Miskolc Mathematical Notes

CONVERGENCE AND SUBSEQUENTIAL CONVERGENCE OF REGULARLY GENERATED SEQUENCES

SEFA ANIL SEZER AND İBRAHIM ÇANAK
Received 03 November, 2013

Abstract

In this paper we recover convergence and subsequential convergence of a sequence of real numbers regularly generated by another sequence in some sequence spaces under certain conditions. We also give some information about the behavior of a sequence whose generator is given in terms of a moderately divergent sequence.

2010 Mathematics Subject Classification: 40A05; 40E05
Keywords: regularly generated sequences, slow oscillation, moderate oscillation, moderate divergence, subsequential convergence, weighted means

1. Introduction

Throughout this paper, \mathbb{N}_{0} will denote the set of all nonnegative integers. Let $u=\left(u_{n}\right)$ be a sequence of real numbers and any term with a negative index be zero. Let $p=\left(p_{n}\right)$ be a sequence of nonnegative numbers such that $p_{0}>0$ and

$$
\begin{equation*}
P_{n}:=\sum_{k=0}^{n} p_{k} \rightarrow \infty, n \rightarrow \infty \tag{1.1}
\end{equation*}
$$

The $n^{\text {th }}$ weighted mean of the sequence $\left(u_{n}\right)$ is defined by

$$
\begin{equation*}
\sigma_{n, p}(u):=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} u_{k} \tag{1.2}
\end{equation*}
$$

for all $n \in \mathbb{N}_{0}$.
The sequence $\left(u_{n}\right)$ is said to be summable by the weighted mean method determined by the sequence p; in short, (\bar{N}, p) summable to a finite number s if

$$
\lim _{n \rightarrow \infty} \sigma_{n, p}(u)=s
$$

The difference between u_{n} and its $n^{\text {th }}$ weighted mean $\sigma_{n, p}(u)$, which is called the weighted Kronecker identity, is given by

$$
\begin{equation*}
u_{n}-\sigma_{n, p}(u)=V_{n, p}(\Delta u) \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{n, p}(\Delta u):=\frac{1}{P_{n}} \sum_{k=0}^{n} P_{k-1} \Delta u_{k} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta u_{n}=u_{n}-u_{n-1} \tag{1.5}
\end{equation*}
$$

The (\bar{N}, p) summability method is regular if and only if $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$. If $p_{n}=$ 1 for all $n \in \mathbb{N}_{0}$, then (\bar{N}, p) summability method reduces to Cesàro summability method.

A sequence $\left(u_{n}\right)$ is slowly oscillating [14] if

$$
\begin{equation*}
\lim _{\lambda \rightarrow 1^{+}} \limsup _{n \rightarrow \infty} \max _{n+1 \leq k \leq[\lambda n]}\left|u_{k}-u_{n}\right|=0, \tag{1.6}
\end{equation*}
$$

where $[\lambda n]$ denotes the integer part of λn.
The space of all slowly oscillating sequences is denoted by $\boldsymbol{\mathcal { O }}$. Dik [9] proved that if a sequence $\left(u_{n}\right)$ is slowly oscillating, then $\left(V_{n, 1}(\Delta u)\right)$ is bounded and slowly oscillating.

A generalization of slow oscillation is given as follows.
A sequence $\left(u_{n}\right)$ is moderately oscillating [14] if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \max _{n+1 \leq k \leq[\lambda n]}\left|u_{k}-u_{n}\right|<\infty \tag{1.7}
\end{equation*}
$$

for $\lambda>1$. The space of all moderately oscillating sequences is denoted by $\mathcal{M} \mathcal{O}$.
Set

$$
\begin{equation*}
t_{n}=n \frac{p_{n}}{P_{n-1}} \tag{1.8}
\end{equation*}
$$

for $n \in \mathbb{N}_{0}$. We say that $\left(u_{n}\right)$ is regularly generated by a sequence $\alpha=\left(\alpha_{n}\right)$ in some sequence space \mathcal{A} and α is called a generator of $\left(u_{n}\right)$ if

$$
\begin{equation*}
u_{n}=\alpha_{n}+\sum_{k=1}^{n} \frac{t_{k}}{k} \alpha_{k} \tag{1.9}
\end{equation*}
$$

The space of all sequences which are regularly generated by sequences in \mathcal{A} is denoted by $U(\mathcal{A})$.

