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Abstract. By means of the method of hybrid integral transform of Euler-Fourier-Bessel type
with spectral parameter the integral representation of exact analytical solution of mixed problem
for the system of equations of parabolic type in the three-part segment [0, R] is obtained under
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method of hybrid differential Euler-Fourier-Bessel operators.
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1. INTRODUCTION

The theory of boundary value problems for partial differential equations is an im-
portant section of the modern theory of differential equations which is intensively
developing in the present time. The popularity of the problem is the consequence of
the significance of its results in the development of many mathematical problems, as
well as of its numerous applications in mathematical modeling of different processes
and phenomenon of physics, chemistry, mechanics, biology, medicine, economics,
engineering.

It is well known that the complexity of a boundary-value problem significantly
depends on the coefficients of equations (different types of degeneracy and features)
and the geometry of domain (smoothness of the boundary, the presence of corner
points, etc.) in which the problem is considered. The dependence of the properties
of solutions of boundary value problems for linear, quasi-linear, and certain classes
of nonlinear equations in homogeneous domains on the above-mentioned properties
of the coefficients of equations and geometry of domain are studied in detail, and
functional spaces of correctness of problems for some domains are constructed [2,

1.

However, many important applied problems of thermophysics, thermodynamics,
theory of elasticity, theory of electrical circuits, theory of vibrations lead to boundary
value problems for partial differential equations not only in homogeneous domains
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126 I. KONET AND T. PYLYPIUK

(when the coefficients of the equations are continuous), but also in inhomogeneous
and piecewise homogeneous domains if the coefficients of the equations are piece-
wise continuous or piecewise constant [ 1, 14].

Besides the method of separation of variables [17], which is one of the important
and effective methods of studying linear boundary value problems for partial differ-
ential equations, there is the method of integral transforms, which makes it possible
to obtain analytical solutions of some boundary-value problems via their integral
images. It is also worth mentioning that for a rather wide class of problems (in
piecewise homogeneous domains) there exists the effective method of hybrid integ-
ral transforms. They are generated by differential operators, when on each of the
components of the piecewise homogeneous domain one considers different differen-
tial operators or differential operators of the same form, but with different sets of
coefficients [3-5, 7].

In theoretical investigations and in applied problems the most frequently used dif-
ferential operators are of second order, in particular the Fourier differential operator

[16]

d2
=—, 1.1
) (1.1)
the Euler differential operator [9]
d? d
B} :rZW—F(Za—Fl)rE%—aZ, (1.2)
the Bessel differential operator [11]
d> 2a+1d v?>—a?
By (1.3)

’ dr? roodr r2

the generalized Legendre differential operator [6]

2 d 1 1 u2 2
Ay = —= +cthr— + - —< 1 2 )= (u, 1.4
() dr2+c rdr+4+2 1—chr 1+chr) w= (i p2) (1.4)
and Kontorovich-Lebedev differential operator [10]
2 d? d 2 422
By =r"—+Qa+ 1)r—+ao“—A°r". (1.5)
dr? dr

If 6(x) is the Heaviside step function [15] and L; is one of listed differential
operators, then we can always create hybrid differential operator that corresponds to
the geometric structure of piecewise homogeneous domain.

For example, for the piecewise homogeneous interval (Rg, R1)U(R1, R2)U(R2, R)
it is possible to create hybrid differential operator (HDO)

M =0(r—Ro)0(Ry —r)atLy +60(r — R1)O(Ry —r)as Lo+
4—9(1’—R2)9(R—r)a§L3;a]2 = const. (1.6)
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It is obvious that operator L is defined in the interval (Rg, R1), operator L; is
defined in the interval (Ry, R»), and operator L3 is defined in the interval (R3, R).
It is clear, that if we change the order of operators L, L», L3 we get other hybrid
differential operator.

