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Abstract. We introduce and study a new operation of product of n-ary hyperalgebras which
lies, with respect to set inclusion, between their cartesian product and the cartesian product of
their idempotent hulls. For every fixed n-ary hyperalgebra, the product introduced gives an
endofunctor of the construct of n-ary hyperalgebras. We define a power of n-ary hyperalgebras
and specify a class of n-ary hyperalgebras such that, with respect to the endofunctor, the power
together with the evaluation map constitute a co-universal arrow for each hyperalgebra of the
class.
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1. INTRODUCTION

Hyperalgebras proved to be useful generalizations of algebras having many applic-
ation in various branches of mathematics and computer science (automata theory).
This lead to a rapid development of the theory of hyperalgebras since the beginning
of 90’s of the last century - see e.g. [3]. The aim of this paper is to contribute to the
development.

In his pioneering paper [2], G. Birkhoff introduced the cardinal (i.e., direct) arith-
metic of partially ordered sets and showed that it behaves analogously to the arith-
metic of natural numbers. Several authors then extended the cardinal arithmetic to
relational systems - see e.g. [7,8] and [10, 11]. Conversely, the cardinal arithmetic
has been restricted from relational systems to n-ary and universal algebras in [13]
and [12], respectively. Finally, in [14], the cardinal arithmetic was extended from
universal algebras to universal hyperalgebras.

In [14], an operation of a power of hyperalgebras (of the same type) was introduced
and studied. The results of [ 14] determine a class of hyperalgebras such that, with re-
spect to the endofunctor of the construct of hyperalgebras (of the same type) given by
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the cartesian product and a fixed idempotent hyperalgebra, the power together with
the evaluation map constitute a co-universal arrow for each hyperalgebra of the class.
In the present note, we restrict our considerations to n-ary hyperalgebras, i.e., hyper-
algebras with just one n-ary hyperoperation. For n-ary hyperalgebras, we introduce
an operation of product which is obtained as the restriction of the product of relational
systems introduced and studied in [8]. The operation lies, with respect to set inclu-
sion, between the cartesian product of n-ary hyperalgebras and the cartesian product
of their idempotent hulls. For idempotent hyperalgebras, the cartesian product and
the introduced one coincide. We will show that the above mentioned class has the
property that, with respect to the endofunctor of the construct of n-ary hyperalgebras
given by the new product and arbitrary (not only idempotent) but fixed n-ary hyper-
algebra, the power together with the evaluation map constitute a co-universal arrow
for each hyperalgebra of the class. We then get the first exponential law with re-
spect to the new product which, unlike the first exponential law with respect to the
cartesian product, is valid for arbitrary n-ary algebras in the exponents, not only for
the idempotent ones.

2. COMBINED PRODUCT OF HYPERALGEBRAS

For the basic concepts used concerning n-ary hyperalgebras we refer to [2] and
for those concerning category theory we refer to [1]. Let n be a nonnegative in-
teger. By an n-ary hyperalgebra we understand a pair G = (G, p) where G is a set,
the so-called carrier of G, and p : G" —expG ~ {@} is a map, the so-called n-ary
hyperoperation of G. To avoid some nonwanted singularities, only the n-ary hyper-
algebras with n > 0 are considered in this note. An n-ary hyperalgebra G = (G, p)
with the property card p(x1,...,x,) = 1 for every x1,...,x, € G is called an n-ary
algebra. Binary hyperalgebras are usually called hypergroupiods.

LetH= (H,q),G = (G, p) be a pair of n-ary hyperalgebras. Amap f : H— G is
called a homomorphism of Hinto G if f(q(x1,...,x»n)) € p(f(x1),..., f(xn)). The
set of all homomorphisms of H into G will be denoted by Hom(H,G). We denote
by HY P, the construct of n-ary hyperalgebras with homomorphisms as morphisms.
Subobjects in H Y P,, are called subhyperalgebras. Clearly, G is a subhyperalgebra
of Hif G C H and p(x1,...,xn) = q(x1,...,X,), whenever x1,...x, € H. We
write G = H if G and H are isomorphic in HY P, and we write G < H if G may
be embedded into H in HY Py, i.e., if there exists a subalgebra H' of H such that
GxH .