If $\left(u_{n}\right)$ is regularly generated by a sequence $\left(\alpha_{n}\right)$ where $\left(\Delta \alpha_{n}\right) \in \Omega \mathcal{O}$, we write $\left(u_{n}\right) \in U(\mathcal{\mathcal { O }} \Delta)$. If $\left(u_{n}\right)$ is regularly generated by a sequence $\left(\alpha_{n}\right)$ where $\left(\alpha_{n}\right) \in \mathcal{S} \mathcal{O}$, we write $\left(u_{n}\right) \in U(\mathcal{O})$.

A positive sequence $\left(u_{n}\right)$ is O-regularly varying [12] if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{u_{[\lambda n]}}{u_{n}}<\infty \tag{1.10}
\end{equation*}
$$

for $\lambda>1$ and it is slowly varying if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{u_{[\lambda n]}}{u_{n}}=1 \tag{1.11}
\end{equation*}
$$

It was proved by [11] that if a positive sequence $\left(u_{n}\right)$ is O-regularly varying, then $\left(\log u_{n}\right)$ is slowly varying.

A positive sequence $\left(u_{n}\right)$ is moderately divergent [13] if for every $\lambda>1$

$$
\begin{equation*}
u_{n}=o\left(n^{\lambda-1}\right), n \rightarrow \infty \tag{1.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{u_{n}}{n^{\lambda}}<\infty \tag{1.13}
\end{equation*}
$$

We denote the space of all moderately divergent sequences by $\mathcal{M} \mathscr{D}$. Note that every slowly oscillating sequence of positive numbers is moderately divergent.

The convergence of a sequence $\left(u_{n}\right)$ implies that $\left(u_{n}\right)$ is bounded and $\Delta u_{n}=$ $o(1)$ as $n \rightarrow \infty$. But it is clear that the converse of this implication is not true in general. In the case where $\left(u_{n}\right)$ is bounded with $\Delta u_{n}=o(1)$ as $n \rightarrow \infty$, we may not recover convergence of $\left(u_{n}\right)$ but we may have convergence of some subsequences of $\left(u_{n}\right)$. A new kind of convergence is defined as follows (See [8] for more details on subsequentially convergent sequences):

A sequence $u=\left(u_{n}\right)$ is said to be subsequentially convergent if there exists a finite interval $I(u)$ such that all accumulation points of $\left(u_{n}\right)$ are in $I(u)$ and every point of $I(u)$ is an accumulation point of $\left(u_{n}\right)$.

Recently, several results in terms of regularly generated sequences for different purposes have been obtained by Dik et al. [10], Çanak et al. [1], Çanak and Totur [3], Çanak et al. [2], Çanak et al. [7], Çanak and Totur [5] and many more. In this paper, we first recover convergence and subsequential convergence of a sequence which is regularly generated by another sequence in some sequence spaces under certain conditions. Secondly, we give some information about the behavior of a sequence whose generator is given in terms of a moderately divergent sequence.

2. THE PRELIMINARY RESULTS

We need the following lemmas for the proof of our results.
Lemma 1 ([8]). Let $\left(u_{n}\right)$ be a bounded sequence of real numbers. If $\Delta u_{n}=o(1)$ as $n \rightarrow \infty$, then $\left(u_{n}\right)$ converges subsequentially.

Lemma 2. If $\left(\sum_{k=1}^{n} t_{k} \alpha_{k}\right)$ is moderately oscillating, then $\left(\sum_{k=1}^{n} \frac{t_{k}}{k} \alpha_{k}\right)$ converges.