2. FORMULATION OF THE PROBLEM

Here we consider the problem of the structure of the solution which is bounded in
the set D, = {(t,7): t € (0;400);r € I = (0, R1) U(R1,R2)U(R2, R); R < +00}
for the system of evolutionary partial differential equations of parabolic type [17]

o tl +yiui(t,r)—ai By ui(t.r)] = fi(t.r).r € (0.Ry),

ad

dur

31‘ +)/2u2(t r) aZF[MZ([ r)] f2(t’r)’r€(R1’R2)’ (21)
du
2 y3ua(t.r) = a3 Buaolus(t.0)] = f(t.r). 1 € (Ra.R)

with zero initial conditions, boundary conditions
o Rui@e,r) 3
lim =2U2 2 =0 Lifus(tn)l| = gr() 22)

and conjugate conditions
(L5 b= Lol 20)])| = op@ijk=12. @3
J J r=Ry

Here By, is Euler differential operator (1.2) with parameter « = «;, F is Fourier

differential operator (1.1), By 4, is Bessel differential operator (1.3) with parameter
a=0a 20 +1>0,v=>a.

In the boundary conditions (2.2) at the point » = R and in the conjugate conditions
(2.3) the differential operators
0

9 5
m __ m P - . —
ij_( o™ + fkaz)a B+ k= 1.2m = 12,3,

take part.
We assume that the following conditions on the coefficients are true: a}’}c >0,

k pk k pk .
jk > 0, 8]]{ > 0, Vk > 0, aj > 0, lek azjﬁlj—aljﬂzj, Cl1k " C21.k > 05
al,+ B3, #0,c gk yk —sk yk =0, ok yk —ak pk sk, — Bk sk
22 T P22 » Cj2k = V1J sz » &71Y21 217’11 21°11>

“11(27’52_“]2(27’{{2 = ﬁk 5k X 5]f2’ Jok=12.

i
Remark 1. The presence of the operator — in the boundary conditions at the

point ¥ = R and in the conjugate conditions can be interpreted as the softness of
the boundary of the domain when it reflects heat waves.
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Remark 2. In the case of hard boundary of the domain for the reflection of waves
((‘)’}7}c =0, y}’,’c = (), we have mixed a problem with classical boundary conditions and
classical conjugate conditions. Its solution can be derived from the solution of the
problem (2.1)-(2.3) as a particular case.

3. HYBRID EULER-FOURIER-BESSEL INTEGRAL TRANSFORM WITH SPECTRAL
PARAMETER

Let’s consider in the set I, the hybrid differential operator
M, (@) = 0(r)0(R; — ;’)B;;l +0(r—R1)O(R2—r)F +60(r — R2)6(R—r)By a,.
(3.1)
Here 0(x) is the Heaviside step function, () = (a1, ®2).

Definition 1. The domain of definition of the HDO M,, (o) is the set G of functions
g(r)={g1(r); ga(r); g3(r)} with the following properties:
1) the function f(r) = {By [g1(r)]; g5 (r); Bv,a,[g3(r)]} is continuous in the set I;
2) functions g; (r) satisfy the boundary conditions

_dRui(r)
lim ——=
r—>0 drk
and conjugate conditions

[(&51%+/§,’-‘1)gk(r)—(6e]’?2%+B}‘2)gk+1(r)]) f =0k =12. (33

r=

3 d =
=0k =0,1; (a§25+ﬂ§2)g3(r) =0 G2

r=

~k _ k 2 2\ sk gk _ pk 2 2\, k :
Here & —ajm—(ﬂ +y )8J.m,,8jm—,8jm—(,3 +y )yjm,ﬂe(0,+oo) is the

jm
spectral parameter, y2 = max{yZ;y7;y3}.
From the conjugate conditions (3.3) by direct calculations we obtain the basic

identity for the two functions u(r) = {u1(r);us(r);u3(r)} € G and
v(r) ={v1(r);va(r);v3(r)} € G:

GG ETGIAC]

r=Ry
C21,k[ ’ .
= [uk+1(r)vk+1(r)—uk+1(r)vk+1(r)]| k=1,2. (3.4
C11,k r=Ry
Let’s define the values
201 +1
2 2 C21,1 p2a1+1 2 ca1,10212 R
ajor =1, as0, = ——R] , a303= TN
C11,1 C11,1€11,2 R;

the weight function
o(r) =0(r)0(Ry —r)o1r? L £ 0(r — R1)O(Ry — )0
+60(r — Rp)O(R—r)ozr>@t! 3.5)
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and the scalar product

R R,
(u(r),v(r)) =/u(r)v(r)o(r)dr = /ul(r)v1(r)01r2“1_1dr+
0 0
R»> R
+[”2(")”2(r)02dr+/u3(r)v3(r)a3r2“2+1dr, (3.6)
R R,