Given n-ary hyperalgebras G = (G, p) and H = (G,q), we put G < H if
p(x1,....xn) Cq(xi,...,xn) forevery x1,...,x, € G.

If p is an n-ary hyperoperation on a set G and X1,..., X, are nonempty subsets
of G, we put p(X1,....Xn) = U {p(x1,....xn);x1 € X1,...,Xn € Xp}.

Let G; = (G4, pi),i € I, be a family of n-ary hyperalgebras. We denote by
[lie; Gi the cartesian product of the family in HYP,. Thus, [[;¢c;G;
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= ([l;¢; Gi. p) is the n-ary hyperalgebra where p(fi...., fn) = [[;e; Pi (S1(),....
Ju(i)) whenever fi,..., fu € [l;c; Gi- As usual, if the set [ is finite, say / =
{1,...,m}, then we write G1 X ... X G, instead of [[;c; G;. Further, we define
the direct sum of a family G; = (G, p;),i € I, of n-ary hyperalgebras to be the n-
ary hyperalgebra ) ;; G; = (G,q) where, for every x1,...,x, € G,q(X1,...,X,) =
Uier Pi(x1,...,x,). If the set [ is finite, say / = {1,...,m}, then we write G &
...W Gy instead of ), 7 Gi.

An n-ary hyperalgebra G = (G, p) is said to be idempotent if, for every x € G, x €
p(x1,...,xn) whenever x = x; =... = xp. Let G = (G, p) be an n-ary hyperalgebra.
For every x1,...,x, € G, we put

p(xt,...,xp)U{x1} ifx; =...=xp,

PX1,o Xn) = { p(X1,...,Xn) if x; # x; forsomei,j € {1,...,n}.

The n-ary hyperalgebra (G, p) is called the idempotent hull of G and is denoted
by G.

Let G; = (G, pi),i € I, be anon-empty family of n-ary hyperalgebras. The com-
bined product of the family is the n-ary hyperalgebra @);c; Gi = > ;e [1jes Gij
where _

)G ifi=g,
Gij _{ G, ifi#j.

Thus, Q;c;Gi = ([lje; Gi.r) where, for any f. fi,...fn € [lic; Gi,
f er(fi,..., fn) if and only if there exists a subset J € [, card J < 1, such that
f@) € pi(f1(Q),..., fu(@)) foreveryi € I ~J and f(i) = f1(i) = ... = fn(i) for
everyi € J.

If the set I is finite, say I = {1,...,m}, we write G; ® ... ® G, instead of
;e Gi. We then clearly have G1 ® ... ® G = (G11 X G12 X ... X G 1) W (G2 X
G2 X...XGom)W. .. W (Gmi XGm2....XGCmm) = (G1 XxG2 X ...XGp) W (G XG>
X.. . XGp)W.. W (G xGax...xGp).

In particular, if I = {1,2}, then, for any (x1, y1),...,(Xn, ¥n) € G1 X G2, (x,y) €

r((x1,¥1),...,(Xn, yn)) if and only if one of the following three conditions is satis-
fied:
(i) x € p1(x1.....xn) and y € p2(y1.....¥n),
(i) x=x1=x2=...=xpand y € p2(y1,...,¥n),
(iii)) x € p1(x1,...,xp)and y =y = yp = ... = yy.

Ifcard I = 1,say I ={i}, then ®,; Gi = G;.

For every n-ary hyperalgebra H = (H,q), the operation of combined product
defines an endofunctor H® — : HY P,, — HY P, which assigns to every morph-
ism f : Gy - Gy in HY P, the morphism idg x f : H® G; > H® G,. This
endofunctor will be studied in the next section.

Remark 1. Let G;,i € I, be a non-empty family of n-ary hyperalgebras. We
clearly have [[;e; Gi = Qie; Gi <[lies Gi = Qies Gi and Q)ie; Gi = Qe Gi-
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Ifcard I <2,then @,;c; Gi = [l G,. If G; is idempotent for every i € I, then all
the previous inequalities become equalities. If at most one of the n-ary hyperalgebras
G;,i € 1, is not idempotent, then ®ie 7 Gi is idempotent.

