Miskolc Mathematical Notes

Corrigendum to "On the Diophantine equation $X^{2}+7^{\alpha} .11^{\beta}=y^{n}$ [Miskolc Math. Notes, Vol. 13 (2012) No. 2, pp. 515-527]

Gökhan Soydan

CORRIGENDUM TO "ON THE DIOPHANTINE EQUATION $X^{2}+7^{\alpha} \cdot 11^{\beta}=Y^{N} "$ [MISKOLC MATH. NOTES, VOL. 13 (2012) NO. 2, PP. 515-527.]

GÖKHAN SOYDAN

Received 24 October, 2013

Abstract

This note presents some corrections to (Miskolc Math. Notes, Vol. 13 (2012) No. 2, pp. 515-527.)

2010 Mathematics Subject Classification: 11D41; 11D61
Keywords: exponential diophantine equations, primitive divisors of Lucas sequences

The author regrets some technical mistakes in the proof of Lemma 3 specifically: In page 524 , between the lines 9 and 11 statement that "So $\pm 11^{\beta_{1}} \equiv 1(\bmod 8)$, showing that the sign on the left hand side is positive and β_{1} is odd, or the sign on the left hand side is negative and β_{1} is even." must be deleted.
It should be written as "So $\pm 11^{\beta_{1}} \equiv 1(\bmod 8)$, showing that the sign on the left hand side is positive and β_{1} is even."
In page 524 , between the lines 12 and 16 the statement that "Assume first that $\beta_{1}=$ $2 \beta_{0}+1$ be odd. We get

$$
11 V^{2}=5 U^{4}-70 U^{2}+49
$$

where $(U, V)=\left(u / v, 11^{\beta_{0}} / v^{2}\right)$ is a $\{7\}$-integral point on the above elliptic curve. We get that the only such points on the above curve are $(U, V)=(\pm 7, \pm 28)$. This does not lead to solutions of our original equation." must be deleted.

Author's address

Gökhan Soydan

Uludağ University, Department of Mathematics, Görïkle, 16059 Bursa, Turkey
E-mail address: gsoydan@uludag.edu.tr

[^0]
[^0]: The author was supported by the research fund of Uludağ University Project No F-2013/87.

