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Abstract. This work presents the application of series method to find solutions of differential-
algebraic equations systems (DAEs). We present two case studies to show that series method
generates approximate solutions for DAEs. The type of tested equations are a linear and a non-
linear DAEs of index-3. What is more, we present the post-processing of the series solutions
with Laplace-Padé (LP) resummation method as a useful strategy to find exact solutions or to
extend the domain of convergence of the power series solutions.
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1. INTRODUCTION

Solving differential equations is an important issue in sciences because many phys-
ical phenomena are modelled using such equations. Modern methods like homo-
topy perturbation method (HPM) [7, 8, 14, 16, 22, 23, 35, 41–43], homotopy analysis
method (HAM )[13,15,32], variational iteration method (VIM) [1,5,20], among oth-
ers, are powerful tools to approximate nonlinear dynamic problems. Nevertheless,
series method [9, 10, 17] is a well known classic procedure from literature that can
be applied successfully to solve differential equations. This method establishes that
the solution of a differential equation can be expressed as a power series of the in-
dependent variable. Therefore, in this work, we apply series method to solve two
differential-algebraic equations. Additionally, we present the use of Laplace-Padé
(LP) resummation method as an useful strategy to obtain exact solutions or approx-
imations possessing a large domain of convergence.

This paper is organized as follows. In Section 2, we introduce the basic concept
of the series method. The concept about Laplace-Padé resummation method is ex-
plained in Section 3. The solution of two differential algebraic equations is presented
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in Section 4. In Section 5, numerical simulations and a discussion about the results
are provided. Finally, a brief conclusion is given in Section 6.

2. BASIC CONCEPT OF SERIES METHOD

It can be considered that a nonlinear differential equation can be expressed as

A.u/�f .t/D 0; t 2˝; (2.1)

having as boundary condition

B.u;
@u

@�
/D 0; t 2 �; (2.2)

where A is a general operator, f .t/ is a known analytic function, B is a boundary
operator, and � is the boundary of domain ˝.

The series method establishes that the solution of a differential equation can be
written as

uD

1X
iD0

ui t
i ; (2.3)

where u0;u1; : : : are unknowns to be determined by series method.
The basic process of series method can be described as:

(1) Equation (2.3) is substituted into (2.1), then we regroup equation in terms of
t -powers.

(2) We equate each coefficient of the resulting polynomial to zero.
(3) The boundary conditions of (2.1) are substituted into (2.3) to generate an

equation for each boundary condition.
(4) Aforementioned steps generate a nonlinear algebraic equation system (NAEs)

in terms of the unknowns of (2.3).
(5) Finally, we solve the NAEs to obtain u0;u1; : : :, coefficients.

3. LAPLACE-PADÉ RESUMMATION METHOD

Several approximate methods provide power series solutions (polynomial). Nev-
ertheless, sometimes, this type of solutions lacks of large domains of convergence.
Therefore, Laplace-Padé [3, 6, 11, 18, 21, 26–28, 31, 33] resummation method is used
in literature to enlarge the domain of convergence of solutions or inclusive to find
exact solutions.

The Laplace-Padé method can be explained as follows:
(1) First, Laplace transformation is applied to power series (2.3).
(2) Next, s is substituted by 1=t in the resulting equation.
(3) After that, we convert the transformed series into a meromorphic function

by forming its Padé approximant of order ŒN=M�. N and M are arbitrarily
chosen, but they should be of smaller value than the order of the power series.
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In this step, the Padé approximant extends the domain of the truncated series
solution to obtain better accuracy and convergence.

(4) Then t is substituted by 1=s.
(5) Finally, by using the inverse Laplace s transformation, we obtain the exact or

approximate solution.
This process is known as Laplace-Padé series method (LPSM).

4. CASE STUDIES

In this section we will solve two DAE problems in order to depict the LPSM
method.

4.1. Hessenberg index-3 DAE

Consider the following DAE [34]

x01Cx1� tx3Cx4 D 0;

x02�x1Cx2� t
2x3C tx4 D 0;

x03� t
3x1C t

2x2�x3 D 0;

tx1�x2C tx3�x4 D 0;

x1.0/D x3.0/D 1;

x2.0/D x4.0/D 0; (4.1)

where prime denotes derivative with respect to t .
We suppose that solution for (4.1) has the following fourth order expression

x1.t/D

4X
iD0

x1i t
i ; x2.t/D

4X
iD0

x2i t
i ;

x3.t/D

4X
iD0

x3i t
i ; x4.t/D

4X
iD0

x4i t
i ; (4.2)

Substituting (4.2) into (4.1), rearranging and equating terms having the same t -powers,
we obtain

x11Cx40Cx10C

 
x41Cx11C2x12�x30

!
tC�� � D 0:

x21Cx20�x10C

 
x40C2x22Cx21�x11

!
tC�� � D 0:

x31�x30C

 
�x31C2x32

!
tC�� � D 0:
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�x20�x40C

 
x10�x41�x21Cx30

!
tC�� � D 0: (4.3)

