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1. INTRODUCTION

Let us assume that A;B be two nonempty subsets of a metric space .X;d/ and
T W A �! B . Clearly T .A/\A ¤ ¿ is a necessary condition for the existence of
a fixed point of T . Now if T .A/\A D ¿ then to find an element x 2 A such that
d.x;T x/D d.A;B/ which called best proximity point is the idea of best proximity
point theorems. In the other words, we determine an approximate solution x such
that the error of equation d.x;T x/ D 0 is minimum. Several authors such as Pro-
lla [2], Reich [4], Sehgal and Singh [6, 7], Vertivel, Veermani and Bhattacharyya [8]
and others[1] generalized and extended the best proximity point theorems in many
directions. In 2011, Sadiq Basha [5] stated the best proximity points theorems for
proximal contractions. On the other hand, Wardowski [9] introduced a new type of
contraction which called F�contraction and proved a fixed point result in complete
metric spaces. In this paper, by using Wardowski’s contraction, we prove the ex-
istence of a best proximity point. Moreover we define F�proximal contractions of
the first and second kind and establish the best proximity point theorems in spire of
Wardowski’s contraction.

2. PRELIMINARY

Let A;B be two nonempty subsets of a metric space X . The following notations
will be used throughout this paper:

c
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d.y;A/ WD inffd.x;y/ W x 2 Ag,

d.A;B/ WD inffd.x;y/ W x 2 A and y 2 Bg,

A0 WD fx 2 A W d.x;y/D d.A;B/ for some y 2 Bg,

B0 WD fy 2 B W d.x;y/D d.A;B/ for some x 2 Ag.

We recall that x 2 A is a best proximity point of the mapping T W A �! B if
d.x;T x/D d.A;B/. It can be observed that a best proximity reduces to a fixed point
if the underlying mapping is a self-mapping.

Definition 1 ([3]). Let .A;B/ be a pair of nonempty subsets of a metric space X
with A¤¿. Then the pair .A;B/ is said to have the P-property if and only if
d.x1;y1/D d.A;B/

d.x2;y2/D d.A;B/

)
H) d.x1;x2/D d.y1;y2/

where x1;x2 2 A0 and y1;y2 2 B0.

It is clear that, for any nonempty subset A ofX , the pair .A;A/ has the P-property.

Definition 2 ([5]). A is said to be approximatively compact with respect to B if
every sequence fxng of A satisfying the condition that d.y;xn/�! d.y;A/ for some
y in B has a convergent subsequence.

It is easy to see that every set is approximatively compact with respect to itself.

Definition 3 ([5]). Given T W A �! B and an isometry g W A �! A, the mapping
T is said to preserve isometric distance with respect to g if

d.Tgx1;Tgx2/D d.T x1;T x2/

for all x1 and x2 in A.

Recently Wardowski [9] defined the following contraction which was called
F�contraction.

Definition 4. Let F W RC �! R be a mapping satisfying:
(F1) F is strictly increasing, i.e. for all a;b 2 RC such that

˛ < ˇ H) F.˛/ < F.ˇ/;
(F2) For each sequence f˛ngn2N of positive numbers

limn!1˛n D 0 if and only if limn!1F.˛n/D�1;
(F3) There exists k 2 .0;1/ such that lim˛!0C ˛kF.˛/D 0.

A mapping T W X �! X is said to be an F�contraction if there exists � > 0 such
that

For al l x;y 2X;.d.T x;Ty// > 0H) �CF.d.T x;Ty//� F.d.x;y//: (2.1)
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Now, we consider the mapping F in the different types, and we obtain the variety
of contractions.

Example 1 ([9]). Let F W RC �! R be given by the formula F.˛/ D ln˛. It is
clear that F satisfies the (F1)-(F3) ((F3) for any k 2 .0;1/) conditions of Definition 4.
Each mapping T WX �!X satisfying (2.1) is an F�contraction such that

d.T x;Ty/� e��d.x;y/; for al l x;y 2X; T x ¤ Ty.

It is clear that for x;y 2X such that T xDTy the inequality d.T x;Ty/� e��d.x;y/
also holds, i.e. T is a Banach contraction.

3. MAIN RESULTS

Now, let us state our main result.

