is easy to see that the norm in this infinite Manhattan grid satisfies the triangle and submultiplicative inequalities

$$
\begin{aligned}
N(u+z) & \leq N(u)+N(z) \\
N(u z) & \leq N(u) N(z)
\end{aligned}
$$

To emphasize that the norms on $\mathbb{F}_{p^{2}}, \mathbb{F}_{p^{2}}^{n}$ and $\mathbb{Z}[i]$ are understood with reference to the specific grid graphs defined above, we call these norms Manhattan norms. Throughout this paper we think of $\mathbb{F}_{p^{2}}$ as the ring quotient $\mathbb{Z}[i] /(p)$.

## 2. Graph Quotients and Cayley graphs

Given a graph $G$ (undirected, with possible loops) on vertex set $V$ and an equivalence relation $\equiv$ on $V$, the quotient graph $G / \equiv$ is defined as follows: the vertices of $G / \equiv$ are the equivalence classes of $\equiv$, and classes $A, B$ are adjacent if for some $a \in A, b \in B$, the elements $a, b$ are adjacent in $G$. Note that the distance of $A$ to $B$ in the quotient graph is at most equal to, but possibly less than the minimum of the distances $a$ to $b$ for all $a \in A, b \in B$. Note also that $G / \equiv$ can have loops even if $G$ has not.

Given a group $G$ with identity element $e$ and a set $\Gamma$ of group elements that generates $G$, the (left) Cayley graph $セ(G, \Gamma)$ of $G$ with respect to $\Gamma$ has vertex set $G$, elements $a, b \in G$ being considered adjacent if $a b^{-1}$ or $b a^{-1}$ belongs to $\Gamma$. For each congruence $\equiv$ of the group $G$, corresponding to some normal subgroup $H, \Gamma$ yields a generating set $\Gamma \equiv$ of $G / \equiv$ consisting with those classes of $\equiv$ that intersect $\Gamma$. The graph quotient of $\varphi(G, \Gamma)$ by the equivalence $\equiv$ coincides with the Cayley graph of the quotient graph $G / \equiv$ with respect to $\Gamma_{\equiv}$. For $R \subseteq G$ inducing a connected subgraph $[R]$ in $\mathscr{C}(G, \Gamma)$, denote by $d_{R}(x, y)$ the distance function of the subgraph [R]. Denoting by $x H$ the $H$-coset of any $x \in G$, this relates to norms in $\varphi(G, \Gamma)$ and $\varphi(G, \Gamma) / \equiv$ as follows: for all $x \in R$,

$$
d_{R}(x, e) \geq N(x) \geq N(x H)
$$

Both inequalities can be strict. However, we have:
Cayley Graph Quotient Lemma. Let a group $G$ with identity e be generated by $\Gamma \subseteq G$, and consider any normal subgroup $H$ with corresponding congruence $\equiv$. There is a set $R \subseteq G$ having exactly one element in common with each congruence
class modulo $H$, and such that for every $x \in R$

$$
d_{R}(x, e)=N(x)=N(x H)
$$

Proof. We can define the unique (representative) element $r(A) \in R \cap A$ for each coset $A$ by induction on the distance $d(H, A)$ of $A$ from $H$ in $\smile(G, \Gamma) / \equiv$. Let $r(H)=e$. Assuming $r(A)$ defined for all $A$ with $d(H, A) \leq m$, let a coset $B$ have distance $m+1$ from $H$. Choose any coset $A$ adjacent to $B$ with $d(H, A)=m$ and elements $a \in A, b \in B$ that are adjacent in $\mathcal{C}(G, \Gamma)$. Let $r(B)=b a^{-1} r(A)$.