Next, equating the coefficients of (4.3) to zero, we obtain the following system of
algebraic equations

t0 W x11Cx40Cx10 D 0;

t1 W x41Cx11C2x12�x30 D 0;

:::

t3 W � � � (4.4)

t0 W x21Cx20�x10 D 0;

t1 W x40C2x22Cx21�x11 D 0;

:::

t3 W � � � (4.5)

t0 W x31�x30 D 0;

t1 W �x31C2x32 D 0;

:::

t3 W � � � (4.6)

t0 W �x20�x40 D 0;

t1 W x10�x41�x21Cx30 D 0;

:::

t4 W �x24Cx33Cx13�x44 D 0 (4.7)

Now, in order to consider the initial condition of (4.1), we substitute them into (4.2)
to obtain

x10 D 1; x20 D 0;

x30 D 1; x40 D 0; (4.8)

It is important to notice that, from (4.4)-(4.6), we use only the powers t i (i D 0;1;2;3),
because the rest of the information needed is taken from (4.8). From (4.1), we can
observe that there is not an explicit equation for variable x4. Therefore, from (4.7),
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we use coefficients of powers t i (i D 1;2;3;4) to collect enough information to com-
pensate the presence of x4 in those equations. Furthermore, order zero term of (4.7)
possesses redundant information that can be ignored. Hence, for (4.7), we can use
powers t i (i D 1;2;3;4). Then, solving the NAEs composed by (4.4), (4.5), (4.6),
(4.7), and (4.8) results the following approximate solution

x1.t/D 1� tC
1

2
t2�

1

6
t3C

1

24
t4;

x2.t/D t � t
2
C
1

2
t3�

1

6
t4;

x3.t/D 1C tC
1

2
t2C

1

6
t3C

1

24
t4;

x4.t/D tC t
2
C
1

2
t3C

1

6
t4: (4.9)

Then, Laplace transformation is applied to (4.9) and then 1=t is written in place of s.
Afterwards, Padé approximant of order Œ2=2� is applied and 1=s is written in place of
t for each variable. Finally, by using the inverse Laplace s transformation, we obtain
the exact solution for (4.1)

x1.t/D exp.�t /;

x2.t/D t exp.�t /;

x3.t/D exp.t/;

x4.t/D t exp.t/: (4.10)

4.2. Index-three nonlinear differential-algebraic equation system

Consider the following nonlinear DAE [2]

y01 D 2y1y2´1´2;

y02 D�y1y2´
2
2;

´01 D .y1y2C´1´2/u;

´02 D�y1y
2
2´

2
2u;

y1y
2
2 D 1;

y1.0/D y2.0/D 1;

´1.0/D ´2.0/D 1;

u.0/D 1; (4.11)

where prime denotes derivative with respect to t .
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We suppose that solution for (4.11) has the following fourth order expression

y1.t/D

4X
iD0

y1i t
i ; y2.t/D

4X
iD0

y2i t
i ;

´1.t/D

4X
iD0

´1i t
i ; ´2.t/D

4X
iD0

´2i t
i ;

u.t/D

4X
iD0

ui t
i : (4.12)

Substituting (4.12) into (4.11), rearranging and equating terms having the same t -
powers, we obtain

y11�2y10y20´10´20C

 
�2y10y20´11´20C2y12�2y10y21´10´20

�2y11y20´10´20�2y10y20´10´21

!
tC�� � D 0:

y21Cy10y20´
2
20C

 
y10y21´

2
20C2y22C2y10y20´20´21Cy11y20´

2
20

!
tC�� � D 0:

´11�u0y10y20�u0´10´20C

 
�u0y10y21�u1´10´20

�u0y11y20�u0´10´21�u0´11´20�u1y10y20C2´12

!
tC�� � D 0:

y10y
2
20´

2
20u0C´21C

 
2´22C2y10y

2
20´20´21u0

Cy11y
2
20´

2
20u0Cy10y

2
20´

2
20u1C2y10y20y21´

2
20u0

!
tC�� � D 0:

�1Cy10y
2
20C

 
y11y

2
20C2y10y20y21

!
tC�� � D 0: (4.13)

Next, equating the coefficients of (4.13) to zero, we obtain the following system
of nonlinear algebraic equations

t0 W y11�2y10y20´10´20 D 0;

t1 W �2y10y20´11´20C2y12�2y10y21´10´20�2y11y20´10´20
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�2y10y20´10´21 D 0;

:::

t3 W � � � (4.14)

t0 W y21Cy10y20´
2
20 D 0;

t1 W y10y21´
2
20C2y22C2y10y20´20´21Cy11y20´

2
20 D 0;

:::

t3 W � � � (4.15)

t0 W ´11�u0y10y20�u0´10´20 D 0;

t1 W �u0y10y21�u1´10´20�u0y11y20�u0´10´21�u0´11´20

�u1y10y20C2´12 D 0;

:::

t4 W � � � (4.16)

t0 W y10y
2
20´

2
20u0C´21 D 0;

t1 W 2´22C2y10y
2
20´20´21u0Cy11y

2
20´

2
20u0Cy10y

2
20´

2
20u1

C2y10y20y21´
2
20u0 D 0;