Theorem 1. Let G; = (Gi, pi),i € I # B, and H = (H,q) be n-ary hyperalgeb-
ras. Then ) ;c; H®G;, =H® Y ,; Gi.

Proof. Let) ;G =(G,s),H®G; = (H xG,r;) foreachi € I H® ) ;; G;
= (H xGu) and ), ;H® G; = (H x G,v). We will show that

u((x1,¥1)s---» Xn,yn)) =v((x1,¥1),...,(xn, yn)) forevery (x1,v1),..., (Xn, ¥n) €
H x G. Itis easy to see that the following five conditions are equivalent:

(a) (x’y)Gu((xl,yo’---’(xn»J’n));
(b) one of the following three cases occurs:
(1) xeq(x1,....,.xp)and y € s(¥1,...,Vn),
) x=x1=x2=...=xpand y € s(y1,...,¥n),
(i) x €eg(x1,....,xp)and y = y1 = y2 = ... = Vn;
(c) one of the following three cases occurs:
(1) x €q(x1,...,xp)and y € p; (y1,...,yn) forsomei € I,
(i) x=x1=x2=...=xpand y € p;(y1,...,yn) forsomei € I,
(i) x €eg(x1,....,xp)and y = y1 = y2 = ... = Vn;
(d (x,y)eri((x1,¥1),...,(xn,yn)) for somei € [;
() (x,») €v((x1,¥1)s---, (Xn, Yn))-
This proves the statement. U

Definition 1. An n-ary hyperalgebra (G, p) is called medial if, for every n x
n-matrix (a;;) over G, from x; € p(a;1,...,a;n) for eachi =1,...,n and y; €
plaij,...,anj) foreach j =1,...,n it follows that p(xq,...,xs) = p(¥1,....¥n).

The medial n-ary algebras are studied in [13]. The mediality may be extended,
in a natural way, from n-ary algebras onto universal algebras. The medial universal
algebras are often called commutative and they were dealt with e.g. in [5,6] and [12].
The medial groupoids are studied in [4].

Example 1. (1) Let (X, <) be a partially ordered set with a least element 0 and
let A be the set of all atoms of (X, <). Put 0’ = {0} for any x € X with x # 0 put
x'={y € X;y <xand y € AU{0}}. Further, for any pair x,y € X put x x y =
x"Ny’. Then (X, %) is a medial hypergroupoid. Indeed, it can easily be seen that for
any a,b,c,d € X wehave x xy = f x g whenever x €axb, yecx*d, f €eaxc
and g € bxd.

(2) Every unary algebra G consisting of two-element cycles is medial and, more-
over, the unary hyperalgebra G is medial, too.

It may easily be seen that the cartesian product of a family of medial n-ary hyperal-
gebras is a medial n-ary hyperalgebra. But this is not generally true for the combined
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product of n-ary hyperalgebras. With respect to the combined product, we have the
following result:

Proposition 1. Let G, H be n-ary hyperalgebras. If G,H are medial, then so is
G®H.

Proof. Since the cartesian product of a family of medial n-ary hyperalgebras is a
medial n-ary hyperalgebra, the statement follows from the obvious equality G @ H =
G x H (see Remark 1).

O

3. POWER OF HYPERALGEBRAS

Lemma 1. Let H = (H,q) and G = (G, p) be n-ary hyperalgebras and let
fi,eoos fu € Hom(MH,G). Let f : H - G be a map such that f(x) €
p(f1(x),..., fu(x)) for every x € H. If G is medial, then f is a homomorphism
from H into G.

Proof. Let x1,...,x, € H . We will show that f(g(x1,...,x,)) € p(f(x1),...,
f(xn)). Let y € f(q(x1,...,X5)). Then there exists x € g(x1,...,X,) such that
y = f(x), so f(x) € f(g(x1,...,xn)). Since fi,..., fn» € Hom(H,G) and x €
q(x1,...,xp), we have f;(x) € fi(q(x1,....xn)) € p(fj(x1),..., fj(xn)) for each
j =1,...,n. By the assumption, we have f(x;) € p(f1(xi),..., fu(x;)) for each
i=1,...,nand f(x) € p(f1(x),..., fu(x)). Since G is medial, p( f1(x),..., fn(x))
= p(f(x1)..... f(xn)). Thus, y = f(x) € p(f(x1),..., f(xn)). O

Given sets G, H, we denote by G the set of all maps of H into G. The bijection
¢ (GH)K — GH*K (where G, H, K are sets and x denotes the cartesian product)
given by ¢(h)(x,y) = h(y)(x) whenever h € (G7)K x € H and y € K will be
called canonical.