We can apply the above lemma in the case where $G=\mathbb{Z}[i], \Gamma=\{1, i\}$ and $H=$ $p \mathbb{Z}[i]=\{p a+p b i: a, b \in \mathbb{Z}\}$ for a prime integer $p \equiv 3 \bmod 4$. Now $\smile(G, \Gamma)$ and $\varkappa(G, \Gamma) / \equiv$ are the Manhattan grid graphs on $\mathbb{Z}[i]$ and $\mathbb{Z}[i] / H=\mathbb{F}_{p^{2}}$, respectively. Referring to the set $R$ of representatives in the lemma, for any $H$-cosets $X, Y$ let $x, y$ be the unique elements in $X \cap R, Y \cap R$. As $x y \in X Y$, we have $N(X Y) \leq N(x y)$. By the submultiplicative inequality in $\mathbb{Z}[i]$ we have $N(x y) \leq N(x) N(y)$. Using the lemma we have $N(x) N(y)=N(X) N(Y)$. This yields a submultiplicative inequality in $\mathbb{F}_{p^{2}}$ and a similar reasoning on the coset $X+Y$ yields a triangle inequality:
Triangle and Submultiplicative Inequalities in $\mathbb{F}_{p^{2}}$. For all $u, z$ in $\mathbb{F}_{p^{2}}$

$$
\begin{aligned}
N(u+z) & \leq N(u)+N(z) \\
N(u z) & \leq N(u) N(z)
\end{aligned}
$$

This indicates that Manhattan distance provides a well-behaved notion of neighborhood of 0 in the finite fields $\mathbb{F}_{p^{2}}$.

## 3. SQuares in $\mathbb{F}_{p}$ and non-Transitive order

For each prime $p \equiv 3 \bmod 4$ the quadratic residue tournament on $\mathbb{F}_{p}$ is the directed graph with vertex set $\mathbb{F}_{p}$ in which there is an arrow from vertex $x$ to vertex $y$ if $y-x$ is a non-zero square in $\mathbb{F}_{p}$, in which case we write $x<_{p} y$. We write $x \leq_{p} y$ if $x<_{p} y$ or $x=y$. The relation $\leq_{p}$ is reflexive, anti-symmetric but not transitive, and for every $x \neq y$ exactly one of $x \leq_{p} y$ or $y \leq_{p} x$ holds. Using Dirichlet's theorem on primes in arithmetic progressions, Kustaanheimo showed [4] that for every positive integer $k$, there is a prime $p \equiv 3 \bmod 4$, such that $\leq_{p}$ is a transitive (and linear) order relation on $\{0,1, \ldots, k\} \subseteq \mathbb{F}_{p}$, that is, all positive integers up to $k$ are quadratic residues $\bmod p$. Obviously $k$ cannot exceed $(p-1) / 2$. Implications of [4] and related questions were investigated by Järnefelt, Kustaanheimo, Quist [3, 5], in particular with a view to discrete models in physics, also in subsequent applicationoriented work between the 1950's (Coish [1]) and the 1980's (Nambu [6]). For further references see [2]. In particular [4] implies that for every positive integer $k$, there is a prime $p \equiv 3 \bmod 4$, such that all $z \in \mathbb{F}_{p^{2}}$ with $N(z) \leq k$ are squares in $\mathbb{F}_{p^{2}}$. (Note that all elements of the prime subfield $\mathbb{F}_{p}$ are squares in $\mathbb{F}_{p^{2}}$.) To emphasise the analogy of the relation $\leq_{p}$ with the ordinary inequality relation $\leq$ among numbers, we say that a non-zero $z \in \mathbb{F}_{p^{2}}$ is positive if $z \in \mathbb{F}_{p}$ and $0 \leq_{p} z$.

## 4. INNER PRODUCTS COMPARED IN NON-TRANSITIVE ORDER

The only non-trivial automorphism of the field $\mathbb{F}_{p^{2}}$ associates to each $z \in \mathbb{F}_{p^{2}}$ its conjugate $\bar{z}$. The inner product $\mathbf{v} \cdot \mathbf{w}$ of vectors $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$ in $\mathbb{F}_{p^{2}}^{n}$ is defined as the scalar $v_{1} \overline{w_{1}}+\cdots+v_{n} \overline{w_{n}} \in \mathbb{F}_{p^{2}}$. This inner product is left and right distributive over vector addition, satisfies $\mathbf{v} \cdot \mathbf{w}=\overline{\mathbf{w} \cdot \mathbf{v}}, c(\mathbf{v} \cdot \mathbf{w})=(c \mathbf{v}) \cdot \mathbf{w}=$ $\mathbf{v} \cdot(\bar{c} \mathbf{w})$ for all $c \in \mathbb{F}_{p^{2}}$. However, while $\mathbf{v} \cdot \mathbf{v}$ belongs to the prime subfield $\mathbb{F}_{p}, \mathbf{v} \cdot \mathbf{v}$ is not necessarily positive, and can be 0 even if $\mathbf{v} \neq \mathbf{0}$. Still, a conditional version of positive definiteness holds locally:

Theorem 1. For every $k \geq 1$ there is a prime $p \equiv 3 \bmod 4$, such that for all $n \geq 1$ and for all vectors $\boldsymbol{v} \in \mathbb{F}_{p^{2}}^{n}$ of Manhattan norm $N(\boldsymbol{v}) \leq k$, we have $0 \leq_{p} \boldsymbol{v} \cdot \boldsymbol{v}$ with equality if and only if $\boldsymbol{v}=\mathbf{0}$.