We now check, that HDO M, () is a self-conjugate operator, namely

(Mv,(a) [u],v) = (u,MU’(a)[v]). (3.7)

According to the equality (3.6) we have, that

R,
(Mv,(a)[u],v(r)) = /(a%B;I [ul])vlalrzal_ldr—{—
0
R, e R
Us
+/(G§ d_r2 )UZ(r)Uzdr+/(agBV,Olz[“3(7’)]U3(r)0'3r2a2+1dr' (38)
R Ry

Let’s integrate in (3.8) by parts twice. We get:

(M”’("‘)[“]’ v) = ajoi [rzalﬂ (%”1 —uy %)]

Ry

:1+/u1(r)(a%B;1 [Ul])x

0

_ du2 dv2
xo1r2 7 dr + a%oz(—vz — u2—>

R
R> d?v
2 2
Iy 7 )& +/u2(r)<a2 )ozdr—l— (3.9

1 er
Ry

R
R
X +/ug(r)(a%Bv,az[vg])ag.rz“szr.
2
R

+a303 [r2°‘2+1 (%03 —u3 W)]

Due to the first condition of (3.2), the term outside the integral at the point r = 0
is equal to zero.
At the point r = Ry, because of the basic identity (3.4) when k = 1 we have

2 2a1+1 / /
ajo1 R} (ulvl—ulvl)

—a%az(u'zvz—uzvlz)‘ =

r=R; r=R N

2014+1€21,1
= (afalRlo“Jr ——a%crz) (u/zvz—uzv’2> .
r: l

C11,1
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C21,1 €21,1
= (—R%O“H——R%a‘Jrl)(u/zvz—uzv’z) =0.
C11,1 C11,1 r=Ry
At the point r = R;, because of the basic identity (3.4) when k = 2 we have
2a3+1 (

a3a 3R,

u'3v3—u3v’3)‘ =

a3oy (u’2v2 — uzv’Z)
r r=R>

21,2
= (a%azc —a§03R§a2+1><u'3v3—u3v/3>
11,2

r=R»

+1

€21,1 C21,2 €21,1€21,2 Rzal
=( S R 2ar+1 2a2+1(”303—u31/3)) =
€11,1 C11,2 €11,1€11,2 R} r=R>
€21,1€21,2
—R%a‘ﬂ(l 1)(u'3v3—u3v’3)‘ =0.
€11,1€11,2 r=R>
If @3, # 0, then expression
du3 dv3 d a’v3
D8 (64 )| st (a4
(% )| = @7 (B2 Bus) | va(R)— (3,

+B§’2v3))r=R'u3<R>] = (@37 (0-va (R —0-u3(R)) =

Therefore, in the equation (3.9) the terms outside the integral are equal to zero and

we have that
(Mv,(ot) [u], v) = (u» Mv,(oc)[v])-

So HDO M, (4) is self-conjugate. Hence its eigenvalues form a real spectrum. Since
the HDO M, (4) has one singular point r = 0, then it’s spectrum is continuous [9].
We can assume, that spectral parameter 8 € (0, +00). Real spectral function

3
Vo (r.B) = 0(r = Re—)0(Re — 1) Vy (@) (. B). Ro =0, Rz = R, (3.10)
k=1
corresponds to it.
Herewith functions V;, (q):x (7, 8) must satisfy respectively the differential equa-
tions

(B2, +b3) V@1 () = 0.7 € (0. Ry),
(F+52) Vo) =0.7 € (R1, Ra), (3.11)

(Bv.as +53) Vo3 (- B) =0, 7 € (Ra, R),

boundary conditions (3.2) and conjugate conditions (3.3); b2 = a_2 (B> + ka), k]? >
0,j=1,3.

The fundamental system of solutions for Euler differential equation (B, + b%)v =
0 is formed by functions r ~*! cos(b1 Inr) and r~%! sin(b; Inr) [16]; the fundamental
system of solutions for Fourier differential equation (F +b%)v =0 is formed by
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functions cos by r and sinb, r [16]; the fundamental system of solutions for Bessel dif-
ferential equation (B, 4, + b3)v = 0 is formed by functions J, o, (b37) and Ny g, (b37)
[11].