Theorem 1. Let A and B be non-empty, closed subsets of a complete metric space
X such thatA0 is nonempty. Let T WA�!B be an F�contraction non-self mapping
such that T .A0/ � B0. Assume that the pair (A, B) has the P-property. Then there
exists a unique x� in A such that d.x�;T x�/D d.A;B/.

Proof. Choose x0 2A0. Since T x0 2 T .A0/�B0, there exists x1 2A0 such that
d.x1;T x0/D d.A;B/. Again, since T x1 2 T .A0/ � B0, there exists x2 2 A0 such
that d.x2;T x1/D d.A;B/. Continuing this process, we can find a sequence fxng in
A0 such that

d.xnC1;T xn/D d.A;B/; for al l n 2N: (3.1)

.A;B/ satisfies the P-property, therefore from (3.1) we obtain

d.xn;xnC1/D d.T xn�1;T xn/; for al l n 2N: (3.2)

We will prove that the sequence fxng is convergent in A0. If there exists n0 2N such
that d.T xn0�1;T xn0

/ D 0, then by (3.2) we have d.xn0
;xn0C1/ D 0 that implies

xn0
D xn0C1. Therefore

T xn0
D T xn0C1 H) d.T xn0

;T xn0C1/D 0 (3.3)

From (3.2) and (3.3) we receive that

d.xn0C2;xn0C1/D d.T xn0C1;T xn0
/D 0H) xn0C2 D xn0C1

Therefore xn D xn0
; for al l n� n0 and fxng is convergent in A0.

Now let d.T xn�1;T xn/¤ 0; for al l n 2N. T is a F�contraction and (3.2) holds,
hence for any positive integer n we have

�CF.d.T xn;T xn�1//� F.d.xn;xn�1//
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H) F.d.xnC1;xn//� F.d.xn;xn�1//� �
:::

� F.d.x1;x0//�n�: (3.4)

Put ˇn WD d.xnC1;xn/.
From (3.4), we obtain limn!1F.ˇn/D�1 that together with .F 2/ gives

lim
n!1

ˇn D 0 (3.5)

Also from .F 3/ we have

9k 2 .0;1/ such that ˇknF.ˇn/D 0 (3.6)

By (3.3), the following holds for all n 2N:

F.ˇn/�F.ˇ0/� �n� .

Therefore

ˇknF.ˇn/�ˇ
k
nF.ˇ0/� �nˇ

k
n� � 0.

Letting k!1 in the above inequality and using (3.5),(3.6), we obtain

limn!1nˇkn D 0.

Hence there exists n1 2N such that nˇkn � 1 for all n� n1. Therefore for any n� n1,

ˇn �
1

n
1
k

: (3.7)

This means that series
P1
iD1ˇi is convergent.

Now let m� n� n1. By the triangular inequality and (3.7), we have

d.xm;xn/� ˇm�1Cˇm�2C :::Cˇn �
P1
iDnˇi .

Therefore fxng is a Cauchy sequence inA. Since .X;d/ is complete andA is a closed
subset of X , there exist x� 2 A such that

limn!1xn D x�

Since T is continuous, we have T xn �! T x�. Hence continuity of the metric func-
tion d which implies that d.xnC1;T xn/�! d.x�;T x�/. From (3.1), d.x�;T x�/D
d.A;B/. So we show that x� is a best proximity of T .
The uniqueness of the best proximity point follows from the condition that T is F�
contraction. That is, suppose that

x1;x2 2 A such that x1 ¤ x2 and d.x1;T x1/D d.x2;T x2/D d.A;B/:

Then by the P-property of .A;B/, we have d.x1;x2/D d.T x1;T x2/. Also
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x1 ¤ x2 H) d.x1;x2/¤ 0.

Therefore

F.d.x1;x2//D F.d.T x1;T x2//� F.d.x1;x2//� � < F.d.x1;x2//,

which is a contraction. Hence the best proximity point is unique. �

The following result is a special case of Theorem 1, obtained by setting AD B .

Corollary 1. Let .X;d/ be a complete metric space and A be a nonempty closed
subset of X . Let T W A �! A be a F�contractive self-map. Then T has a unique
fixed point x� in A.