Proof. Set $R_{n}:=\exp \left(\left|\sum_{k=1}^{n} t_{k} \alpha_{k}\right|\right)$. Then we have

$$
\begin{equation*}
\frac{R_{[\lambda n]}}{R_{n}} \leq \exp \left(\left|\sum_{k=n+1}^{[\lambda n]} t_{k} \alpha_{k}\right|\right) \tag{2.1}
\end{equation*}
$$

Taking limsup of both sides of (2.1) as $n \rightarrow \infty$ gives

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{R_{[\lambda n]}}{R_{n}} \leq \exp \left(\limsup _{n \rightarrow \infty}\left|\sum_{k=n+1}^{[\lambda n]} t_{k} \alpha_{k}\right|\right) \tag{2.2}
\end{equation*}
$$

Since ($\sum_{k=1}^{n} t_{k} \alpha_{k}$) is moderately oscillating, we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{R_{[\lambda n]}}{R_{n}} \tag{2.3}
\end{equation*}
$$

is finite for $\lambda>1$. This says that $\left(R_{n}\right)$ is O-regularly varying. Since $\left(R_{n}\right)$ is Oregularly varying, $\left(\log R_{n}\right)$ is slowly varying. It follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{p}}\left|\sum_{k=1}^{n} t_{k} \alpha_{k}\right|^{p}<\infty \tag{2.4}
\end{equation*}
$$

for $p>1$. This implies that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{t_{n}}{n} \alpha_{n}<\infty \tag{2.5}
\end{equation*}
$$

Lemma 3. If $\left(\sum_{k=1}^{n} \frac{t_{k}}{k} \alpha_{k}\right)$ converges, then $\sigma_{n, p}(\alpha)=o(1), n \rightarrow \infty$.
Proof. Set $\gamma_{n}:=\sum_{k=1}^{n} \frac{t_{k}}{k} \alpha_{k}$. Then we obtain

$$
\begin{equation*}
\alpha_{n}=\frac{P_{n-1}}{p_{n}} \Delta \gamma_{n} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{n, p}(\alpha)=V_{n, p}(\Delta \gamma) \tag{2.7}
\end{equation*}
$$

for $n \in \mathbb{N}_{0}$. Since $\left(\gamma_{n}\right)$ converges, it follows by the weighted Kronecker identity

$$
\begin{equation*}
\gamma_{n}-\sigma_{n, p}(\gamma)=V_{n, p}(\Delta \gamma) \tag{2.8}
\end{equation*}
$$

that

$$
V_{n, p}(\Delta \gamma)=o(1), \quad n \rightarrow \infty
$$

This completes the proof.
Lemma 4 ([6]). Let $\left(p_{n}\right)$ satisfy the condition

$$
\begin{equation*}
1 \leq \frac{P_{n}}{n} \rightarrow 1, n \rightarrow \infty \tag{2.9}
\end{equation*}
$$

If $\left(u_{n}\right)$ is slowly oscillating, then $\left(V_{n, p}(\Delta u)\right)$ is slowly oscillating and bounded.
Lemma 5 ([15]). Let $\left(u_{n}\right)$ be Cesàro summable to s. If $\left(u_{n}\right)$ is slowly oscillating, then $\left(u_{n}\right)$ converges to s.