:::

t4 W � � � (4.17)

t0 W �1Cy10y
2
20 D 0;

t1 W y11y
2
20C2y10y20y21 D 0;

t2 W 2y10y20y22Cy10y
2
21C2y11y20y21Cy12y

2
20 D 0;

t3 W y11y
2
21C2y11y20y22C2y10y20y23C2y10y21y22C2y12y20y21

Cy13y
2
20 D 0;

t4 W y14y
2
20C2y11y20y23C2y13y20y21Cy12y

2
21C2y12y20y22C2y10y21y23

Cy10y
2
22C2y10y20y24C2y11y21y22 D 0: (4.18)
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Now, in order to consider the initial condition of (4.11), we substitute them into (4.12)
to obtain

y10 D 1; y20 D 1;

´10 D 1; ´20 D 1;

u0 D 1: (4.19)

It is important to notice that, from (4.14) and (4.15), we use only the powers t i

(i D 0;1;2;3), because the rest of the information needed is taken from (4.19). From
(4.11), we can observe that there is not an explicit equation for variable u. Instead, u
is implicitly included in equations for ´01 and ´02. Therefore, from (4.16) and (4.17),
we use coefficients of powers t i (i D 0;1;2;3;4) to collect enough information to
compensate the presence of u in those equations. Furthermore, powers t i (i D 0;1;2)
of (4.18) possesses redundant information that can be ignored. Hence, for (4.18), we
can use only powers t3 and t4. Then, solving the NAEs composed by (4.14), (4.15),
(4.16), (4.17), (4.18), and (4.19) results the following approximate solution

y1.t/D 1C2tC2t
2
C
4

3
t3C

2

3
t4;

y2.t/D 1� tC
1

2
t2�

1

6
t3C

1

24
t4;

´1.t/D 1C2tC2t
2
C
4

3
t3C

101

174
t4;

´2.t/D 1� tC
1

2
t2�

1

6
t3C

59

696
t4;

u.t/D 1C tC
1

2
t2�

1

174
t3�

25

58
t4: (4.20)

Then, Laplace transformation is applied to (4.20) and then 1=t is written in place of
s. Afterwards, Padé approximant of order Œ2=2� is applied and 1=s is written in place
of t for each variable. Finally, by using the inverse Laplace s transformation, we
obtain the exact solution for (4.11)

y1.t/D exp.2t/;

y2.t/D exp.�t /;

´1.t/D exp.2t/;

´2.t/D exp.�t /;

u.t/D exp.t/: (4.21)

5. NUMERICAL SIMULATION AND DISCUSSION

Using LPSM method, we obtained the exact solution of two DAEs problems, one
linear and other one nonlinear. It should be noticed that the high complexity of both
problems was effectively handled by LPSM method due to the malleability of series
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method. Moreover, by inspection, redundant information in (4.7) and (4.18) was
detected and neglected. Therefore, we obtained the series solutions (4.9) and (4.20).
Next using the LP resummation method we obtained the exact solutions (4.10) and
(4.21) for both case studies. The differential-algebraic problems are of relevance on
several fields of sciences including microelectronics and chemistry. What is more,
there is no any standard analytical method to solve this type of equations, converting
the LPSM method into an attractive tool to solve DAEs problems. Finally, if the
DAE problem do not possesses exact solution then the LP resummation method will
provide a larger domain of convergence as reported in literature [3, 6, 11, 18, 21, 26–
28, 31, 33].

On one side, semi-analytic methods like: homotopy perturbation method [7, 8,
14, 16, 22, 23, 35, 41–43], homotopy analysis method[13, 15, 32], variational iteration
method [1, 5, 20], among others [19], need an initial approximation for the sought
solutions and the calculus of one or several adjustment parameters. If initial approx-
imation is properly chosen the results can be highly accurate, nonetheless, no general
method is available to choose such initial approximation. This issue motivates the
use of adjustment parameters obtained by minimizing the least-squares error respect
to the numerical solution. On the other side, series method or LPSM method do
not need any trial equation as requirement for the method. Besides, series method
obtain its coefficients using a straight forward procedure. Furthermore, at least for
lower orders of approximation, the solution can be easily obtained using “solve” or
“fsolve” commands of MAPLE or equivalent routines in Mathematica or MATLAB
softwares. If high order approximations are required we propose the use of homotopy
continuation methods [4, 12, 24, 25, 29, 30, 36–40, 44–46] by its well know ability to
solve highly nonlinear equations.

6. CONCLUSIONS

This work presented LPSM method as a combination of the classic series method
and a resummation method based on the Laplace and Padé transforms. By solv-
ing two problems, we presented the LPSM as a useful tool with high potential to
solve linear/nonlinear differential-algebraic equations. The proposed method pos-
sesses a straightforward procedure, suitable for engineers and physicists. Finally,
further research should be performed to solve other kind of related problems like
fractional/partial nonlinear differential-algebraic equations, among others.
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