Definition 2. Let H = (H,q) and G = (G, p) be n-ary hyperalgebras and let G
be medial. The power of G and H is the n-ary hyperalgebra G} = (Hom(H, G),r)
where, for any fi....,f, € Hom(H,G), r(fi,....fn) = {f € GH; f(x) €
p(f1(x),..., fu(x)) foreach x € H}.

It is easy to see that the power GH of n-ary hyperalgebras is idempotent whenever
G is idempotent (and medial).

Proposition 2. Let G;, i € I, be a nonempty family of medial n-ary hyperalgebras
and H be an n-ary hyperalgebra. If Q;c; Gi is medial, then

QG < (6"
iel i€l

Proof. Let G; = (G;, p*) foreveryi € I, H= (H,q), Q:c; Gi = ([[;c; Gi.7),
GiH = (Hom(H,G;),u') forevery i € I, Q. ¢, Gl = (Il;ef Hom(H,Gi),s) and
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(R GH)H = (Hom(H (X)le] Gi).t). We define a map o : [[;c; Hom(H,
G,)—)(]_[leIG) bya(fi;iel)(z)=(f(z);iel)foreachz e H.

Let (fi;i€l)€[];e; Hom(H,G;). Leth € a(f%; i € I)(g(x1,...,%xn)). Then
h = a(f'; i € I)(x) where x € g(x1,...,xn). Thus, h = a(f';i € I(x) =
(fi(x);i el). Since x € g(x1,...,x,) and fi e Hom(H,G;) for every i € I, we
have f (x) € pi(f! (1), ., fi(xn)) for every i € . Thus, h = (fix);iel)e
r((ff(en)siel),....(ff (Xn) ieD)=r((ffiel)(x1),....a(f";i€)(xn)).
Consequently, a(f’ i€ I(qx1.....xn)) Sr(a(fi;ice I)(xl),...,a(f’; i €
I)(xy)). Therefore, a(f'; i € I) € Hom(H, ;<7 Gi). We have shown that o
maps [ [;c; Hom(H, G;) into Hom(H, Q); <; Gi).

Suppose that a(f%; i € I) = a(g’; i € I) where (f'; i e I),(g";iel)e
[T;c; Hom(H,G;). Then (fi(x); i e [)=a(f;iel)(x)=a(g;icl)(x)=
(g'(x); i € I) for every x € H. Therefore, f'(x) = g'(x) for every i € I and
for every x € H. Hence, f' = g’ for every i € I. Thus, o: [lic; Hom(H,G;) —
Hom(H,Q);<; Gi) is an injection.

Finally, let (fli; iel),. (fliiel)e [l;e; Hom(H,Gj). We are to show that
oz(s((fli; i eI),...,(fni; iel))) :t(a(fli; i el),...,oz(f,f; i €1)). Itiseasy to
see that the following seven conditions are equivalent:

@ feal((fisiel)....(fysiel)) ‘

() f=a(f'iiel)where (f'5iel)es((fiiiel),....(f;i €l));

(¢) f =a(f';i €I) and there exists J C I, card J < 1, such that f/ €
ui(fli,...,f,f) foreveryi € I~J and f! = fli zfzi =...= fI for every
ield;

@ f(x)= (f (x);i € I) for every x € H and there exists J C [, card J <1,
such that f%(x) e p/l(f1 (x),. fn (x)) foreveryi € I ~J and every x € H
and f1 (x)—f1 (x)= f2 (x) =... —fn (x) foreveryi € J andevery x € H;

(e) f(x) (fix)iel) er((fli(x); iel),....(fl(x);iel))forevery x €

(f) f(x) € r(oz(f1 ci € D)(x),...,a(fl;iel)(x)) forevery x € H;
(e f et(a(fl, i eI),...,oz(fn; iel)).
Consequently, oz(s((fli; iel),... (fl;iel))= t(a(fli; iel),...a(flie
1)), which yields @, ¢; GH < (®;; Gi)M. O
Remark 2. 1t may easily be shown that, in the previous Proposition, we may write

=~ instead of < provided that G; is idempotent for every i € /. We then obtain the
so-called second exponential law for the cartesian product, i.e., the law [ [;; GiH =

([Tiex Gi)H-
Theorem 2. Let G, H be n-ary hyperalgebras. If G is medial, then so is GH.