3. The main results

Theorem 1. Suppose that

$$
\begin{align*}
& \left(\sum_{k=1}^{n} t_{k} \alpha_{k}\right) \in \mathcal{M} \mathcal{O} \tag{3.1}\\
& 1 \leq \frac{P_{n}}{n} \rightarrow 1, n \rightarrow \infty \tag{3.2}\\
& t_{n}=O(1), n \rightarrow \infty \tag{3.3}
\end{align*}
$$

Proof. Since $\left(u_{n}\right) \in U\left(\mathcal{O} \mathcal{O}_{\Delta}\right),\left(u_{n}\right)$ can be written as

$$
\begin{equation*}
u_{n}=\alpha_{n}+\sum_{k=1}^{n} \frac{t_{k}}{k} \alpha_{k} \tag{3.4}
\end{equation*}
$$

where $\left(\Delta \alpha_{n}\right) \in \delta \mathcal{O}$. Moderate oscillation of $\left(\sum_{k=1}^{n} t_{k} \alpha_{k}\right)$ implies convergence of $\left(\gamma_{n}\right)=\left(\sum_{k=1}^{n} \frac{t_{k}}{k} \alpha_{k}\right)$ by Lemma 2 and $\sigma_{n, p}(\alpha)=o(1)$ as $n \rightarrow \infty$ by Lemma 3 . Hence, $\left(u_{n}\right)$ is (\bar{N}, p) summable to the limit of $\left(\gamma_{n}\right)$. By the condition (3.3), it follows that

$$
\begin{equation*}
\frac{\alpha_{n}}{n} \rightarrow 0, n \rightarrow \infty \tag{3.5}
\end{equation*}
$$

by Lemma 3. Since $\left(\Delta \alpha_{n}\right) \in \mathcal{S} \mathcal{O}$, we have that

$$
\begin{equation*}
\Delta \alpha_{n} \rightarrow 0, n \rightarrow \infty \tag{3.6}
\end{equation*}
$$

by Lemma 5. Taking the backward difference of (3.4), we have

$$
\begin{equation*}
\Delta u_{n}=\Delta \alpha_{n}+\alpha_{n} \frac{p_{n}}{P_{n-1}} \tag{3.7}
\end{equation*}
$$

for $n \in \mathbb{N}_{0}$.
It follows by (3.3), (3.5) and (3.6) that

$$
\begin{equation*}
\Delta u_{n}=o(1), n \rightarrow \infty \tag{3.8}
\end{equation*}
$$

To complete the proof, it suffices to prove that $\left(u_{n}\right)$ is bounded. Applying Lemma 4 to $\left(v_{n}\right)=\left(\sum_{k=1}^{n} \alpha_{k} t_{k}\right)$, and taking $\left(v_{n}\right) \in \mathscr{\mathcal { O }}$ into account, we obtain $\left(V_{n, p}(\alpha t)\right)$ is bounded and slowly oscillating, where $\alpha t=\left(\alpha_{n} t_{n}\right)$.

From the weighted Kronecker identity

$$
\begin{equation*}
S_{n}(\alpha)-\sigma_{n, p}(S(\alpha))=V_{n, p}(\alpha) \tag{3.9}
\end{equation*}
$$

where $S(\alpha)=\left(S_{n}(\alpha)\right)=\left(\sum_{k=0}^{n} \alpha_{k}\right)$, we have

$$
\begin{equation*}
\alpha_{n}-\frac{p_{n}}{P_{n-1}} V_{n, p}(\alpha)=\Delta V_{n, p}(\alpha) \tag{3.10}
\end{equation*}
$$

Replacing α_{n} by $\alpha_{n} t_{n}$ in (3.10) and then dividing by t_{n}, we have

$$
\begin{equation*}
\alpha_{n}=\frac{V_{n, p}(\alpha t)}{n}+\frac{P_{n-1}}{n p_{n}} \Delta V_{n, p}(\alpha t) . \tag{3.11}
\end{equation*}
$$

It follows from (3.11) that $\left(\alpha_{n}\right)$ is bounded. Hence, $\left(u_{n}\right)$ is bounded. By Lemma 1 , $\left(u_{n}\right)$ is subsequentially convergent.