The presence of the fundamental system of solutions allows us to put
V)1 (. B) = Air ™% cos(byInr) 4+ Byr~*!sin(by Inr),
Vi (@):2(r. B) = Az cos(bar) + Basin(bar), (3.12)
Vi,(@);3(r, B) = AzJya, (b3r) + B3Ny g, (b3r).

Conjugate conditions (3.3) and boundary condition at the point r = R for the
determination of the six variables A;, B;(j = 1,3) give homogeneous algebraic
system of five equations:

Yyl 1(b1,R1)A1-|-Y12 1(b1,Rl)Bl—vu(ble)Az—vu(ble)Bz=0,j =1,2;

i o1;]
(bsz)A2+v 2(boR>) By — vaz ]2(b3R2)A3 v0t2]2(b3R2)B3 —0:
(3.13)
v az 22(b3R)A3 + uv ,02; 22(b3R)B3 =0.

Algebraic system (3.13)) is compatible. It’s solution is constructed in standard
way.

Let’s suppose, that A3 = _A0“13;,2a2;22(b3’ R), B3 = AO”%}az;zz(b% R), here Ay
is subjected to be defined. At such choice of A3, B3 the last equation of the system
becomes the identity. For determination of the values A,, B, we obtain the algebraic
system:

V2 (b2 R2) Az + 032 (b2 Ro) By = — Ao [ulhy, 15 (b3 R2 U3 (b3 R)— (B.14)

_“v,az;jz(b3Rz)”v,az;zz(b3R)] = —Aobv,a;2(b3R2,b3R), j = 1,2.

Functions

A

Ay = o ;)b [ var;22(P3R2,b3R) V3T (b2 R2) — 8y.45:12(b3 R2, b3 R)v3 (bsz)]
’ (3.15)
A

By = ﬁ[ vas12(b3R2, b3 R)V3] (b2 R2) — 8y 4p:02 (b3 R2, b3R)v11(b2R2)]

are the solution of the algebraic system (3.14).
Considering A5, B to be known let’s consider the algebraic system on values Ay,
Bli
Yallljl(blaRl)Al +Ya112,1(b1,R1)31 = Aoc11,2b2av,a,;5(B). j = 1.2.  (3.16)
In the system (3.16) we accept the denotation:
(Sjk(ble,bsz) = v (ble)v (bsz) (ble)l) (bsz) j k = 1,2;

v,y (B) = Sv,a2;22(b3R27b3R)8j1(b2R1,b2R2)_
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—8v,05;12(b3R2,D3R)8;2(h2 R1,b2R>).
Algebraic system (3.16) has the unique solution [8]:

Ao = 011,1b1R1_(2a1+1)011,2b2: A1 =y (@)2(B), B1=—w, @);1(B); 3.17)

Wy (a);j (B) Zav,a2;1(ﬂ)Y;1Jﬂ(bl»R1) Av,a2:2(B) Yy V(b1 Ry j=1,2.

Substituting values A;, B; to equality (3.12) according to the formulas (3.15) and
(3.17), we obtain the functions

Vo)1 (1, B) = @y (@):2(B)r " cos(byInr) —wy, (4);1 (B)r~* sin(by Inr),

c11,101
Vo @)2(r. B) = m[ v.a2:22(b3R2, b3 R)7, (b2 R, bar)—
R

~bv.ai12(b3 Ra. b3 R)g3 (b2 R, bar) | (3.18)

<p]1(b2R2 byr) = v (bsz) cosbhyr — v (bsz) sinbsr;

c11,1b1
Vos@);3(r: Bn) = R2a1+1011 2}92[ v,a2:22(03R)Ny o, (b31)—
1

_”13;,2052;22([93 R)Jv,ocz (b37”):| .

According to the formula (3.10) spectral function V), (4)(r, ) becomes known
(defined).
Let’s introduce a spectral density into consideration

20 ® = B0 BT ([0 B)] +[ov@a®]) . 319

The presence of spectral function V,, (o) (7, ), weight function o (r) and spectral
density £2,, (4)(B) makes it possible to determine the direct H,, (4) and inverse H (a)
hybrid integral transform (HIT) of Euler - Fourier - Bessel type with the spectral
parameter, generated in the set /> by HDO M, (4 [12]:

R
Hy yg(1)] = / §(Wota)(B)o (F)dr = §(B). (3.20)
0
HI L [(B)] = / FBWo (B 2 (BB =g(r).  (B2D)
0

