The harmonic index for unicyclic and bicyclic graphs with given matching number

Lingping Zhong
THE HARMONIC INDEX FOR UNICYCLIC AND BICYCLIC
GRAPHS WITH GIVEN MATCHING NUMBER

LINGPING ZHONG

Received 24 October, 2013

Abstract. The harmonic index of a graph G is defined as the sum of the weights $\frac{2}{d(u)+d(v)}$ of all edges uv of G, where $d(u)$ denotes the degree of a vertex u in G. In this paper, we present the minimum harmonic indices for unicyclic and bicyclic graphs with n vertices and matching number m ($2 \leq m \leq \lfloor \frac{n}{2} \rfloor$), respectively. The corresponding extremal graphs are also characterized.

2000 Mathematics Subject Classification: 05C07; 05C70; 05C35; 92E10

Keywords: harmonic index, unicyclic graph, bicyclic graph, matching number

1. INTRODUCTION

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The Randić index $R(G)$, proposed by Randić [20] in 1975, is defined as

$$R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d(u)d(v)}},$$

where $d(u)$ denotes the degree of a vertex u of G. The Randić index is one of the most successful molecular descriptors in structure-property and structure-activity relationship studies. Mathematical properties of this descriptor have been studied extensively (see [9, 10, 14, 15, 19] and the references cited therein).

In this paper, we consider a closely related variant of the Randić index, named the harmonic index. For a graph G, the harmonic index $H(G)$ is defined as

$$H(G) = \sum_{uv \in E(G)} \frac{2}{d(u)+d(v)}.$$

This index first appeared in [6], and it can also be viewed as a particular case of the general sum-connectivity index proposed by Zhou and Trinajstić in [32].

This work was supported by the Fundamental Research Funds for the Central Universities (No. NS2015078).
Favaron, Mahéo and Saclé [7] considered the relation between the harmonic index and the eigenvalues of graphs. Zhong [28, 29], Zhong and Xu [30] determined the minimum and maximum harmonic indices for simple connected graphs, trees, unicyclic and bicyclic graphs, and characterized the corresponding extremal graphs. Wu, Tang and Deng [23] found the minimum harmonic index for graphs (triangle-free graphs, respectively) with minimum degree at least 2, and characterized the corresponding extremal graphs. Deng, Balachandran, Ayyaswamy and Venkatakrishnan [2] considered the relation between the harmonic index and the chromatic number of a graph by using the effect of removal of a minimum degree vertex on the harmonic index. Liu [17] proposed a conjecture concerning the relation between the harmonic index and the diameter of a connected graph, and showed that the conjecture is true for trees. Ilić [12], Xu [25], Zhong and Xu [31] established some relationships between the harmonic index and several other topological indices. The chemical applicability of the harmonic index was also recently investigated [8, 11]. See [3, 18, 24, 26] for more information of this index.

In this paper, we determine the minimum harmonic indices for unicyclic and bicyclic graphs with \(n \) vertices and matching number \(m \) (\(2 \leq m \leq \lfloor \frac{n}{2} \rfloor \)), respectively. The corresponding extremal graphs are also characterized. The related problems have been well-studied for several other topological indices, such as the Randić index [16, 33], the modified Randić index [13] and the sum-connectivity index [4, 5, 21, 22].

2. Preliminaries

Let \(G \) be a graph. For any vertex \(v \in V(G) \), we use \(N_G(v) \) (or \(N(v) \) if there is no ambiguity) to denote the set of neighbors of \(v \) in \(G \). A pendent vertex is a vertex of degree 1. For two distinct vertices \(u \) and \(v \) of \(G \), the distance \(d(u, v) \) between \(u \) and \(v \) is the number of edges in a shortest path joining \(u \) and \(v \) in \(G \). A unicyclic graph is a connected graph with \(n \) vertices and \(n \) edges, and a bicyclic graph is a connected graph with \(n \) vertices and \(n + 1 \) edges. We use \(C_n \) to denote the cycle on \(n \) vertices.

A matching \(M \) in a graph \(G \) is a subset of \(E(G) \) such that no two edges in \(M \) share a common vertex. A matching \(M \) in \(G \) is said to be maximum, if for any other matching \(M' \) in \(G \), \(|M'| \leq |M| \). The matching number of \(G \) is the number of edges in a maximum matching of \(G \). If \(M \) is a matching in \(G \) and the vertex \(v \in V(G) \) is incident with an edge of \(M \), then \(v \) is said to be \(M \)-saturated, and if every vertex in \(G \) is \(M \)-saturated, then \(M \) is a perfect matching.

For any vertex \(v \in V(G) \), we use \(G - v \) to denote the graph resulting from \(G \) by deleting the vertex \(v \) and its incident edges. We define \(G - uv \) to be the graph obtained from \(G \) by deleting the edge \(uv \in E(G) \), and \(G + uv \) to be the graph obtained from \(G \) by adding an edge \(uv \) between two non-adjacent vertices \(u \) and \(v \) of \(G \).

We now establish some lemmas which will be used frequently in later proofs.
Lemma 1. Let G be a connected graph on $n \geq 4$ vertices with a pendent vertex u. Let v be the unique neighbor of u with $d(v) = s$, and let w be a neighbor of v different from u with $d(w) = t$.

(i) If $s = 2$ and w is adjacent to at most one pendent vertex in G, then

$$H(G) \geq H(G - u - v) + \frac{2(t - 1)}{t + 2} - \frac{2(t - 3)}{t + 1} - \frac{2}{t} + \frac{2}{3}$$

with equality if and only if one neighbor of w has degree 1 and the other neighbors of w have degree 2.

(ii) If v is adjacent to at most k pendent vertices in G, then

$$H(G) \geq H(G - u) + \frac{2(s - k)}{s + 2} + \frac{2(2k - s)}{s + 1} - \frac{2(k - 1)}{s}$$

with equality if and only if k neighbors of v have degree 1 and the other neighbors of v have degree 2.

Proof: (i) Let $N(w) = \{w_0 = v, w_1, \ldots, w_{t-1}\}$. Since w is adjacent to at most one pendent vertex in G, we may assume that $d(w_1) \geq 1$, and $d(w_i) \geq 2$ for each $2 \leq i \leq t - 1$ (if $t \geq 3$). Note that $\frac{2}{t+2} - \frac{2}{t-1+x}$ is increasing for $x \geq 1$, we have

$$H(G) = H(G - u - v) + \sum_{i=1}^{t-1} \left(\frac{2}{t + d(w_i)} - \frac{2}{t-1 + d(w_i)} \right) + \frac{2}{t+2} + \frac{2}{3}$$

$$\geq H(G - u - v) + \left(\frac{2}{t+1} - \frac{2}{t} \right) + (t-2) \left(\frac{2}{t+2} - \frac{2}{t+1} \right) + \frac{2}{t+2} + \frac{2}{3}$$

$$= H(G - u - v) + \frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} + \frac{2}{3}$$

with equality if and only if $d(w_1) = 1$ and $d(w_i) = 2$ for each $2 \leq i \leq t - 1$ (if $t \geq 3$). This proves (i).