Theorem 2. Suppose that

$$
\begin{gather*}
\left(\sum_{k=1}^{n} t_{k} \alpha_{k}\right) \in \mathcal{M} \mathcal{O}, \tag{3.12}\\
1 \leq \frac{P_{n}}{n} \rightarrow 1, n \rightarrow \infty, \tag{3.13}\\
1<\liminf _{n \rightarrow \infty} \frac{P_{[\lambda n]}}{P_{n}}<\limsup _{n \rightarrow \infty} \frac{P_{[\lambda n]}}{P_{n}}<\infty, \text { for } \lambda>1, \tag{3.14}\\
1<\liminf _{n \rightarrow \infty} \frac{P_{n}}{P_{[\lambda n]}}<\limsup _{n \rightarrow \infty} \frac{P_{n}}{P_{[\lambda n]}}<\infty, \text { for } 0<\lambda<1, \tag{3.15}\\
t_{n}=O(1), n \rightarrow \infty . \tag{3.16}
\end{gather*}
$$

If $\left(u_{n}\right) \in U(\mathcal{O})$, then $\left(u_{n}\right)$ converges.
Proof. Assume that $\left(u_{n}\right) \in U(\mathcal{O})$. Then, $\left(u_{n}\right)$ can be written as

$$
\begin{equation*}
u_{n}=\alpha_{n}+\sum_{k=1}^{n} \frac{t_{k}}{k} \alpha_{k} \tag{3.17}
\end{equation*}
$$

where $\left(\alpha_{n}\right) \in \mathcal{S} \mathcal{O}$. From (3.17), we have

$$
\begin{equation*}
V_{n, p}(\Delta u)=V_{n, p}(\Delta \alpha)+\sigma_{n, p}(\alpha) \tag{3.18}
\end{equation*}
$$

Moderate oscillation of $\left(\sum_{k=1}^{n} t_{k} \alpha_{k}\right)$ implies convergence of $\left(\gamma_{n}\right)=\left(\sum_{k=1}^{n} \frac{t_{k}}{k} \alpha_{k}\right)$ by Lemma 2 and $\sigma_{n, p}(\alpha)=o(1)$ as $n \rightarrow \infty$ by Lemma 3. Therefore, $\left(u_{n}\right)$ is (\bar{N}, p) summable to the limit of $\left(\gamma_{n}\right)$.

Since $\left(\alpha_{n}\right)$ is slowly oscillating, $\left(V_{n, p}(\Delta \alpha)\right)$ is bounded and slowly oscillating by Lemma 4.

It follows from (3.18) that $\left(V_{n, p}(\Delta u)\right) \in \mathscr{\mathcal { O }}$ and bounded. Since $\left(u_{n}\right)$ is (\bar{N}, p) summable, $\left(u_{n}\right)$ converges to $\lim _{n \rightarrow \infty} \sigma_{n, p}(u)$ by Theorem 6 in [4].

Theorem 3. Suppose that $\left(u_{n}\right)$ is regularly generated by $\left(\alpha_{n}\right)$ and

$$
\begin{equation*}
\frac{p_{n}}{P_{n-1}}-\frac{p_{n+1}}{P_{n}}=O\left(\frac{1}{n^{2}}\right), n \rightarrow \infty \tag{3.19}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{k=1}^{n} \alpha_{k}=n^{\gamma} m_{n} \tag{3.20}
\end{equation*}
$$

for some $\left(m_{n}\right) \in \mathcal{M} \mathscr{D}$ and some $\gamma \in(0,1)$, then
i) $\left(u_{n}\right)$ is (\bar{N}, p) summable.
ii) $u_{n}=\Delta\left(n^{\gamma} m_{n}\right)+\beta_{n}$, where $\beta_{n}=o(1), n \rightarrow \infty$.
iii) $u_{n}=o(n), n \rightarrow \infty$ and $\sum_{n=1}^{\infty} \frac{u_{n}}{n^{2}}<\infty$.