Proof. By Kustaanheimo's result in [4] there is a prime integer $p \equiv 3 \bmod 4$ such that $0,1, \ldots, 2 k^{3}$ are all quadratic residues $\bmod p$. For $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ in $\mathbb{F}_{p^{2}}^{n}$, let $v_{j}=a_{j}+b_{j} i$, where $i^{2}=-1$. If $N(\mathbf{v}) \leq k$ then for all $j, N\left(a_{j}\right) \leq k$ and $N\left(b_{j}\right) \leq k$, $v_{j} \overline{v_{j}}=a_{j}^{2}+b_{j}^{2}$ belongs to the set of squares $\left\{0, \ldots, 2 k^{2}\right\}$. Since $v_{j}$ can be non-zero for at most $k$ indices $1 \leq j \leq n$ only, the sum of the corresponding terms $a_{j}^{2}+b_{j}^{2}$ belongs to the set of squares $\left\{0,1, \ldots, 2 k^{3}\right\}$.

Note that for all vectors $\mathbf{v}, \mathbf{w} \in \mathbb{F}_{p^{2}}^{n}$

$$
\begin{aligned}
(\mathbf{v} \cdot \mathbf{w})(\mathbf{w} \cdot \mathbf{v})= & (\mathbf{v} \cdot \mathbf{w})(\overline{\mathbf{v} \cdot \mathbf{w}}) \in \mathbb{F}_{p} \text { and } \\
& (\mathbf{v} \cdot \mathbf{v})(\mathbf{w} \cdot \mathbf{w}) \in \mathbb{F}_{p} .
\end{aligned}
$$

If $\mathbf{v}$ and $\mathbf{w}$ are proportional, i.e. if there exists a scalar $c$ in $\mathbb{F}_{p^{2}}$ such that $\mathbf{v}=c \mathbf{w}$ or $\mathbf{w}=c \mathbf{v}$, then the above two products are equal. Generally, they are related in the quadratic residue tournament of $\mathbb{F}_{p}$ as follows.

Theorem 2 (Cauchy-Schwarz Inequality). For every $k \geq 1$ there is a prime $p \equiv$ $3 \bmod 4$, such that for all $n \geq 1$ and for all vectors $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{F}_{p^{2}}^{n}$ of Manhattan norm at most $k$,

$$
(v \cdot w)(w \cdot v) \leq_{p}(v \cdot v)(w \cdot w)
$$

Proof. For $n=1$ the inequality holds trivially as the two sides are equal. Assume $n \geq 2, \mathbf{v}=\left(v_{1}, \ldots, v_{n}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{n}\right)$. For all $1 \leq i \leq n, N\left(v_{i}\right) \leq k, N\left(w_{i}\right) \leq k$. By Kustaanheimo's result [4] there is a prime $p \equiv 3 \bmod 4$ such that all positive integers up to $4 k^{6}$ are quadratic residues modulo $p$. For each of the $\binom{n}{2}$ pairs $\{i, j\} \subseteq$ $\{1, \ldots, n\}, i \neq j$, by the triangle and submultiplicative inequalities in $\mathbb{F}_{p^{2}}$

$$
N\left[\left(v_{i} w_{j}-v_{j} w_{i}\right)\left(\bar{v}_{i} \bar{w}_{j}-\bar{v}_{j} \bar{w}_{j}\right)\right] \leq\left(k^{2}+k^{2}\right)^{2}=4 k^{4}
$$