(ii) Let $r (1 \leq r \leq k)$ be the number of pendent neighbors of v in G, and let $N(v) = \{v_0 = u, v_1, \ldots, v_{s-1}\}$. Without loss of generality, we may assume that $d(v_1) = 1$ for each $1 \leq i \leq r - 1$ (if $r \geq 2$), and $d(v_i) \geq 2$ for each $r \leq i \leq s - 1$ (if $s \geq r + 1$). Note that $\frac{2}{s+1} - \frac{2}{s+1+x}$ is increasing for $x \geq 1$ and $\frac{4}{s+1} - \frac{2}{s+2} - \frac{2}{s} < 0$, we have

$$H(G) = H(G - u) + (r-1) \left(\frac{2}{s+1} - \frac{2}{s} \right)$$

$$+ \sum_{i=r}^{s-1} \left(\frac{2}{s + d(v_i)} - \frac{2}{s-1 + d(v_i)} \right) + \frac{2}{s+1}$$

$$\geq H(G - u) + (r-1) \left(\frac{2}{s+1} - \frac{2}{s} \right) + (s-r) \left(\frac{2}{s+2} - \frac{2}{s+1} \right) + \frac{2}{s+1}$$

$$= H(G - u) + r \left(\frac{4}{s+1} - \frac{2}{s+2} - \frac{2}{s} \right) + \frac{2s}{s+2} + \frac{2s}{s+1} + \frac{2}{s}$$
\[H(G - u) + k \left(\frac{4}{s+1} - \frac{2}{s+2} - \frac{2}{s} \right) + \frac{2s}{s+2} - \frac{2s}{s+1} + \frac{2}{s} \]

\[= H(G - u) + \frac{2(s-k)}{s+2} + \frac{2(2k-s)}{s+1} - \frac{2(k-1)}{s} \]

with equalities if and only if \(r = k \) and \(d(v_i) = 2 \) for each \(k \leq i \leq s - 1 \) (if \(s \geq k + 1 \)). This completes the proof of the lemma.

Lemma 2.

(i) The function \(\frac{2(x-1)}{x+2} - \frac{2(x-3)}{x+1} - \frac{2}{x} \) is decreasing for \(x \geq 2 \).

(ii) For \(k \geq 1 \), the function \(\frac{2(x-k)}{x+2} + \frac{2(2k-x)}{x+1} - \frac{2(k-1)}{x} \) is decreasing for \(x \geq k + 1 \).

Proof. (i) Let \(f(x) = \frac{2(x-1)}{x+2} - \frac{2(x-3)}{x+1} - \frac{2}{x} \). For \(x \geq 2 \), we have

\[f'(x) = -\frac{8}{(x+1)^2} + \frac{6}{(x+2)^2} + \frac{2}{x^2} = \frac{-8x^3 + 24x + 8}{x^2(x+1)^2(x+2)^2} \]

\[= \frac{-8(x^2 - 4) - 8(x - 1)}{x^2(x+1)^2(x+2)^2} < 0, \]

and hence (i) holds.

(ii) Let \(g(x) = \frac{2(x-k)}{x+2} + \frac{2(2k-x)}{x+1} - \frac{2(k-1)}{x} \) and \(g_1(x) = \frac{2(k-1)}{x} + \frac{2(x-1-k)}{x+1} \). Then \(g(x) = g_1(x+1) - g_1(x) \). For \(x \geq k + 1 \geq 2 \), we have

\[g''_1(x) = \frac{4(k-1)}{x^3} - \frac{4(k+2)}{(x+1)^3} = \frac{-12x^3 + 12(k-1)x^2 + 12(k-1)x + 4(k-1)}{x^3(x+1)^3} \]

\[= -\frac{12x^2(x-k) - 12x(x-k) - 4(3x-k+1)}{x^3(x+1)^3} < 0, \]

and \(g'(x) = g'_1(x+1) - g'_1(x) < 0 \). So the assertion of the lemma holds.

Lemma 3. Let \(G \) be a connected graph, and let \(u \) be a vertex of degree 2 in \(G \) with two neighbors \(v \) and \(w \) such that \(d(v) \geq 2 \) and \(vw \notin E(G) \). Let \(G' = G - uw + vw \), then \(H(G) > H(G') \).

Proof. Let \(d(v) = p \geq 2 \) and let \(N(v) = \{v_0 = u, v_1, \ldots, v_{p-1}\} \). Then

\[H(G) - H(G') = \sum_{i=1}^{p-1} \left(\frac{2}{p + d(v_i)} + \frac{2}{p + d(w)} \right) - \left(\sum_{i=1}^{p-1} \frac{2}{p + 1 + d(v_i)} + \frac{2}{p + 1 + d(w)} \right) \]

\[= \sum_{i=1}^{p-1} \left(\frac{2}{p + d(v_i)} - \frac{2}{p + 1 + d(v_i)} \right) + \left(\frac{2}{p + d(w)} - \frac{2}{p + 1 + d(w)} \right) > 0. \]

This proves the lemma.
3. Minimum Harmonic Index for Unicyclic Graphs with Given Matching Number

Let U_n be the set of unicyclic graphs with $n \geq 3$ vertices, and let $U_{n,m}$ be the set of unicyclic graphs with n vertices and matching number m, where $2 \leq m \leq \lfloor \frac{n}{2} \rfloor$. In this section, we determine the minimum harmonic index for graphs in $U_{n,m}$, and characterize the corresponding extremal graphs.

For a unicyclic graph G with the cycle C_p, the forest obtained from G by deleting the edges in C_p consists of p vertex-disjoint trees, each containing a vertex of C_p, which is called the root of this tree in G. These trees are called the branches of G.

Chang and Tian [1] showed the following lemma.

Lemma 4. Let $G \in U_{2m,m}$ ($m \geq 3$), and let T be a branch of G with root r. If $u \in V(T)$ is a pendent vertex which is furthest from the root r with $d(u,r) \geq 2$, then u is adjacent to a vertex of degree 2.

The second lemma was proved by Yu and Tian [27].

Lemma 5. Let $G \in U_{n,m}$ ($n > 2m$) and $G \not\cong C_n$. Then there exists a maximum matching M and a pendant vertex u in G such that u is not M-saturated.

Zhong [29] proved the following result.

Lemma 6. Let $G \in U_n$ with $n \geq 3$. Then $H(G) \leq \frac{n}{2}$ with equality if and only if $G \cong C_n$.