Proof. Let H= (H,q), G = (G, p), GH = (Hom(H,G),r) and let (flj) be an
n x n-matrix over Hom(H, G). Suppose that h; € r(fi1,..., fin) foralli =1,.



ON A CO-UNIVERSAL ARROW 513

and g; € r(fij,..., fnj) forall j =1,...,n. For every x € H, we have h;(x) €
p(fi1(x),..., fin(x)) foralli =1,...,n and g; (x) € p(f1j(x),..., fuj(x)) for all
j =1,...,n. Since G is medial, we have p(h1(x),...,h,(x)) = p(g1(x),...,gn(x))
for every x € H. Therefore, r(hy,...,hy) =r(g1,...,8n), so that GHis medial. O

Definition 3. An n-ary hyperalgebra (G, p) is called diagonal if, for every n x n-
matrix (a;;) over G, we have p(p(aii,....ain)s....p@n1,....ann))N
p(p(all»---,anl),---,P(aln»---,ann))gp(all,---,ann)-

For idempotent algebras, the diagonality introduced coincides with the diagonality
studied in [9].

Example 2. It may easily be seen that the hypergroupoid from Example 1(1) is
diagonal.

The combined product of diagonal n-ary hyperalgebras is not be diagonal in gen-
eral. But we have:

Proposition 3. Let G, H be n-ary hyperalgebras. If G, H are diagonal, then so is
G®H.

Proof. The proof is analogous to that of Proposition 1. U

Theorem 3. Let G,H be n-ary hyperalgebras. If G is medial and diagonal, then
GH is diagonal.

Proof. LetH= (H,q),G = (G, p),GH = (Hom(H,G),r) and let (f;;) be an n x
n-matrix over Hom(H,G). Suppose that f € r(r(fi1,..., fin),--- ¥ (ful,
coos o) O r(r (11,0 fu1)s o7 (f1ns- -+, fun)). Then f(x) € p(p(f11(x),...,

fln(x))s~-vr(fnl(x)v---»fnn(x))) N p(p(fll(x)""’fnl(x))7"'3p(f1n(x)v-~-a
fun(x))) for every x € H. Since G is diagonal, we have f(x) € p(f11(x),...,

fun(x)) forevery x € H. Thus, f € r(fi1...., fun). Hence, GH is diagonal. i

We denote by MDH Y P, the full subconstruct of HY P,, whose objects are the
n-ary hyperalgebras that are medial and diagonal.

Lemma 2. Let Ge MDHY P, and H,K € HY P,,. Then the canonical bijection
¢ (GTK — GHXK pestricted to Hom(K, GH) is a bijection of Hom(K,GH) onto
Hom(HRK,G).

Proof. LetH= (H,q),G = (G, p),K=(K,s),GH = (Hom(H,G),r), HQK =
(H x K,v) and let G be diagonal and medial. Let & € Hom(K,GH) and let
r1,21)s---»(n,z2n) € H x K. To show that @(h)(v((y1,21)s--..(Vn.2n)) C

ple(M)(y1,21)s-...@(h)(Yn,zn)), letx € p(h)(v((y1,21),- .., (Yn,Zn))). Then there
exists (v,2) € v((¥1,21),---»(Yn,2n)) such that x = ¢(h)(y, z). Thus, one of the fol-

lowing three conditions is satisfied:
(i) yeq(y1,....yn) and z € 5(21,...,2n),
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i) y=y1=y2=...=ypand 2 € 5(21,...,2n),

(i) yeq(yi,....,yp)andz =21 =22 =... = 2.