Proof. i) By Abel's partial summation formula, we have

$$
\begin{align*}
\sum_{k=1}^{n} \frac{p_{k}}{P_{k-1}} \alpha_{k} & =\sum_{k=1}^{n} \frac{p_{k}}{P_{k-1}}\left(S_{k}(\alpha)-S_{k-1}(\alpha)\right) \\
& =\sum_{k=1}^{n} \frac{p_{k}}{P_{k-1}} S_{k}(\alpha)-\sum_{k=1}^{n} \frac{p_{k}}{P_{k-1}} S_{k-1}(\alpha) \\
& =\sum_{k=1}^{n}\left(\frac{p_{k}}{P_{k-1}} S_{k}(\alpha)-\frac{p_{k+1}}{P_{k}} S_{k}(\alpha)\right)+\frac{p_{n}}{P_{n-1}} S_{n}(\alpha)-\frac{p_{1}}{P_{0}} S_{0} \\
& =\frac{p_{n}}{P_{n-1}} S_{n}(\alpha)+\sum_{k=1}^{n-1}\left(\frac{p_{k}}{P_{k-1}}-\frac{p_{k+1}}{P_{k}}\right) S_{k}(\alpha) \tag{3.21}
\end{align*}
$$

Since $S_{n}(\alpha)=n^{\gamma} m_{n}$ for some $\left(m_{n}\right) \in \mathcal{M} \mathscr{D}$, we have

$$
\begin{equation*}
\frac{p_{n}}{P_{n-1}} S_{n}(\alpha)=O\left(\frac{m_{n}}{n^{1-\gamma}}\right), \quad n \rightarrow \infty \tag{3.22}
\end{equation*}
$$

By moderate divergence of $\left(m_{n}\right)$, we have

$$
\begin{equation*}
\frac{p_{n}}{P_{n-1}} S_{n}(\alpha)=o(1), \quad n \rightarrow \infty \tag{3.23}
\end{equation*}
$$

The second term on the right of (3.21) converges by (3.19). It follows from the representation

$$
\begin{equation*}
u_{n}=\alpha_{n}+\sum_{k=1}^{n} \frac{p_{k}}{P_{k-1}} \alpha_{k} \tag{3.24}
\end{equation*}
$$

that $\left(u_{n}\right)$ is (\bar{N}, p) summable.
ii) Note that the sequence $\left(\beta_{n}\right)$ defined by $\beta_{n}=\frac{t_{n} \alpha_{n}}{n}$ for $n \in \mathbb{N}_{0}$ converges to zero. From the representation and the condition (3.20) it follows that

$$
\begin{equation*}
u_{n}=\Delta\left(n^{\gamma} m_{n}\right)+\beta_{n} \tag{3.25}
\end{equation*}
$$

where $\beta_{n}=\frac{t_{n}}{n} \alpha_{n}$.
iii) By ii), we have

$$
\begin{equation*}
u_{n}=n^{\gamma} m_{n}-(n-1)^{\gamma} m_{n-1}+\beta_{n} . \tag{3.26}
\end{equation*}
$$

Dividing (3.26) by n, we have

$$
\begin{equation*}
\frac{u_{n}}{n}=\frac{m_{n}}{n^{1-\gamma}}-\frac{m_{n-1}}{(n-1)^{1-\gamma}}+\frac{\beta_{n}}{n} . \tag{3.27}
\end{equation*}
$$

Since $\left(m_{n}\right) \in \mathscr{M} \mathscr{D}$ and $\beta_{n}=o(1)$, we have

$$
\begin{equation*}
\frac{u_{n}}{n}=o(1), n \rightarrow \infty \tag{3.28}
\end{equation*}
$$

By (3.26), we obtain

$$
\begin{equation*}
\sum_{k=2}^{n} \frac{u_{k}}{k^{2}}=\sum_{k=2}^{n} \frac{m_{k}}{k^{2-\gamma}}-\sum_{k=2}^{n} \frac{m_{k-1}}{(k-1)^{2-\gamma}}+\sum_{k=2}^{n} \frac{\beta_{k}}{k^{2}} . \tag{3.29}
\end{equation*}
$$

Taking the limit of both sides of (3.29) as $n \rightarrow \infty$, we obtain $\sum_{n=1}^{\infty} \frac{u_{n}}{n^{2}}<\infty$.