![Figure 1](image-url)
Figure 1. The graphs U_6, U_8 and $U_{n,m}$.

Let U_6 be the unicyclic graph on 6 vertices obtained by attaching a pendent vertex to every vertex of a triangle, and let U_8 be the unicyclic graph on 8 vertices obtained by attaching a path on two vertices to one vertex of degree 3 of U_6. For $2 \leq m \leq \lfloor \frac{n}{2} \rfloor$, we use $U_{n,m}$ to denote the unicyclic graph on n vertices obtained by attaching $n - 2m + 1$ pendent vertices and $m - 2$ paths on two vertices to one vertex of a triangle. See Figure 1 for an illustration.

Theorem 1. Let $G \in U_{2m,m} \setminus \{U_6, U_8\}$, where $m \geq 2$. Then

$$H(G) \geq \frac{2m}{m+3} + \frac{2}{m+2} + \frac{2(m-2)}{3} + \frac{1}{2}$$

with equality if and only if $G \cong U_{2m,m}$.

Proof. We prove the theorem by induction on \(m \). If \(m = 2 \), then either \(G \cong C_4 \) or \(G \cong U_{4,2} \). Since \(H(C_4) = 2 > \frac{9}{2} = H(U_{4,2}) \), we see that the assertion of the theorem holds. So we may assume that \(m \geq 3 \) and the result holds for graphs in \(\mathcal{U}_{2(m-1),m-1} \setminus \{U_6, U_8\} \). By Lemma 6, since \(C_{2m} \) is the unique unicyclic graph on \(2m \) vertices with the maximum harmonic index, we may further assume that \(G \not\cong C_{2m} \). Let \(M \) be a maximum matching in \(G \), then \(|M| = m\). By Lemma 4, we need only consider the following two cases.

Case 1. There exists a pendent vertex \(u \) in \(G \) which is adjacent to a vertex \(v \) of degree 2.

Let \(w \) be the neighbor of \(v \) different from \(u \) with \(d(w) = t \geq 2 \), and let \(G' = G - u - v \). Then \(uv \in M \) and \(G' \in \mathcal{U}_{2(m-1),m-1} \). Since \(M \) contains exactly one edge incident with \(w \) and there are \(m \) edges of \(G \) outside \(M \), we have \(t \leq m + 1 \). Note that \(w \) is adjacent to at most one pendent vertex in \(G \).

![Figure 2. The graphs \(W_1, W_2, \) and \(W_3 \).](image)

If \(G' \cong U_8 \), then we have \(G \cong W_1 \) (since we assume \(G \not\cong U_8 \)), see Figure 2. Since \(H(W_1) = \frac{107}{30} > \frac{139}{42} = H(U_{8,4}) \), we know that the result holds.

If \(G' \cong U_8 \), then \(t \leq 5 \). By Lemma 1(i) and Lemma 2(i), we have

\[
H(G) \geq H(U_8) + \frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} + \frac{2}{3} \geq \frac{347}{105} + \frac{2 \cdot (5-3)}{5+2} - \frac{2}{5} + \frac{2}{3} = \frac{85}{21} > \frac{113}{28} = H(U_{10,5}),
\]

and hence the assertion of the theorem holds.

Now suppose that \(G' \not\cong U_6, U_8 \). Then by Lemma 1(i), Lemma 2(i) and the induction hypothesis, we conclude that

\[
H(G) \geq H(G') + \frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} + \frac{2}{3} \geq \left(\frac{2(m-1)}{(m-1)+3} + \frac{2}{(m-1)+2} + \frac{2[(m-1)-2]}{3} + \frac{1}{2} \right) + \frac{2[(m+1)-1]}{(m+1)+2} - \frac{2[(m+1)-3]}{(m+1)+1} - \frac{2}{m+1} + \frac{2}{3}.
\]
The harmonic index 593

\[
\frac{2m}{m+3} + \frac{2}{m+2} + \frac{2(m-2)}{3} + \frac{1}{2}
\]

with equalities if and only if \(G' \cong U_{2(m-1),m-1} \) and \(t = m+1 \), i.e., \(G \cong U_{2m,m} \). This proves Case 1.

Case 2. \(G \) is a unicyclic graph with maximum degree 3 obtained by attaching 2\(m - p \) pendant vertices to some vertices of a cycle \(C_p \) (\(m \leq p \leq 2m - 1 \)).

If \(m = 3 \), then \(G \) is either the unicyclic graph obtained by attaching a pendant vertex to one vertex of \(C_5 \) or the unicyclic graph obtained by attaching a pendant vertex to two adjacent vertices of \(C_4 \) (since we assume \(G \not= U_6 \)). Then we have \(H(G) \geq \frac{70}{36} > \frac{77}{36} = H(U_{6,3}) \), and the theorem holds. So we may assume that \(m \geq 4 \).

We consider two subcases according to the value of \(p \).

Subcase 2.1. \(p = m \).

Then every vertex of \(C_p \) is attached by a pendant vertex and \(H(G) = \frac{5m}{6} \). Let
\[
f(x) = \frac{5x}{6} - \left(\frac{2x}{x+3} + \frac{2}{x+2} + \frac{2(x-2)}{3} + \frac{1}{2} \right) = \frac{5x}{6} + \frac{6}{x+3} - \frac{2}{x+2} - \frac{7}{6}.
\]
For \(x \geq 4 \), we have
\[
f'(x) = \frac{1}{6} - \frac{6}{(x+3)^2} + \frac{2}{(x+2)^2} \geq \frac{1}{6} - \frac{6}{(4+3)^2} + \frac{2}{(x+2)^2} > 0.
\]
This implies that \(f(x) \) is increasing for \(x \geq 4 \), and thus \(f(m) \geq f(4) = \frac{1}{42} > 0 \), i.e., \(H(G) > H(U_{2m,m}) \).

Subcase 2.2. \(m + 1 \leq p \leq 2m - 1 \).

In this subcase, there exists at least one edge, say \(xy \), on \(C_p \) such that \(xy \in M \). Then \(d(x) = d(y) = 2 \); for otherwise, the pendant vertex adjacent to \(x \) or \(y \) cannot be \(M \)-saturated. Let \(z \) be the neighbor of \(x \) different from \(y \) in \(G \), and let \(G'' = G - xz + yz \). Then \(G'' \in \mathcal{W}_{2m,m} \setminus \{U_8\} \). By Lemma 3, we have \(H(G) > H(G'') \). Comparing with the graph \(G \), we see that the length of the unique cycle in \(G'' \) decreases by 1. Repeating this operation from \(G \) to \(G'' \), we eventually obtain the unicyclic graph described in Subcase 2.1 and the result holds. This finishes the proof of the theorem.