If z € 5(21,....2n), then h(z) € h(s(z1.....2n)) € r(h(z1),...,h(zn)), hence
e()(y.2) = h)(y) € pl(h(z)).....~h(z))) = ple®)(y.21).....
@(h)(y,zn) for each y € H. Thus, ¢(h)(y,z) € p(p(h)(y1,21),....¢(h)(Yn,Zn))
provided that (ii) is satisfied.

If y€q(yi,....yn), then @(h)(y,z) = h(z)(y) € h(2)(g1,...,yn)) S
p(h(2)(y1), ... . h(2)(yn)) = ple(h)(¥1,2),....9(h)(yn,2)) for every z € K. Thus,
eh)(y.2) € ple(h)(¥1.21).....¢(h)(yn.Zn)) provided that (iii) is satisfied.

Suppose that (i) is satisfied. Since z € s(21,...,25), by the above considera-
tions we get ¢(h)(yi.z) € p(e(h)(yi.z1),....0(h)(yi,zn)) for every i =1,...,n
and p(h)(y,2) € p(e(h)(y,21),....0(h)(y,2n)). As y €q(y1,...,Yn), by the above
considerations we obtain ¢(h)(y,z;) € p(e(h)(y1,2;)....,9(h)(yn,z;)) for every
Jj=1....nand (h)(y,2) € p(e(h)(¥1.2),...,9(h)(¥n.2)). The diagonality of G
implies ¢(h)(y,z) € p(e(h)(¥1,21)s-..,9(h)(Yn,Zn)). We have shown that ¢(h) €
Hom(H®K,G).

Let g € Hom(H®K,G) and z1,...,2, € K. To show that ¢~ 1(g)(s(z1,...,
) S (@ (@)(z1) ... 971 (©)(zn)) let x € 91 (g)(5(21.....2n)). Then there
exists z € s(21,....2n) such that x € ¢~ 1(g)(z). Let y € H. Then (y,z) €
v((¥,21)s-..,(¥,2n)). Since g € Hom(H®K,G), we have g(y,z) € g(v((y,z1)
v (9:20)) € p(g(¥.21).-... &(y.2n)). It follows that 91 ()(z)(¥) € p(p~'(g)
@) 971 (@)(zn)(¥)), hence ¢! ()(2) € p(p~ (9)(21).....0 (&) (zn))-
Therefore, ¢~ 1(g)(s(z1,....21)) S (@~ (g)(21),....¢ 1 (g)(zn)). Consequently,
¢ Y (g) € Hom(K,GH). O

Given Ge MDHYP, and H = (H,q) € HY Py, the evaluation map is the map
e :H® GH — G defined by e(y, f) = f(y) whenever y € H and f € Hom(H,G).

Theorem 4. Let G € MDHY P, and H € HY P,. Then the pair (GH, e), where
e : H® GH is the evaluation map, is a co-universal arrow for G with respect to the
functorHQ —: HY P, - HY Py,

Proof. Let G = (G, p), H= (H,q) and H® GH = (H x Hom(H,G),w). For
every K= (K,r) € HY P, and every morphism f : H® K — G, the map f*: K —
GH given by f*(z)(y) = f(y,z) is a morphism in H Y P, by the previous Lemma.
We will show that the evaluation map e : H® GH — G is morphism in HY P,, too.
To this end, let x € e(w((y1,%71),...,(Vn,hn))). Then x = e(y,h) = h(y) where
(y.h) e w((y1,h1),...,(¥n.hn)). Thus, we have

i) yeqy1,...,yn)and h e r(hy,...,hy) or
() y=y1=ya2=...=ypand h er(hy,...,hy) or

(i) yeg(y1,....yn)andh=hy =hy = ... = hy.

Suppose that (i) is satisfied. Then h(y) € p(h(y1),...,h(yn)) and h(y;) €
p(h1(¥i),....hn(y;)) for every i = 1,...,n. Thus, we have x = h(y) €
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p(p(hi(y1),....hn(¥1))s-... p(h1(¥n),....hn(yn))). Further, we have h(y) €
phi(y),....hn(¥)) and h;(y) € p(hj(y1),....hj(yn)) for every j = 1,...,n.
Hence, h(y) € p(p(h1(y1).... . h1(yn)), ... p(hn (1), ..., hn(¥n))). Since G is di-
agonal, we have x € p(h1(¥1),....hn(yn)) = ple(y1,h1),...,e(Yn,hyn)). There-
fore, e : H® GH — G is a homomorphism.