Thus the element

$$
\left(v_{i} w_{j} \bar{v}_{i} \bar{w}_{j}+v_{j} w_{i} \bar{v}_{j} \bar{w}_{i}\right)-\left(v_{i} w_{j} \bar{v}_{j} \bar{w}_{i}+v_{j} w_{i} \bar{v}_{i} \bar{w}_{j}\right)=\left(v_{i} w_{j}-v_{j} w_{i}\right)\left(\bar{v}_{i} \bar{w}_{j}-\bar{v}_{j} \bar{w}_{j}\right)
$$

is a square of Manhattan norm at most $4 k^{4}$ in $\mathbb{F}_{p}$, and it is non-zero for at most $\binom{k}{2} \leq k^{2}$ pairs $\{i, j\}$. Summing over all pairs $\{i, j\}$, all but at most $\binom{k}{2} \leq k^{2}$ terms vanish in the sum

$$
\sum\left[\left(v_{i} w_{j} \bar{v}_{i} \bar{w}_{j}+v_{j} w_{i} \bar{v}_{j} \bar{w}_{i}\right)-\left(v_{i} w_{j} \bar{v}_{j} \bar{w}_{i}+v_{j} w_{i} \bar{v}_{i} \bar{w}_{j}\right)\right]
$$

which therefore has Manhattan norm at most $4 k^{6}$ and it must also be a square in $\mathbb{F}_{p}$. But this sum is equal to the difference of products

$$
\sum_{i=1}^{n} v_{i} \bar{v}_{i} \sum_{j=1}^{n} w_{j} \bar{w}_{j}-\sum_{i=1}^{n} v_{i} \bar{w}_{i} \sum_{j=1}^{n} \bar{v}_{j} w_{j}=(\mathbf{v} \cdot \mathbf{v})(\mathbf{w} \cdot \mathbf{w})-(\mathbf{v} \cdot \mathbf{w})(\mathbf{w} \cdot \mathbf{v})
$$

which is consequently a square in $\mathbb{F}_{p}$.
Remark. From the proof it is clear that, in analogy with the classical CauchySchwarz inequality, for vectors $\mathbf{v}, \mathbf{w}$ of norm not exceeding $k$ in $\underset{p^{2}}{n}$, where $p$ is related to $k$ as stipulated above, the Cauchy-Schwarz inequality with respect to $\leq_{p}$ holds with equality if and only if $v_{i} w_{j}-v_{j} w_{i}=0$ for all $i, j$, i.e. if and only if $\mathbf{v}, \mathbf{w}$ are proportional.

We note that the inequality established above is conditional, it holds only in a specified Manhattan neighborhood of the null vector. Every non-zero element of $\mathbb{F}_{p}$ can be written as a sum of two squares, in particular there are $a, b \in \mathbb{F}_{p}$, such that $a^{2}+b^{2}=-1$. For $z=a+b i$ we have $z \bar{z}=-1$. As soon as $n \geq 2$, in $\mathbb{F}_{p^{2}}^{n}$ let

$$
\mathbf{v}=(a, b, 0, \ldots, 0) \quad \text { and } \quad \mathbf{w}=(b z,-a z, 0, \ldots, 0)
$$

The inequality $(\mathbf{v} \cdot \mathbf{w})(\mathbf{w} \cdot \mathbf{v}) \leq_{p}(\mathbf{v} \cdot \mathbf{v})(\mathbf{w} \cdot \mathbf{w})$ fails because the left-hand side is 0 and the right-hand side is -1 . In fact if $n \geq 3$, the inequality can be invalidated with vectors $\mathbf{v}, \mathbf{w}$ in $\mathbb{F}_{p}^{n}$ as follows. Taking again $a, b \in \mathbb{F}_{p}$ with $a^{2}+b^{2}=-1$, let

$$
\mathbf{v}=(1, a, b, 0, \ldots, 0) \text { and } \quad \mathbf{w}=(1,0,0,0, \ldots, 0)
$$

However, the Cauchy-Schwarz inequality holds unconditionally in the 2-dimensional case for vectors with components in $\mathbb{F}_{p}$ :