Since \(H(U_{6,3}) = \frac{77}{36} > \frac{5}{2} = H(U_6) \) and \(H(U_{8,4}) = \frac{139}{42} > \frac{347}{105} = H(U_8) \), by Theorem 1, we immediately obtain the following two results.

Corollary 1. Let \(G \in \mathcal{W}_{6,3} \), then \(H(G) \geq \frac{5}{2} \) with equality if and only if \(G \cong U_6 \).

Corollary 2. Let \(G \in \mathcal{W}_{8,4} \), then \(H(G) \geq \frac{347}{105} \) with equality if and only if \(G \cong U_8 \).

We now prove the main result of this section.

Theorem 2. Let \(G \in \mathcal{W}_{n,m} \setminus \{U_6, U_8\} \), where \(2 \leq m \leq \left\lfloor \frac{n}{2} \right\rfloor \). Then
\[
H(G) \geq \frac{2m}{n-m+3} + \frac{2(n-2m+1)}{n-m+2} + \frac{2(m-2)}{3} + \frac{1}{2}
\]
with equality if and only if \(G \cong U_{n,m} \).
Proof. We prove Theorem 2 by induction on \(n \). If \(n = 2m \), then by Theorem 1, the assertion of the theorem holds. So we may assume that \(n > 2m \) and the result holds for graphs in \(\mathbb{U}_{n-1,m} \setminus \{ U_6, U_8 \} \). By Lemma 6, since \(C_n \) is the unique unicyclic graph on \(n \) vertices with the maximum harmonic index, we may also assume that \(G \not\cong C_n \).

Then by Lemma 5, there exists a maximum matching \(M \) and a pendant vertex \(u \) in \(G \) such that \(u \) is not \(M \)-saturated. Let \(v \) be the unique neighbor of \(u \) with \(d(v) = s \geq 2 \), and let \(G' = G - u \). Then \(G' \in \mathbb{U}_{n-1,m} \). Since \(M \) contains exactly one edge incident with \(v \) and there are \(n - m \) edges of \(G \) outside \(M \), we have \(s \leq n - m + 1 \). Let \(r \) be the number of pendant neighbors of \(v \) in \(G \), where \(1 \leq r \leq s - 1 \). Note that at least \(r - 1 \) pendant neighbors of \(v \) are not \(M \)-saturated, and there are \(n - 2m \) vertices are not \(M \)-saturated in \(G \). Then \(r \leq n - 2m + 1 \).

If \(G' \cong U_6 \), then \(n = 7 \), \(m = 3 \) and either \(G \cong W_2 \) or \(G \cong W_3 \) (see Figure 2). Since \(H(W_2) = \frac{42}{15} > H(W_3) = \frac{184}{105} > \frac{113}{42} = H(U_{7,3}) \), we see that the result holds.

If \(G' \cong U_8 \), then \(n = 9 \), \(m = 4 \) and \(s \leq 5 \). By Lemma 1(ii) (with \(k = n - 2m + 1 = 2 \)) and Lemma 2(ii), we have

\[
H(G) \geq H(U_8) + \frac{2(s - 2)}{s + 2} + \frac{2(4 - s)}{s + 1} - \frac{2}{s} \geq \frac{347}{105} + \frac{2(5 - 2)}{5 + 2} + \frac{2(4 - 5)}{5 + 1} - \frac{2}{5} = \frac{24}{7} \geq \frac{143}{42} = H(U_{9,4}),
\]

and thus the assertion of the theorem holds.

Therefore we may assume that \(G' \not\cong U_6, U_8 \). Then by Lemma 1(ii) (with \(k = n - 2m + 1 \)), Lemma 2(ii) and the induction hypothesis, we conclude that

\[
H(G) \geq H(G') + \frac{2[s - (n - 2m + 1)]}{s + 2} + \frac{2[2(n - 2m + 1) - s]}{s + 1} - \frac{2[(n - 2m + 1) - 1]}{s} \geq \left(\frac{2m}{(n - 1) - m + 3} + \frac{2[(n - 1) - 2m + 1]}{(n - 1) - m + 2} + \frac{2(m - 2)}{3} + \frac{1}{2} \right) + \frac{2[(n - m + 1) - (n - 2m + 1)]}{(n - m + 1) + 2} + \frac{2[2(n - 2m + 1) - (n - m + 1)]}{(n - m + 1) + 1} - \frac{2[(n - 2m + 1) - 1]}{n - m + 1} = \frac{2m}{n - m + 3} + \frac{2(n - 2m + 1)}{n - m + 2} + \frac{2(m - 2)}{3} + \frac{1}{2}
\]

with equalities if and only if \(G' \cong U_{n-1,m}, s = n - m + 1 \) and \(r = n - 2m + 1 \), i.e., \(G \cong U_{n,m} \). This completes the proof of the theorem. \(\square \)

By applying Theorem 2, we can also obtain the minimum harmonic index for graphs in \(\mathbb{U}_n \) \((n \geq 4)\). This is one of the main results in [29].
Corollary 3. Let $G \in \mathcal{U}_n$ with $n \geq 4$. Then
\[
H(G) \geq \frac{4}{n+1} + \frac{2(n-3)}{n} + \frac{1}{2}
\]
with equality if and only if $G \cong U_{n,2}$.

Proof. Let M be a maximum matching in G, then $2 \leq |M| = m \leq \left\lfloor \frac{n}{2} \right\rfloor$ (since $n \geq 4$). If $m = 2$, then by Theorem 2, we have
\[
H(G) \geq \frac{2 \cdot 2}{n-2+3} + \frac{2(n-2 \cdot 2 + 1)}{n-2+2} + \frac{2 \cdot (2-2)}{3} + \frac{1}{2}
\]
with equality if and only if $G \cong U_{n,2}$. So we may assume that $m \geq 3$.

If $G \cong U_6$, then $H(G) = \frac{3}{2} > \frac{29}{14} = H(U_{6,2})$, we see that the result holds. If $G \cong U_8$, then $H(G) = \frac{347}{105} > \frac{79}{36} = H(U_{8,2})$, and the result also holds. Now suppose that $G \not\cong U_6, U_8$. Then by Theorem 2 and Lemma 3, we see that $H(G) \geq H(U_{n,m}) > H(U_{n,m-1}) > \cdots > H(U_{n,2})$. So the assertion of the corollary holds. \[\square \]

4. Minimum harmonic index for bicyclic graphs with given matching number

Let \mathcal{B}_n be the set of bicyclic graphs with $n \geq 4$ vertices, and let $\mathcal{B}_{n,m}$ be the set of bicyclic graphs with n vertices and matching number m, where $2 \leq m \leq \left\lfloor \frac{n}{2} \right\rfloor$. In this section, we present the minimum harmonic index for graphs in $\mathcal{B}_{n,m}$, and characterize the corresponding extremal graphs.