Next statement is a mathematical justification of rules (3.20), (3.21).
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Theorem 1. If the function
) =[00)0(R = r)r1 =2 400 = R)O(Ry = 1) 1+

+O(r — Ry)O(R —r)ro‘2+1/2]g(r)

is continuous, absolutely summable and has bounded variation in the set (0, R), then
for any r € I, integral representation is true

00 R
2
¢ =~ [ Vo @B) [ €@V (0B 0)p 20 B 322)
0 0

The proof of theorem 1 is performed by the method of delta-shaped sequence
(Cauchy kernel or Dirihle kernel) [12].
Let’s define the numbers and functions:

R,
dl =a%01 R%aH— 01111’ dz :a%UZ'cl_ll,zv gl('B) =/g1(r)Vv,(a);1(r,ﬂ)olrz"”_ldr,
0
R> R
§2(8) = f 22(NVs, @2 (r. B)o2dr. §3(B) = / 23 ("Vo @3 (r B)osr>®>dr,
Ry R
(a)zZ(IB) ( zzd +1312) v(a)k—i—l(” ,3)’ i.k=1,2.

Theorem 2. [f the function { By, [g1(r)]: g5(r): By,a, (g3 (r)]} is continuous in the
set I, and functions g;(r) satisfy the boundary conditions

d -
. 2001 +1 ~3 3 _
rlg%[r * (gll Vv,(oz);l V J(@); 1)] 0, (QZZE +:322)Vv,(a);3(r»,3) r=R_gR
(3.23)

and the conjugate conditions

[(df1%+5f1)gk(r)—( I +ﬂ,2)gk+1(r)]‘ g, = Ok Sk =12, (3.24)

then the basic identity for the integral transform of the HDO M, () defined by equal-
ity (3.1) is true:

3
Ha (o[ My @[8(]] = =B22(B) = Y k251 (B) + @)™ Vo s (R. )

i=1

2
xa3os R*H g+ 3 di| ZE (o 15 (Bonk = ZE s (Bone | (3.29)
k=1
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Proof of Theorem 2. According the rule (3.20) we have that

H o[ Mo @8] = [ M @s Voo B0 )dr =
0

R R
* d2
— / (382, 5100 Vo s 0 Bror > dr + / (282)1, ot prosdrs
0 2
(3.26)
R
+/(a3Bv Otz[g3(r)]> ()3 (1 B)osr? 2t dr,
R>

Let’s integrate by parts twice in (3.26):

dg R,
Hoo [ Mo ol0)]] = 3o [P (10, (0. 8) 1 (0 D201 N
R, des
+ [ 010 (@382, Wi BN)orr> = dr -+ a2 Vo)
0
av, R a2,
v, (@);2) [ 72 24 Vv,(@);2
0 G| [ a3 Joadrt
Ry
+alos [ 2a2+1(dg3 (r.B)— g3(r) u(a)3)] R 4
3 d v,(@);3 —r R
R
+ / &3(1) (a3 Byaa Va3 B)])osr >+ dr. (3.27)
R>

Due to the boundary condition in the point r = 0 we obtain that

tim [+ (51, 0.8~ 1 D@ )]

r—0

Let’s use the basic identity (3.4) for the case if the conjugate conditions are not
homogeneous

C21,k
[ Vo @rk (- B) = 8V i - B) |

= [g;c+1(r)vv,(a);k+1 — 8k+1X%
C11,k

r=Ry

—1 [k k
Vv/,(a);k+1] ‘r=Rk etk [Zv,(a);lz(ﬂ)ka ~Zy @322 (:3)‘”1k]- (3.28)



INTEGRAL REPRESENTATION OF THE SOLUTION OF MIXED PROBLEM 135

Due to the basic identity (3.28) in the point r = R; for k=1 we have that
201 +1
‘Z%UIRf)”Jr (g/l Vi@ _glvv/,(a);l) ‘Rl—aﬁaz (g/sz,(a);z _gZVv,,((x);Z) ‘Rl =
(.2 20141 €21,1 2 / ’ 2 201+1 —1
= (aj01R] ———a502)( &2 Vv,()2— 82V, (@);2 +ajo1R :
C11,1 [t r=R,

