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A. Let � be an arbitrary field andn is an integer withn ≥ 2. For a fixed
positive integerk satisfyingk < n, we determine the general form of all functions
preserving rank-k matrices of ordern. This article generalizes the recent results of
J. Kalinowski [1,2].
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1. I

Suppose� is an arbitrary field and� is the field of the real numbers. Letn be
an integer withn ≥ 2. For a functionf : � → � and a matrixA = [ai j ] over �,
denote the matrix [f (ai j )] by Af . We say that a functionf : � → � preserves ranks
of matrices if rankAf = rankA for all matrices (of any order) over�, and preserves
rank-k matrices of ordern if rankAf = rankA for every rank-k matrix of ordern.

Kalinowski [1] investigated that a monotonic and continuous functionf : �→ �

with f (0) = 0 preserves ranks of matrices if and only if it is linear, i. e.,f (x) = cx for
everyx ∈ � and some non-zeroc ∈ �. Furthermore, in [2], Kalinowski generalized
the result in [1] by removing any restrictions on the functionf .

Inspired by [1, 2], in this article we prove the following two theorems which gen-
eralize the result in [2].

Theorem 1. Let k be a fixed integer satisfying2 ≤ k < n. Then f : � → � is a
function preserving rank-k matrices of ordern if and only if there exist a non-zero
scalarc and an injective field endomorphismδ of � such thatf = cδ.
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Theorem 2. f : �→ � is a function preserving rank-1 matrices of ordern if and
only if either f is a non-zero constant function orf = cκ,wherec is a non-zero scalar
andκ : �→ � is a multiplicative function withκ(0) = 0 andκ(1) = 1.

As pointed out by Markov́a [3], these results obtained in [1, 2] play a important
role in the theory ofg-calculus (see [4] for the concept ofg-calculus and the relevant
topics). Therefore, Theorems 1 and 2 will be helpful for studying extensivelyg-
calculus.

We end this section by introducing the notation which will be used in the next
section. Denote by⊕ the usual direct sum of matrices. For a positive integerk, let Ik

be thek× k identity matrix over�

2. P  T 1  2

T P  T 1. The “if” part is obvious. The proof of the “only if” part
is divided into the following four steps.

Step1: f (0) = 0 and f (d) , 0 for every non-zero scalard. For any non-zero scalar
d, it follows from rank(dIk ⊕ 0) = k and the definition off that

rank



f (d) f (0) · · · · · · · · · f (0)

f (0)
. . .

. . .
...

...
. . . f (d)

. . .
...

...
. . . f (0)

. . .
...

...
. . .

. . . f (0)
f (0) · · · · · · · · · f (0) f (0)



= k,

where the number of occurrences off (d) is equal tok. This, together with the in-
equality 2≤ k < n, completes the present step.

Step2: f (1) f (xy) = f (x) f (y) for all x, y ∈ �. For anyx, y ∈ �, since

rank

([
1 x
y xy

]
⊕ Ik−1 ⊕ 0

)
= k,

it follows from Step 1 (i. e.,f (0) = 0) and the definition off that

rank

([
f (1) f (x)
f (y) f (xy)

]
⊕ f (1)Ik−1 ⊕ 0

)
= k,

and hence

det

([
f (1) f (x)
f (y) f (xy)

]
⊕ f (1)Ik−1

)
= 0.

By direct computation, one shows thatf (1)k−1 ( f (1) f (xy) − f (x) f (y)) = 0. This, to-
gether with Step 1 (i. e.,f (1) , 0), gives f (1) f (xy) = f (x) f (y).
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Step3: f (x + y) = f (x) + f (y) for all x, y ∈ �. For anyx, y ∈ �, in view of the
relation

rank




0 1 x
1 0 y
1 1 x + y

 ⊕ Ik−2 ⊕ 0

 = k,

it follows from Step 1 (i. e.,f (0) = 0) and the definition off that

rank




0 f (1) f (x)

f (1) 0 f (y)
f (1) f (1) f (x + y)

 ⊕ f (1)Ik−2 ⊕ 0

 = k.

Furthermore,

det




0 f (1) f (x)

f (1) 0 f (y)
f (1) f (1) f (x + y)

 ⊕ f (1)Ik−2

 = 0.

Thus, f (1)k ( f (y) + f (x) − f (x + y)) = 0. This, together with Step 1 (i. e.,f (1) , 0),
implies thatf (x + y) = f (x) + f (y).

Step4: there exist a non-zero scalarc and an injective field endomorphismδ of
� such thatf = cδ. If we denotec = f (1) andδ = c−1 f , then f = cδ andc is a
non-zero scalar. Furthermore, it is easy to verify from Steps 1–3 thatδ is an injective
field endomorphism of�.

The proof is complete. �

P  T 2. The “if” part . If f is a non-zero constant function, then,
clearly, f preserves rank-1 matrices of ordern.

Now we prove the casef = cκ, wherec is a non-zero scalar andκ : � → � is a
multiplicative function withκ(0) = 0 andκ(1) = 1. For an arbitrary rank-1 matrixA,
it can be written asA = [aib j ], whereai , bi ∈ �, i = 1, · · · , n, andapbq , 0 for some
p, q.HenceAf = [cκ(aib j)] = c[κ(aib j)].Sinceκ is multiplicative, it can be concluded
thatAf = c[κ(ai)κ(b j)], which implies rankAf ≤ 1. On the other hand, for any non-
zerod ∈ �, it follows from dd−1 = 1 and the multiplicativity ofκ thatκ(d)κ(d−1) =

f (1). Usingκ(1) = 1, we haveκ(d) , 0. Therefore,κ(ap)κ(bq) = κ(apbq) , 0 since
apbq , 0. In summary, rankAf = 1, i. e., f is a function preserving rank-1 matrices
of ordern.

The “only if” part . For any non-zero scalard, it follows from rank(d ⊕ 0) = 1 and
the definition off that

rank



f (d) f (0) · · · f (0)

f (0) f (0)
. . .

...
...

. . .
. . . f (0)

f (0) · · · f (0) f (0)


= 1. (2.1)
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Case1. Suppose thatf (0) , 0. Then, by (2.1), we havef (d) = f (0). Sinced is an
arbitrary non-zero scalar, we can claim thatf is a non-zero constant function.

Case2. Suppose thatf (0) = 0. Then, by (2.1), we havef (d) , 0 for any non-zero
scalard. For anyx, y ∈ �, since

rank

([
1 x
y xy

]
⊕ 0

)
= 1,

it follows from f (0) = 0 and the definition off that

rank

([
f (1) f (x)
f (y) f (xy)

]
⊕ 0

)
= 1.

Thus,

det

[
f (1) f (x)
f (y) f (xy)

]
= 0,

i. e., f (1) f (xy) = f (x) f (y). If we put c = f (1) andκ = c−1 f , then f = cκ andc is
a non-zero scalar. Furthermore, it is easily verified thatκ is multiplicative function
from� to itself such that withκ(0) = 0 andκ(1) = 1. This completes the proof. �
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