We denote by \mathcal{B}_n the set of bicyclic graphs with $n \geq 4$ vertices containing no pendant vertices. Let \mathcal{B}_{n}^1 be the set of bicyclic graphs on $n \geq 6$ vertices obtained by connecting two vertex-disjoint cycles by a new edge, and let \mathcal{B}_{n}^2 be the set of bicyclic graphs on $n \geq 7$ vertices obtained by connecting two vertex-disjoint cycles by a path of length at least two. Let \mathcal{B}_{n}^3 be the set of bicyclic graphs on $n \geq 5$ vertices obtained by identifying a vertex of a cycle and a vertex of the other cycle. Let \mathcal{B}_{n}^4 be the set of bicyclic graphs on $n \geq 4$ obtained from C_n by adding a new edge, and let \mathcal{B}_{n}^5 be the set of bicyclic graphs on $n \geq 5$ obtained by connecting two non-adjacent vertices by a path of length at least two. Clearly, $\mathcal{B}_n = \bigcup_{i=1}^{5} \mathcal{B}_n^i$.

For $i = 4, 5$, we use B_i to denote the unique bicyclic graph on i vertices in \mathcal{B}_n^i. Let $B_{n,a,b}$ be the bicyclic graph on n vertices obtained by attaching $a-3$ and $b-3$ pendant vertices to the two vertices of degree 3 of B_4, respectively, where $a \geq b \geq 3$ and $a + b = n + 2$. Let $B_{n,a,b}'$ be the bicyclic graph on n vertices obtained by attaching $a-3$ and $b-3$ pendant vertices to the two vertices of degree 3 of B_5, respectively, where $a \geq b \geq 3$ and $a + b = n + 1$. Then $B_4 \cong B_{4,3,3}$ and $B_5 \cong B_{5,3,3}'$. See Figure 3 and Figure 4 for an illustration. We first determine the minimum harmonic index for graphs in \mathcal{B}_n with matching number 2.
\textbf{Theorem 3.} Let $G \in \mathcal{B}_{n,2}$ with $n \geq 4$. Then
\[H(G) \geq \frac{2}{n+2} + \frac{4}{n+1} + \frac{2(n-4)}{n} + \frac{4}{5} \]
with equality if and only if $G \cong \overline{B}_{n,n-1,3}$.

\textit{Proof.} Since B_4 is the unique bicyclic graph on 4 vertices in $\mathcal{B}_{4,2}$, we see that the result holds for $n = 4$. If $n = 5$, then $G \in \{ F_i | 1 \leq i \leq 3 \} \cup B_5 \cup B_{5,4,3}$, where F_i $(1 \leq i \leq 3)$ are shown in Figure 5. It is easy to calculate that $H(F_1) = \frac{73}{30} > H(B_5) = \frac{12}{5} > H(F_2) = \frac{7}{3} > H(F_3) = \frac{23}{10} > \frac{226}{105} = H(B_{5,4,3})$, and hence the assertion of the theorem holds. So we may assume that $n \geq 6$. We consider three cases according to the structure of G.

\begin{figure}[h]
\centering
\includegraphics{figure5.png}
\caption{The graphs F_1, F_2 and F_3.}
\end{figure}
Case 1. $G \cong B_{n,a,b}$, where $a \geq b \geq 3$ and $a + b = n + 2$.
Let $f(x) = \frac{4}{x+1} - \frac{8}{x}$. For $x \geq 3$, we have
\[
f''(x) = \frac{8}{(x+1)^3} - \frac{16}{x^3} = \frac{-8(x^3 + 6x^2 + 6x + 2)}{x^3(x+1)^3} < 0.
\]
This implies that $f(x + 1) - f(x)$ is decreasing for $x \geq 3$. Suppose $a \geq b \geq 4$. Then
\[
H(B_{n,a+1,b-1}) - H(B_{n,a,b}) = \left(\frac{4}{a+1} + 2\frac{(a+1) - 3}{(a+1) + 1} + \frac{4}{(b-1) + 2} + 2\frac{(b-1) - 3}{(b-1) + 1}
\right)
\left(\frac{2}{(a+1) + (b-1)}\right)^2 - \left(\frac{4}{a+2} + \frac{2(a-3)}{a+1} + \frac{4}{b+2} + \frac{2(b-3)}{b+1} + \frac{2}{a+b}\right)
\]
\[
= \left(\frac{4}{a+3} - \frac{12}{a+2} + \frac{8}{a+1}\right) - \left(\frac{4}{b+2} - \frac{12}{b+1} + \frac{8}{b}\right)
= [f(a + 2) - f(a + 1)] - [f(b + 1) - f(b)] < 0.
\]
i.e., $H(B_{n,a,b}) > H(B_{n,a+1,b-1})$ for $a \geq b \geq 4$. So we conclude that $H(B_{n,a,b}) \geq H(B_{n,n-1,3})$ with equality if and only if $a = n - 1$ and $b = 3$.

Case 2. G is the bicyclic graph obtained by attaching $n - 4$ pendent vertices to one vertex of degree 2 of B_4.

Then
\[
H(G) - H(B_{n,n-1,3}) = \left(\frac{4}{n+1} + 2\frac{(n-4)}{n-1} + \frac{4}{5} + \frac{1}{3}\right) - \left(\frac{2}{n+2} + \frac{4}{n+1} + \frac{2(n-4)}{n} + \frac{4}{5}\right)
\]
\[
= \frac{8}{n} - \frac{2}{n+2} - \frac{6}{n-1} + \frac{1}{3} = \left(\frac{2}{n} - \frac{2}{n+2}\right) - \frac{6}{n(n-1)} + \frac{1}{3}
\]
\[
\geq \left(\frac{2}{n} - \frac{2}{n+2}\right) - \frac{6}{6 \cdot (6-1)} + \frac{1}{3} > 0.
\]
So Case 2 holds.

Case 3. $G \cong B_{n,a,b}'$, where $a \geq b \geq 3$ and $a + b = n + 1$.
Let x be one vertex of degree 2, and let y, z be the two vertices of degree at least 3 in G, see Figure 4. Let $G' = G - xz + yz$, then $G' \cong B_{n,a+1,b}$. By Lemma 3, we have $H(G) > H(G')$. Hence by the argument in Case 1, we deduce that $H(G) > H(B_{n,n-1,3})$. This completes the proof of the theorem. □

The following lemma was proved by Zhu, Liu and Wang [33], which will be used in the following argument.