(3.29)
i (Zi(a);lz(ﬂ)wZI B Zl},((x);22 (,3)0)11) - dl (Z\E,(O!);IZ(IB)Q)ZI - Zi,(a);zz(ﬂ)a)“),
because due to the choice of numbers o7, 02 expression
c ¢ c
(a%mR%mH&_az%) _ 21,1 R%a1+1 €211 poayl _
C11,1 C11,1 C11,1

_ C21,1 R%al‘i‘l(l _ 1) = 0
C11,1
Due to the basic identity (3.28) in the point r = R, for k=2 we have that

0502 (glz V()2 —82 Vv,,(a);z) ‘

205+1
—a3o3R o2t
r=R>

5 (g’aVu,(a);a—&fo,(a);s)

r=R»

21,2 2 —
_ 2 > 2 az+1 / / 2 1
= (412(72611 5 —a303R; )(g3 V@33 _g3Vv,(a);3) r:R2+a202011,2X

(3.30)
X(Z2 12 (B022 = 22 (0 (Bo12) = da( 22 (1,12 (B)@22 = Z2 gy s (BJeo12 ).
because due to the choice of numbers 0, and 03 expression

2 €212 2

R2o1+1
20 —g20. R202H1 _ C2L1 €212 pogy+1 €21,1€212 1 20041 _
202 303K, = 1 11,27 50,4112
C11,1 C11,2 C11,1 R2
€21,1€21,2 201 +1 _
= ——c112R] (1-1)=0.
C11,1
~3
If @3, # 0, then
dg dVy (a):
2 2000+1 3 v,(2);3 _ 2 ~3\—1 p2ar+1
az03R“%2 (_Vv,(a);3_g3— = a303(@5,) R™27 %
dr dr r=R

(@85 )] Towrs (R~ s (R (@0 + ) x

* Vv’(a);3(R’ﬁ))r=R] = (@3,) Vo, (@:3(R. flazos R**>Flgp.

(3.31)
From the differential identities

(0383, + (B2 +KD) | Va1 (. B) = 0. [ F + (B + ) Vi aya (. 8) = 0.

(43 Buas + (B2 +K3) [ Vi3 (. ) = 0
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we find the functional dependence:

d2
a} B, [ Vo (:B)| = (B2 + kD) Vot (B). G55 | Vo B) | =

= _(:32 + k%)Vu,(a);z(’?,B)’ agBV,az [Vv,(a)ﬁ(r, IB)] = _(ﬂz + k%)Vv,(a)ﬁ(ruB)-
(3.32)
Let’s substitute the obtained dependence (3.29)-(3.32) to the (3.27). We get:

3 2
Hay (o[ My @8] = = Y (B2 + kD& (B) + Y de| ZF 0y 1 (Bome—
i=1 k=1
- Z’J,(a);zz(ﬂ)wlk] +(@32) " Vo @:3(R, B)azos R Tl gp. (3.33)
Since the
3 3 3 3
D BPHEDEB) =B g (B + D _K&i(B) =B EB)+ D kP& (B).
i=1 i=1 i=1 i=1

then equality (3.33) coincides with equality (3.25). The theorem is proved. U

4. SOLUTION OF THE PROBLEM

Let’s construct the integral representation of the exact analytical solution of para-
bolic boundary value problem of conjugation (2.1) - (2.3) by the method of Euler-
Fourier-Bessel hybrid integral transform with spectral parameter.

Let’s write the system (2.1) and the zero initial conditions in matrix form:

d
(—+y12—a%B;])u1(t,r)

oty filer)
(5 +72-a3F ) |=] £ |,
T fa(t.r)
(5 + 3 —a3Bv,a2)u3(t,r)
ui(t,r) 0
uz(t,r) =10 4.1)
us(t,r) =0 0

The integral operator H,, (o) is represented as an operator matrix row due to the
rule (3.20):

R1 R2

Hy@l]= [/“-Vv,(a);l(r,ﬂ)mrz"”_ldr /"'Vv,(a);Z(r’ﬂ)azd"
0 Ry
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R

/~--Vv,(a);3(r,/3)03r2°‘2+1dr]. (4.2)
R>

Let’s apply the operator matrix-row (4.2) to the problem (4.1) according to the matrix
multiplication rule. As a result of the main identity (3.25), we get a Cauchy problem

[16]:
d
(5 + B2+ y2)ite.p) (43)