The next result is an immediate consequence of Theorem 1 by taking F.˛/D ln˛.

Corollary 2 (Banach Contraction Principle). Let .X;d/ be a complete metric
space and A be a nonempty closed subset of X . Let T W A �! A be a contractive
self-map. Then T has a unique fixed point x� in A.

Let F be the function as in Definition 4, we define the proximal contractions.

Definition 5. A mapping T W A �! B is said to be a F�proximal contraction of
the first kind if there exists a � > 0 such that

d.u1;T x1/D d.A;B/

d.u2;T x2/D d.A;B/

d.u1;u2/;d.x1;x2/ > 0

)
H) �CF.d.u1;u2//� F.d.x1;x2//

where u1;u2;x1;x2 2 A.

Remark 1. If T WA�!B is a F�proximal contraction of the first kind and .A;B/
has the P-property then T is a F�contractive non-self mapping.

Definition 6. A mapping T W A �! B is said to be a F�proximal contraction of
the second kind if there exists a � > 0 such that

d.u1;T x1/D d.A;B/

d.u2;T x2/D d.A;B/

d.T u1;T u2/;d.T x1;T x2/ > 0

)
H) �CF.d.T u1;T u2//� F.d.T x1;T x2//

where u1;u2;x1;x2 2 A.

The following theorem is a best proximity point theorem for non-self
F�proximal contraction of the first kind.

Theorem 2. Let A and B be non-empty, closed subsets of a complete metric space
X such that A0 is non-empty. Let T W A �! B and g W A �! A satisfy the following
conditions:

(a) T is a continuous F�proximal contraction of the first kind.
(b) g is an isometry.
(c) T .A0/� B0.
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(d) A0 � g.A0/.
Then, there exists a unique element x 2 A such that

d.gx;T x/D d.A;B/.

Proof. Choose x0 2 A0. Since T x0 2 T .A0/ � B0 and A0 � g.A0/, there exists
x1 2 A0 such that d.gx1;T x0/ D d.A;B/. If x0 D x1 then put xn WD x1 for all
n � 2. Also, since T x1 2 T .A0/ � B0 and A0 � g.A0/, there exists x2 2 A0 such
that d.gx2;T x1/D d.A;B/. If x1 D x2 then put xn WD x2 for all n� 3. Continuing
this process, we can find a sequence fxng in A0 such that

d.gxnC1;T xn/D d.A;B/; for al l n 2N: (3.8)

We will prove the convergence of the sequence fxng in A. If there exists n0 2N such
that d.gxn0

;gxn0C1/D 0 then it is clear that the sequence fxng is convergent. Hence
let d.gxn;gxnC1/¤ 0; for al l n 2N. T is a F�proximal contraction of the first
kind and (3.8) holds, hence for any positive integer n we have

�CF.d.gxn;gxnC1//� F.d.xn�1;xn//

H) F.d.xn;xnC1//� F.d.xn�1;xn//� �
:::

� F.d.x0;x1//�n�: (3.9)

Similarly as the process in the proof of Theorem 1, fxng is a Cauchy sequence in A.
Since X is complete metric space and A is closed subset of X , there exists x 2 A
such that limn!1xn D x.
Since, T , g and d are continuous, therefore with letting n �!1 in (3.8), we obtain

d.gx;T x/D d.A;B/.

Now, x� be in A such that

d.gx�;T x�/D d.A;B/.

We show that x D x�. Suppose to the contrary, that x ¤ x�. Hence d.x;x�/ ¤ 0.
Since T is a F�proximal contraction of the first kind and g is an isometry,

F.d.x;x�//D F.d.gx;gx�//� F.d.x;x�//� � < F.d.x;x�//,

which is a contraction. Therefore x D x� and this completes the proof of theorem.
�

The following result is a special case of Theorem 2, if g is the identity mapping.

Corollary 3. LetA andB be non-empty, closed subsets of a complete metric space
X such that A is approximatively compact with respect to B . Further, suppose that
A0 is non-empty. Let T W A �! B satisfies the following conditions:
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(a) T is a continuous F�proximal contraction of the first kind.
(b) T .A0/� B0.
Then T has a unique best proximity point in A.