Lemma 7. Let $G \in \mathcal{B}_{n,m}$ ($n > 2m \geq 6$) and G contains at least one pendent vertex. Then there exists a maximum matching M and a pendent vertex u in G such that u is not M-saturated.
Let \(B_8 \) be the bicyclic graph on 8 vertices obtained by attaching a pendent vertex to every vertex of \(B_4 \). For \(3 \leq m \leq \lfloor \frac{8}{3} \rfloor \), we use \(B_{n,m} \) to denote the bicyclic graph on \(n \) vertices obtained by attaching \(n - 2m + 1 \) pendent vertices and \(m - 3 \) paths on two vertices to the vertex of degree 4 of \(F_2 \), see Figure 6.

Lemma 8. Let \(G \in \mathcal{B}_{2m,m} \setminus \{B_8\} \) \((m \geq 3)\) and no pendent vertex has neighbor of degree 2. Then

\[
H(G) \geq \frac{2(m + 1)}{m + 4} + \frac{2}{m + 3} + \frac{2(m - 3)}{3} + 1
\]

with equality if and only if \(G \cong B_{6,3} \).

Proof. Let \(M \) be a maximum matching in \(G \), then \(|M| = m\) and every vertex in \(G \) is adjacent to at most one pendent vertex. Since \(G \in \mathcal{B}_{2m,m} \setminus \{B_8\} \) and no pendent vertex has neighbor of degree 2, we see that \(G \) can be obtained by attaching some pendent vertices to a bicyclic graph \(\tilde{G} \in \mathcal{B}_k \) \((m \leq k \leq 2m)\). We consider two cases according to \(G \) contains vertices of degree 2 or not.

Case 1. There is no vertex of degree 2 in \(G \).

Then either \(k = m \) or \(k = m + 1 \). If \(k = m \), then \(G \) can be obtained by attaching a pendent vertex to every vertex of a bicyclic graph \(\tilde{G} \in \mathcal{B}_m \). If \(k = m + 1 \), then \(G \) can be obtained by attaching a pendent vertex to every vertex of degree 2 of a bicyclic graph \(\tilde{G} \in \mathcal{B}_m \setminus \{B_4\} \).

Figure 7. The graphs \(Q_1 \) and \(Q_2 \).

If \(m = 3 \), then \(\tilde{G} \cong B_4 \) and \(G \cong Q_1 \) (see Figure 7). Since \(H(Q_1) = \frac{8}{3} = \frac{52}{21} = \frac{2(3+1)}{3+4} + \frac{2}{3+3} + \frac{2(3-3)}{3} + 1 \), we know that the lemma holds.
If \(m = 4 \), since we assume \(G \not\cong B_8 \), we have \(\tilde{G} \cong F_1 \) and \(G \cong Q_2 \) (see Figure 7). So the assertion of the lemma holds because
\[
H(Q_2) = \frac{7}{2} \geq \frac{269}{84} = \frac{2(4+1)}{4+4} + \frac{2}{4+3} + \frac{2(4-3)}{3} + 1.
\]

Now assume that \(m \geq 5 \). Then
\[
H(G) = \begin{cases}
\frac{5m}{6} - \frac{59}{420}, & \text{if } \tilde{G} \in \mathcal{B}_m^1 \cup \mathcal{B}_m^4, \\
\frac{5m}{6} - \frac{16}{105}, & \text{if } \tilde{G} \in \mathcal{B}_m^2 \cup \mathcal{B}_m^5, \\
\frac{5m}{6} - \frac{6}{5}, & \text{if } \tilde{G} \in \mathcal{B}_m^3, \\
\frac{5m}{6} + \frac{4}{5}, & \text{if } \tilde{G} \in \mathcal{B}_{m+1}^1 \cup \mathcal{B}_{m+1}^4.
\end{cases}
\]

Let \(f(x) = \left(\frac{5x}{6} - \frac{1}{6} \right) - \left(\frac{2(x+1)}{x+4} + \frac{2}{x+3} + \frac{2(x-3)}{3} + 1 \right) = \frac{x}{6} + \frac{6}{x+4} - \frac{2}{x+3} - \frac{7}{6}. \) For \(x \geq 5 \), we have
\[
f'(x) = \frac{1}{6} - \frac{6}{(x+4)^2} + \frac{2}{(x+3)^2} \geq \frac{1}{6} - \frac{6}{(5+4)^2} + \frac{2}{(x+3)^2} > 0.
\]

This implies that \(f(x) \) is increasing for \(x \geq 5 \), and thus \(f(m) \geq f(5) = \frac{1}{12} > 0 \), i.e.,
\[
H(G) > \frac{2(m+1)}{m+4} + \frac{2}{m+3} + \frac{2(m-3)}{3} + 1.
\]

Case 2. There exists a vertex, say \(u \), of degree 2 in \(G \).

Let \(v \) and \(w \) be the two neighbors of \(u \) in \(G \) such that \(d(v) = s \geq 2 \) and \(d(w) = t \geq 2 \). By the symmetry between \(v \) and \(w \), we may assume that \(uv \in M \).

Suppose that no vertex of degree 2 is contained in the cycles of \(G \). Since no pendant vertex has neighbor of degree 2 in \(G \), we conclude that \(\tilde{G} \in \mathcal{B}_s^2 \) and \(u \) lies on the path connecting two vertex-disjoint cycles of \(G \). Hence \(vw \notin E(\tilde{G}) \). Let \(G' = G - uv + vw \); then \(G' \in \mathcal{B}_{2m,m} \setminus \{B_8\} \). By Lemma 3, we have \(H(G) > H(G') \). Comparing with the graph \(G \), we see that the number of vertices of degree 2 in \(G' \) decreases by 1. Repeating this operation from \(G \) to \(G' \), we finally obtain a bicyclic graph described in Case 1, and hence the result holds.

So we may choose \(u \) such that \(u \) lies on some cycle of \(G \). Let \(N(u) = \{w_0 = u, w_1, \ldots, w_{t-1}\} \), and let \(G'' = G - uw \). Then \(G'' \) is a unicyclic graph on \(2m \) vertices with a perfect matching \(M \), i.e., \(G'' \in \mathcal{W}_{2m,m} \). Note that \(2 \leq s, t \) and \(w \) is adjacent to at most one pendant vertex. Since \(\frac{2}{s+2} - \frac{2}{s+1} \) is increasing for \(s \geq 2, \frac{2}{t+2} - \frac{2}{t-1+2} \) is increasing for \(x \geq 1 \) and by Lemma 2(i), we have
\[
H(G) = H(G'') + \sum_{i=1}^{t-1} \left(\frac{2}{t + d(w_i)} - \frac{2}{t - 1 + d(w_i)} \right) + \frac{2}{t+2} + \left(\frac{2}{s+2} - \frac{2}{s+1} \right)
\]
\[
\geq H(G'') + \left(\frac{2}{t+1} - \frac{2}{t} \right) + (t-2) \left(\frac{2}{t+2} - \frac{2}{t+1} \right) + \frac{2}{t+2}
\]
\[
+ \left(\frac{2}{2+2} - \frac{2}{2+1} \right)
\]
\[
= H(G'') + \left(\frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} - \frac{2}{t} \right) - \frac{1}{6}
\]
\[H(G'') \geq H(G'') + \left(\frac{2 \cdot (5 - 1)}{5 + 2} - \frac{2 \cdot (5 - 3)}{5 + 1} - \frac{2}{5} \right) - \frac{1}{6} \]

\[= H(G'') - \frac{19}{210} \quad (*) \]

with equalities if and only if \(s = 2, t = 5 \), one neighbor of \(w \) has degree 1 and the other neighbors of \(w \) have degree 2.