References

[1] İ. Çanak, M. Dik, and F. Dik, "Conditions for convergence and subsequential convergence," Appl. Math. Lett., vol. 19, no. 10, pp. 1042-1045, 2006, doi: 10.1016/j.aml.2005.11.015.
[2] İ. Çanak, F. Hasekiler, and D. Kebapcı, "Some Tauberian theorems for regularly generated sequences," Comput. Math. Appl., vol. 62, no. 21, pp. 4486-4491, 2011, doi: 10.1016/j.camwa.2011.10.027.
[3] İ. Çanak and Ü. Totur, "A note on Tauberian theorems for regularly generated sequences," Tamkang J. Math., vol. 39, no. 2, pp. 187-191, 2008, doi: 10.5556/j.tkjm.39.2008.29.
[4] İ. Çanak and Ü. Totur, "Some Tauberian theorems for the weighted mean methods of summability," Comput. Math. Appl., vol. 62, pp. 2609-2615, 2011, doi: 10.1016/j.camwa.2011.07.066.
[5] İ. Çanak and Ü. Totur, "Some Tauberian conditions for Cesàro summability method," Math. Slovaca, vol. 62, no. 2, pp. 271-280, 2012, doi: 10.2478/s12175-012-0008-y.
[6] İ. Çanak and Ü. Totur, "Tauberian theorems for the (J, p) summability method," Appl. Math. Lett., vol. 25, no. 10, pp. 1430-1434, 2012, doi: 10.1016/j.aml.2011.12.017.
[7] İ. Çanak, Ü. Totur, and M. Dik, "On Tauberian theorems for (A, k) summability method," Math. Slovaca, vol. 61, no. 6, pp. 993-1001, 2011, doi: 10.2478/s12175-011-0064-8.
[8] F. Dik, "Tauberian theorems for convergence and subsequential convergence with moderately oscillatory behavior," Math. Morav., vol. 5, pp. 19-56, 2001.
[9] M. Dik, "Tauberian theorems for sequences with moderately oscillatory control modulo," Math. Morav., vol. 5, pp. 57-94, 2001.
[10] M. Dik, F. Dik, and İ. Çanak, "Classical and neoclassical Tauberian theorems for regularly generated sequences," Far East J. Math. Sci. (FJMS), vol. 13, no. 2, pp. 233-240, 2004.
[11] D. Natsis, Convergence of Fourier series and representations of Fourier and Fourier-Stieltjes coefficients, ser. Ph. D. Dissertation. University of Missouri-Rola, 1991.
[12] Č. V. Stanojević, "O-regularly varying convergence moduli of Fourier and Fourier-Stieltjes series," Math. Ann., vol. 279, no. 1-2, pp. 103-115, 1987, doi: 10.1007/BF01456193.
[13] Č. V. Stanojević, "Fourier and Fourier-Stieltjes series with compacticity property." Moscow: Steklov Mathematical Institute, 1990.
[14] Č. V. Stanojević, Analysis of Divergence: Control and Management of Divergent Process, ser. Graduate Research Seminar Lecture Notes, 1998.
[15] Č. V. Stanojević, Analysis of Divergence: Applications to the Tauberian theory, ser. Graduate Research Seminars, 1999.

Authors' addresses

Sefa Anıl Sezer

Istanbul Medeniyet University, Department of Mathematics, 34720 Istanbul, Turkey Current address: Ege University, Department of Mathematics, 35100 Izmir, Turkey E-mail address: sefaanil.sezer@medeniyet.edu.tr

İbrahim Çanak
Ege University, Department of Mathematics, 35100 Izmir, Turkey
E-mail address: ibrahimcanak@yahoo.com