The following theorem is a best proximity point theorem for non-self
F�proximal contraction of the second kind.

Theorem 3. Let A and B be non-empty, closed subsets of a complete metric space
X such that A is approximatively compact with respect to B . Further, suppose that
A0 is non-empty. Let T W A �! B and g W A �! A satisfy the following conditions:

(a) T is a continuous F�proximal contraction of the second kind.
(b) g is an isometry.
(c) T .A0/� B0.
(d) A0 � g.A0/.
(e) T preserves isometric distance with respect to g.
Then, there exists an element x 2 A such that

d.gx;T x/D d.A;B/.
Moreover, if x� is another element ofA such that d.gx�;T x�/D d.A;B/ then T xD
T x�.

Proof. Choose x0 2 A0. Since T x0 2 T .A0/ � B0 and A0 � g.A0/, there exists
x1 2 A0 such that d.gx1;T x0/ D d.A;B/. If T x0 D T x1 then put xn WD x1 for
all n � 2. Otherwise again since T x1 2 T .A0/ � B0 and A0 � g.A0/, there exists
x2 2 A0 such that d.gx2;T x1/D d.A;B/. If T x1 D T x2/ then put xn WD x2 for all
n� 3. Continuing this process, we can find a sequence fxng in A0 such that

d.gxnC1;T xn/D d.A;B/; for al l n 2N: (3.10)

We will prove the convergence of the sequence fT xng in B . If there exists n0 2 N
such that d.Tgxn0

;Tgxn0C1/ D 0 then it is clear that the sequence fT xng is con-
vergent. Hence let d.Tgxn;TgxnC1/ ¤ 0; for al l n 2 N. T is a F�proximal
contraction of the second kind, T preserves isometric distance with respect to g and
(3.10) holds, hence for any positive integer n we have

�CF.d.Tgxn;TgxnC1//� F.d.T xn�1;T xn//

H) F.d.T xn;T xnC1//� F.d.T xn�1;T xn//� �
:::

� F.d.T x0;T x1//�n�: (3.11)

Similarly as the process in the proof of Theorem 1, we receive that fT xng is a Cauchy
sequence in B . Since X is complete metric space and B is closed subset of X , there
exists y 2 B such that limn!1T xn D y.
By the triangular inequality, we have,
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d.y;A/� d.y;gxn/� d.y;T xn�1/Cd.T xn�1;gxn/

D d.y;T xn�1/Cd.A;B/

� .y;T xn�1/Cd.y;A/

Letting k �!1 in the above inequality, we obtain

limn!1d.y;gxn/D d.y;A/.

Since A is approximatively compact with respect to B , there exists a subsequence
fgxnk

g of fgxng such that converging to some ´ 2 A. Therefore

d.´;y/D limk!1d.gxnk
;T xnk�1/D d.A;B/.

This implies that ´ 2 A0. Since A0 � g.A0/, there exists x 2 A0 such that ´D gx.
As limn!1g.xnk

/D g.x/ and g is an isometry, we have

limn!1xnk
D x.

T is continuous and fT xng is convergent to y, Therefore

limn!1T xnk
D T x D y.

Thus, it follows that

d.gx;T x/D limn!1d.gxnk
;T xnk

/D d.A;B/.

Now let x� be another element in A such that

d.gx�;T x�/D d.A;B/.

We will show that T x D T x�. Suppose to the contrary, that T x ¤ T x�. Hence
d.T x;T x�/¤ 0. Since T preserves isometric distance with respect to g and T is a
F�proximal contraction of the second kind,

F.d.T x;T x�//D F.d.Tgx;Tgx�//� F.d.T x;T x�//� � < F.d.T x;T x�//,

which is a contraction. Therefore T x D T x�. �

The next result is an immediate consequence of the Theorem 3, if g is the identity
mapping.

Corollary 4. Let A and B be non-empty, closed subsets of a complete metric space
X such that A is approximatively compact with respect to B . Further, suppose that
A0 is non-empty. Let T W A �! B satisfies the following conditions:

(a) T is a continuous F�proximal contraction of the second kind.
(b) T .A0/� B0.
Then, T has a best proximity point in A. Moreover, if x� is another best proximity
point of T then T x D T x�.
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