![Figure 8. The graphs \(R_1 \) and \(R_2 \).](image)

If \(G'' \cong U_6 \), then either \(G'' \cong R_1 \) or \(G'' \cong R_2 \) (see Figure 8). Since \(H(R_1) = \frac{14}{5} > H(R_2) = \frac{533}{210} \), the assertion of the lemma holds. If \(G'' \cong U_8 \), then by (\(* \)), we have

\[H(G) \geq H(U_8) - \frac{19}{210} = \frac{347}{105} \quad \text{or} \quad \frac{19}{210} = \frac{45}{14} \]

and the result holds. So suppose that \(G'' \not\cong U_6, U_8 \). It follows from Lemma 2(i) that

\[\frac{2[(m + 2) - 1]}{(m + 2) + 2} - \frac{2[(m + 2) - 3]}{(m + 2) + 1} - \frac{2}{m + 2} \leq \frac{2 \cdot [(3 + 2) - 1]}{(3 + 2) + 2} - \frac{2 \cdot [(3 + 2) - 3]}{(3 + 2) + 1} - \frac{2}{3 + 2} = \frac{8}{105} \]

since \(m \geq 3 \). Then by (\(* \)) and Theorem 1, we have

\[H(G) \geq H(G'') - \frac{19}{210} \]

\[\geq \left(\frac{2m}{m + 3} + \frac{2}{m + 2} + \frac{2(m - 2)}{3} + \frac{1}{2} \right) - \frac{19}{210} \]

\[= \left(\frac{2m}{m + 3} + \frac{2}{m + 2} + \frac{2(m - 3)}{3} + 1 \right) + \frac{8}{105} \]

\[\geq \left(\frac{2m}{m + 3} + \frac{2}{m + 2} + \frac{2(m - 3)}{3} + 1 \right) \]
\[\frac{2(m+1)}{m+4} + \frac{2}{m+3} + \frac{2(m-3)}{3} + 1 \]

with equalities if and only if \(s = 2, t = 5, G'' \cong U_{2m,m} \) and \(m = 3 \), i.e., \(G \cong B_{6,3} \).

This finishes the proof of the lemma.

\[\square \]

Theorem 4. Let \(G \in \mathcal{B}_{2m,m} \setminus \{B_8\} \), where \(m \geq 3 \). Then

\[
H(G) \geq \frac{2(m+1)}{m+4} + \frac{2}{m+3} + \frac{2(m-3)}{3} + 1
\]

with equality if and only if \(G \cong B_{2m,m} \).

Proof. We prove Theorem 4 by induction on \(m \). If \(m = 3 \), then by Lemma 7, we may assume that there exists a pendent vertex in \(G \) whose neighbor is a vertex of degree 2. Hence \(G \) is the bicyclic graph obtained from \(B_4 \) by attaching a path on two vertices to either one vertex of degree 3 or one vertex of degree 2. Then we have \(H(G) \geq \frac{289}{105} > \frac{52}{27} = H(B_{6,3}) \), and the assertion of the theorem holds. So we may assume that \(m \geq 4 \) and the result holds for graphs in \(\mathcal{B}_{2(m-1),m-1} \setminus \{B_8\} \). Let \(M \) be a maximum matching in \(G \), then \(|M| = m \). If no pendent vertex has neighbor of degree 2 in \(G \), then by Lemma 7, we see that the result holds.

Now suppose that there exists a pendent vertex \(u \) in \(G \) whose neighbor \(v \) is a vertex of degree 2. Let \(w \) be the neighbor of \(v \) different from \(u \) with \(d(w) = t \geq 2 \). Hence \(G' = G - u - v \). Then \(uv \in M \) and \(G' \in \mathcal{B}_{2(m-1),m-1} \). Since \(M \) contains exactly one edge incident with \(w \) and there are \(m+1 \) edges of \(G \) outside \(M \), we have \(t \leq m+2 \). Note that \(w \) is adjacent to at most one pendent vertex in \(G \).

If \(G' \cong B_8 \), then \(t \leq 5 \). By Lemma 1(i) and Lemma 2(i), we have

\[
H(G) \geq H(B_8) + \frac{2(t-1)}{t+2} - \frac{2(t-3)}{t+1} = \frac{2}{t+3} + \frac{2}{3} = \frac{551}{140} > \frac{47}{12} = H(U_{10,5}),
\]

and hence the assertion of the theorem holds.

So we may further assume that \(G' \not\cong B_8 \). Then by Lemma 1(i), Lemma 2(i) and the induction hypothesis, we conclude that

\[
H(G) \geq H(G') + \left(\frac{2[(m-1)+1]}{(m-1)+4} + \frac{2[(m-1)+3]}{m+2} + \frac{2}{m+2} \right)
\]

and hence the assertion of the theorem holds.
with equalities if and only if \(G' \cong B_{2(m-1),m-1} \) and \(t = m + 2 \), i.e., \(G \cong B_{2m,m} \). So Theorem 4 holds.

Since \(H(B_{8,4}) = \frac{269}{34} > \frac{447}{140} = H(B_8) \), by Theorem 4, we immediately obtain the following result.

Corollary 4. Let \(G \in \mathcal{B}_{8,4} \), then \(H(G) \geq \frac{447}{140} \) with equality if and only if \(G \cong B_8 \).

We now present the minimum harmonic index for graphs in \(\mathcal{B}_{n,m} \setminus \{B_8\} \), where \(3 \leq m \leq \lfloor \frac{n}{2} \rfloor \).

Theorem 5. Let \(G \in \mathcal{B}_{n,m} \setminus \{B_8\} \), where \(3 \leq m \leq \lfloor \frac{n}{2} \rfloor \). Then

\[
H(G) \geq \frac{2(m+1)}{n-m+4} + \frac{2(n-2m+1)}{n-m+3} + \frac{2(m-3)}{3} + 1
\]

with equality if and only if \(G \cong B_{n,m} \).

