
Gökhan Soydan
CORRIGENDUM TO “ON THE DIOPHANTINE EQUATION \(X^2 + 7^\alpha \cdot 11^\beta = Y^N\)” [MISKOLC MATH. NOTES, VOL. 13 (2012) NO. 2, PP. 515-527.]

GÖKHAN SOYDAN

Received 24 October, 2013


2010 Mathematics Subject Classification: 11D41; 11D61

Keywords: exponential diophantine equations, primitive divisors of Lucas sequences

The author regrets some technical mistakes in the proof of Lemma 3 specifically:
In page 524, between the lines 9 and 11 statement that “So \(\dot{11} \cdot 1\) \(\mod 8/\), showing that the sign on the left hand side is positive and \(\beta_1\) is odd, or the sign on the left hand side is negative and \(\beta_1\) is even.” must be deleted.
It should be written as “So \(\dot{11} \cdot 1\) \(\mod 8/\), showing that the sign on the left hand side is positive and \(\beta_1\) is even.”
In page 524, between the lines 12 and 16 the statement that “Assume first that \(\beta_1 = 2\beta_0 + 1\) be odd. We get
\[11V^2 = 5U^4 - 70U^2 + 49,\]
where \((U, V) = (u/v, 11^{\beta_0}/v^2)\) is a \{7\}-integral point on the above elliptic curve.
We get that the only such points on the above curve are \((U, V) = (\pm 7, \pm 28)\). This does not lead to solutions of our original equation.” must be deleted.

Author’s address

Gökhân Soydan
Uludag University, Department of Mathematics, Görükle, 16059 Bursa, Turkey
E-mail address: gsoydan@uludag.edu.tr

The author was supported by the research fund of Uludağ University Project No F-2013/87.

© 2014 Miskolc University Press