Special case of $\mathbb{F}_{p}^{2}$. Let $p$ be a prime congruent 3 modulo 4. For all vectors $\boldsymbol{v}, \boldsymbol{w}$ in $\mathbb{F}_{p}^{2}$

$$
(v \cdot w)(w \cdot v) \leq_{p}(v \cdot v)(w \cdot w)
$$

Proof. Now the conjugation appearing in the inner products is the identity. Written in components,

$$
\begin{aligned}
(\mathbf{v} \cdot \mathbf{v})(\mathbf{w} \cdot \mathbf{w})-(\mathbf{v} \cdot \mathbf{w})(\mathbf{w} \cdot \mathbf{v}) & =\left(v_{1}^{2}+v_{2}^{2}\right)\left(w_{1}^{2}+w_{2}^{2}\right)-\left(v_{1} w_{1}+v_{2} w_{2}\right)^{2}= \\
=v_{1}^{2} w_{2}^{2}+v_{2}^{2} w_{1}^{2}-2 v_{1} w_{1} v_{2} w_{2} & =\left(v_{1} w_{2}-v_{2} w_{1}\right)^{2}
\end{aligned}
$$

## 5. MANHATTAN NORM OF INNER PRODUCT

The Manhattan norm can be seen to be submultiplicative not only on the ring $\mathbb{Z}[i]$ and its quotient field $\mathbb{F}_{p^{2}}$, but on all vector spaces $\mathbb{F}_{p^{2}}^{n}$, with respect to the inner product:

## Cauchy-Schwarz Inequality for Manhattan Norm on $\mathbb{F}_{p^{2}}^{n}$. Consider any prime

 $p \equiv 3 \bmod 4$ and let $n \geq 1$. For all $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{F}_{p^{2}}^{n}$$$
N(\boldsymbol{v} \cdot \boldsymbol{w}) \leq N(\boldsymbol{v}) N(\boldsymbol{w})
$$

Proof. Let $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right), \mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{F}_{p^{2}}^{n}$. Then $\mathbf{v} \cdot \mathbf{w}=\sum v_{j} \overline{w_{j}}$. Clearly $N(z)=N(\bar{z})$ for any $z \in \mathbb{F}_{p^{2}}$. By the triangle and submultiplicative inequalities in $\mathbb{F}_{p^{2}}$ we have

$$
\begin{aligned}
N(\mathbf{v} \cdot \mathbf{w})=N\left(\sum v_{j} \overline{w_{j}}\right) & \leq \sum N\left(v_{j} \overline{w_{j}}\right) \leq \sum N\left(v_{j}\right) N\left(w_{j}\right) \leq \\
& \leq \sum N\left(v_{j}\right) \sum N\left(w_{j}\right)=N(\mathbf{v}) N(\mathbf{w})
\end{aligned}
$$

Remark. The inequality $N(\mathbf{v} \cdot \mathbf{w}) \leq N(\mathbf{v}) N(\mathbf{w})$ is easily interpreted and continues to hold for $\mathbf{v}, \mathbf{w}$ in the module $(\mathbb{Z}[i] / m \mathbb{Z}[i])^{n}$ for any positive integer $m$. As soon as $m$ is composite, or a prime not congruent to 3 modulo 4 , the ring $\mathbb{Z}[i] / m \mathbb{Z}[i]$ fails to be an integral domain.

## REFERENCES

[1] H. R. Coish, "Elementary particles in a finite world geometry," Phys. Rev., vol. 114, pp. 383-388, 1959.
[2] S. Foldes, "The lorentz group and its finite field analogs: local isomorphism and approximation," Journal of Mathematical Physics, vol. 49, no. 093512, 2008.
[3] G. Järnefelt and P. Kustaanheimo, "An observation on finite geometries," in Proc. Skandinaviske Matematikerkongress i Trondheim, 1949, pp. 166-182.
[4] P. Kustaanheimo, "A note on a nite approximation of the euclidean plane geometry," Comment. Phys.-Math. Soc. Sc. Fenn., vol. 19, pp. 1-11, 1950.
[5] P. Kustaanheimo and B. Qvist, "On differentiation in galois fields," Ann. Acad. Sci. Fennicae., vol. 137, 1952.
[6] I. Nambu, "Field theory of galois fields," in Field Theory and Quantum Statistics, J. A. Batalin, Ed. Institute of Physics Publishing, 1987, pp. 625-636.

Authors' addresses

## Stephan Foldes

Institute of Mathematics, Tampere University of Technology, PL 553, 33101 Tampere, Finland E-mail address: sf@tut.fi

## László Major

Institute of Mathematics, Tampere University of Technology, PL 553, 33101 Tampere, Finland
E-mail address: laszlo.major@tut.fi