Proof. We prove the theorem by induction on \(n \). If \(n = 2m \), then by Theorem 4, the assertion of the theorem holds. So we may assume that \(n > 2m \) and the result holds for graphs in \(\mathcal{B}_{n-1,m} \setminus \{B_8\} \). If there is no pendent vertex in \(G \), then \(G \cong B_{n,m} \). It is easy to check that

\[
H(G) = \begin{cases}
\frac{m + 13}{30}, & \text{if } G \in \mathcal{B}_{2m+1}^1 \cup \mathcal{B}_{2m+1}^4, \\
\frac{m + 7}{11}, & \text{if } G \in \mathcal{B}_{2m+1}^2 \cup \mathcal{B}_{2m+1}^3, \\
\frac{m + 3}{5}, & \text{if } G \in \mathcal{B}_{2m+1}^3.
\end{cases}
\]

This implies that

\[
H(G) - H(B_{2m+1,m}) \geq \left(\frac{m + 1}{3} \right) - \left(\frac{2(m+1)}{(2m+1)-m+4} + \frac{2[(2m+1)-2m+1]}{(2m+1)-m+3} + \frac{2(m-3)}{3} + 1 \right)
\]

\[
= \frac{m}{3} + \frac{8}{m+5} - \frac{4}{m+4} - \frac{2}{3} = \frac{m-2}{3} + \frac{4(m+3)}{(m+4)(m+5)} > 0,
\]

i.e., \(H(G) > H(B_{2m+1,m}) \).

So we may assume that \(G \) contains at least one pendent vertex. Then by Lemma 7, there exists a maximum matching \(M \) and a pendent vertex \(u \) in \(G \) such that \(u \) is not \(M \)-saturated. Let \(v \) be the unique neighbor of \(u \) with \(d(v) = s \geq 2 \), and let \(G' = G - u \). Then \(G' \in \mathcal{B}_{n-1,m} \). Since \(M \) contains exactly one edge incident with \(v \) and there are \(n+1-m \) edges of \(G \) outside \(M \), we have \(s \leq n-m+2 \). Let \(r \) be the number of pendant neighbors of \(v \) in \(G \), where \(1 \leq r \leq s-1 \). Note that at least \(r-1 \) pendant neighbors of \(v \) are not \(M \)-saturated, and there are \(n-2m \) vertices are not \(M \)-saturated in \(G \). Then \(r \leq n-2m+1 \).
If $G' \cong B_8$, then $n = 9$, $m = 4$ and $s \leq 5$. By Lemma 1(ii) (with $k = n - 2m + 1 = 2$) and Lemma 2(ii), we deduce that

$$H(G) \geq H(B_8) + \frac{2(s - 2)}{s + 2} + \frac{2(4 - s)}{s + 1} - \frac{2}{s}$$

$$\geq \frac{447}{140} + \frac{2 \cdot (5 - 2)}{5 + 2} + \frac{2 \cdot (4 - 5)}{5 + 1} - \frac{2}{5} = \frac{1393}{420} > \frac{59}{18} = H(B_{9,4}),$$

and hence the assertion of the theorem holds.

Therefore we may assume that $G' \not\cong B_8$. Then by Lemma 1(ii) (with $k = n - 2m + 1$), Lemma 2(ii) and the induction hypothesis, we have

$$H(G) \geq H(G') + \frac{2[s - (n - 2m + 1)]}{s + 2} + \frac{2(2n - 2m + 1) - s}{s + 1}$$

$$\geq \frac{2(m + 1)}{(n - 1) - m + 4} + \frac{2[(n - 1) - 2m + 1]}{(n - 1) - m + 3} + \frac{2(m - 3)}{3} + 1$$

$$+ \frac{2[(n - m + 2) - (n - 2m + 1)]}{(n - m + 2) + 2} + \frac{2[2(n - 2m + 1) - (n - m + 2)]}{(n - m + 2) + 1}$$

$$- \frac{2[(n - 2m + 1) - 1]}{n - m + 2}$$

$$= \frac{2(m + 1)}{n - m + 4} + \frac{2(n - 2m + 1)}{n - m + 3} + \frac{2(m - 3)}{3} + 1$$

with equalities if and only if $G' \cong B_{n-1,m}$, $s = n - m + 2$ and $r = n - 2m + 1$, i.e., $G \cong B_{n,m}$. This completes the proof of the theorem. \(\square\)

We can also determine the minimum harmonic index for graphs in B_n (see also in [31]) by using Theorem 3 and Theorem 5.

Corollary 5. Let $G \in B_n$ with $n \geq 4$. Then

$$H(G) \geq \frac{2}{n + 2} + \frac{4}{n + 1} + \frac{2(n - 4)}{n} + \frac{4}{5}$$

with equality if and only if $G \cong B_{n,n-1,3}$.

Proof. Let M be a maximum matching in G, then $2 \leq |M| = m \leq \left\lfloor \frac{n}{2} \right\rfloor$ (since $n \geq 4$). If $m = 2$, then the result follows immediately from Theorem 3.

If $m = 3$, then by Theorem 5, we have

$$H(G) \geq \frac{2 \cdot (3 + 1)}{n - 3 + 4} + \frac{2(n - 2 \cdot 3 + 1)}{n - 3 + 3} + \frac{2 \cdot (3 - 3)}{3} + 1$$

$$= \frac{8}{n + 1} + \frac{2(n - 5)}{n} + 1$$
with equality if and only if \(G \cong B_{n,3} \). Note that in this case \(n \geq 6 \). Since
\[
H(B_{n,3}) - H(B_{n,n-1,3}) = \left(\frac{8}{n+1} + \frac{2(n-5)}{n} + 1 \right) - \left(\frac{2}{n+2} + \frac{4}{n+1} + \frac{2(n-4)}{n} + \frac{4}{5} \right)
\]
\[
= \left(\frac{4}{n+1} - \frac{2}{n+2} - \frac{2}{n} \right) + \frac{1}{5} = \frac{-4}{n(n+1)(n+2)} + \frac{1}{5}
\]
\[
\geq \frac{79}{420} > 0,
\]
we know that the assertion of the corollary holds.

So we may assume that \(m \geq 4 \). If \(G \cong B_8 \), then \(H(G) = \frac{447}{140} > \frac{22}{7} = H(B_{8,7,3}) \), we see that Corollary 5 holds. Now suppose that \(G \not\cong B_8 \). Then by Theorem 5 and Lemma 3, we see that \(H(G) \geq H(B_{n,m}) > H(B_{n,m-1}) \) \(\cdots > H(B_{n,3}) > H(B_{n,n-1,3}) \). This finishes the proof of the corollary. \(\square \)

REFERENCES

Author's address

Lingping Zhong
Nanjing University of Aeronautics and Astronautics, Department of Mathematics, Nanjing 210016, P. R. China

E-mail address: zhong@nuaa.edu.cn