Suppose that (ii) is true. Then h(y) = h(y1) = ... = h(y,) and h(y;) €
ph1(yi),....hn(y;)) for every i = 1,...,n. Thus, we have x = h(y) €
p(hi(¥).....hn(»)) = ple(y1,h1),...,e(Vn,hn)). Therefore, e : H® GH — G is
a homomorphism.

Finally, let (iii) be true. Then (h) € p(h(y1),...,h(yn)) and h(y;) = h1(yi) =
...=hy(y;)foreveryi =1,...,n. Thus, we have x = h(y) € p(h(y1),...,h(yn)) =
p(e(y1.h1).,....e(Yn.hy)). Therefore, e : H® GH — G is a homomorphism. O

Remark 3. The full subconstruct MDHY P, of HY P, is closed under powers but
it is not closed under combined products. By the previous Theorem, for every full
subconstruct A4 of M DH Y P, closed under both the powers and combined products,
and every <-object H, the functor H® — : A — A is a co-adjoint with the cor-
responding adjoint being the functor —H : A — . But it follows from [14] that the
functor —H : A — 4 is an adjoint with the corresponding co-adjoint being the functor
Hx—: A — 4. Consequently, the functors H® —: A — A and Hx — : A — A are
naturally isomorphic and # is cartesian closed. Therefore, all objects of #A have to
be idempotent. Such a subconstruct 4 may be obtained by putting A = IMDHY P,
where IMDHY P, is the full subconstruct of MDHY P, given by its idempotent
objects. It follows from [14] that /M DH Y P, is cartesian closed.

Proposition 4. Let G,H,K be n-ary hyperalgebras. If G is medial and diagonal,
then

(GH)K ~ GH®K.

Proof. LetH=(H,q),G = (G, p).K=(K,s),GH = (Hom(H,G),r), HQK =
(H x K,v),(GHX = (Hom(K,GH),1), GH®K = (Hom(H®K,G),u) and let G be
diagonal and medial.

Let hy,....h, € Hom(K,GH) and x € ¢(t(hy,...,hy,)). Then there exists h €
t(hi,...,hy) such that x = ¢(h). Since h € t(hy1,...,hn), we have h(z) €
r(h1(z2),...,hn(2)) forevery z € K. Therefore, h(z)(y) € p(h1(2)(¥), ..., hn(2)(»))
foreacuy € H. Thus, ¢(h)(y,z) € p(e(h1)(y,2),....¢(hy)(y,z)) forevery (y,z) €
H x K. Hence, ¢p(h) € u(e(hy),...,¢(hy)). Consequently, ¢(t(hy,...,hy)) C
u(@(h),....¢(hn)).

Conversely, let x € u(¢(hy),...,¢(hy)). By Lemma 2, there exists h €
Hom(K,GH) with x = ¢(h), so that o(h) € u(¢(hy),...,¢(hy)). Then p(h)(y,z) €
pleh)(¥,2) »...,0(hn)(y,z)) for every (y,z) € H x K, which implies h(z)(y) €
p(h1(2)(y) ,..., hn(2)(y)) for every y € H and z € K. Tt follows that h(z) €
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r(hi1(z),..., hy(z)) for every z € K. Therefore, h € t(hy,...,h,), thus ¢(h) €

(p(t(hl’ s ,hn)) Hence, u((p(hl)’ e ’(P(hn)) g (p(t(hl’ s 7hl’l))
We have shown that ¢(¢(hy,...,h,)) = u(e(hi),...,@(hy)) whenever hp,
....hn € Hom(K,GH). Thus, (GH)¥ is isomorphic to GH®X by Lemma 2. O

Remark 4. Tt follows from Proposition 4 that the exponential law (GH)¥ ~ GH*K
is valid whenever G, H, K are n-ary hyperalgebras, G medial and diagonal and H,K
idempotent. This result follows from [4]. But Proposition 4 says that, when replacing
the cartesian product by the combined one, the above exponential law is satisfied for
any n-ary hyperalgebras H, K, not only for the idempotent ones.
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