2
=fwh+) dk[Z’:,(a);u(ﬂ)mk (1)— 25,(a);22(ﬁ)w1k(r)]+ (4.4)
k=1

+ (@) V3R, Bazos R gr(t); y? = max{yf; v3:v3h: ﬂ)tzoz 0.
4.5)
Function
t

2
(. B) = / o~ B2+ (—0) [ Fap+> (fo,(a);lz(ﬂ)a)zk(t) —Z% 22 (B)X
k=1

0
xo (D) + @) V@R PaGos R gr(]dr.  @6)

is the solution of Cauchy problem (4.5).
Integral operator Hv_(la) due to the rule (3.21), as inverse to (4.2), we represent as

the operator matrix-column:

Qo

EEES
ST TR T8

. VV,(O!);I (r, ﬂ)gv,(a) (,B)dﬂ
Hy 1= Vo @2 B) 20 @) (BB | 4.7

e Vv,(a);3(r’ ,B)Qv,(a) (;B)dﬁ

Q|

Let’s apply operator matrix column (4.7) to matrix element due to matrices mul-
tiplication rule, to the matrix-element [i (¢, )], where the function # (¢, 8) is defined
by formula (4.6). As a result of elementary transformations, we get the integral rep-
resentation of the only analytical solution of parabolic problem (2.1)-(2.3):

t
wj(t.r) = / Wy @yay (( — 7. F)gR(D)d T
0
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2 t
k,j
+3 4 / [RV Loitalt =702 () = REL 22(t—t,r)a)1k(t)]dt
k=1

t Rg

3
D> / / Hy (@5t = 17,0 £ (. D)k ()odpd . (48)
k=1 0 R

Here Ro = 0, R3 = R, ¢1(p) = p**' 1, 02(p) = 1, p3(p) = p>*>*1, j = 1,3.
In equalities (4) there are principal solutions of parabolic problem (2.1)-(2.3):
1) Green’s functions generated by boundary condition at point r = R

o0
2 C(B2ay2Vt -3
W (a);3; (. 1) = ;/e B @3) 7 Vs ()3 (R B Vi (as (1, B) X
0
X2y (@) (B)dBazos RPN T, (4.9)
2) Green’s functions generated by inhomogeneity of the conjugate conditions
o0
—(B2 2
R fayia(to7) = f CHNZE @iz B)Voris () 2o, (BB (4.10)
0

ik=12j=13,
3) the influence functions generated by the inhomogeneity of system (2.1)

o0

Hoaitrp) = = [ Y, 0Bk (0:5) Poor (BIB:
0
4.11)
j.k=1,3.
We get the following theorem as the summary of the above results.

Theorem 3. Let us suppose that the next conditions are true:
1) functions f;(t,r), gr(t) and wji (t) are originals by Laplace;
2) functions f;(t,r) and g;(r) satisfy the conjugate conditions;
3) functions f(t,r) ={f1(t,r). f2(t.r), f3(t.r)} and g(r) = {g1(r).g2(r).g3(r)}
are bounded, continuous, absolutely summable with the weight function o(r) and
have the bounded varlanon in the set I 2,

4) function F(t,r) = {E oy L1, r)] F[fz(t r)] Bv [ f3(2, r)]} is continu-

ously differentiable by t and continuous by r in the set D2

Then in the class of functions u(t,r) = {u1(t,r),uz(t,r),us(t,r)}, which are con-
tinuously differentiable by variable t and continuously differentiable by variable r
twice in the set D, and satisfy conditions 1), 3), parabolic mixed boundary-value
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problem (2.1)-(2.3) has unique bounded solution, which is determined by the formula
(4).

Remark 3. 1f y? = y? > 0, thenk? =0, k3 =y —y3 > 0, k3 =y —y3 > 0; if
y2:y22>0, thenk%:yzz—ylzzo, k%:O, k%:yzz—ygzo; ify2:j/32>0,
thenk2=y32—y1220,k2=y32—y2220,k2=0.

Remark 4. 1f initial conditions are not zero, namely
upt.r)| _ =g/().r € (Ri-1.Ry). j =13, Ro=0. Ry = R.
then we go to new function v(¢,r) = {v1(¢,r);va2(t,r);v3(¢,r)} by formulas
ujt,r)=v;(t.r)+g;(r), j=13.

Then it is clear that v; (t,r)‘ o= 0,j=1,3.
t=
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