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AsstracT. Let IF be an arbitrary field and is an integer witm > 2. For a fixed
positive integek satisfyingk < n, we determine the general form of all functions
preserving ranke matrices of orden. This article generalizes the recent results of
J. Kalinowski [1, 2].
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1. INTRODUCTION

Suppose€F is an arbitrary field and is the field of the real numbers. Latbe
an integer withn > 2. For a functionf : F — F and a matrixA = [a;] over F,
denote the matrixfl(ajj)] by A’. We say that a functiofii : F — F preserves ranks
of matrices if ranlA" = rankA for all matrices (of any order) ovéf, and preserves
rankk matrices of orden if rank A" = rankA for every rankk matrix of ordem.

Kalinowski [1] investigated that a monotonic and continuous funcfiolR — R
with f(0) = 0 preserves ranks of matrices if and only if itis linear, i.f€x) = cxfor
everyx € R and some non-zeroe R. Furthermore, in [2], Kalinowski generalized
the result in [1] by removing any restrictions on the function

Inspired by [1, 2], in this article we prove the following two theorems which gen-
eralize the result in [2].

Theorem 1. Letk be a fixed integer satisfyinlg < k < n. Thenf : F —» Fis a
function preserving rank-matrices of ordem if and only if there exist a non-zero
scalarc and an injective field endomorphishof F such thatf = cé.
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Theorem 2. f : F — Fis a function preserving rank-matrices of orden if and
only if eitherf is a non-zero constant function ér= ck, wherec is a non-zero scalar
andk : F — Fis a multiplicative function witkr(0) = 0 and«(1) = 1.

As pointed out by Marka& [3], these results obtained in [1, 2] play a important
role in the theory ofj-calculus (see [4] for the concept gfcalculus and the relevant
topics). Therefore, Theorems 1 and 2 will be helpful for studying extensiyely
calculus.

We end this section by introducing the notation which will be used in the next
section. Denote by the usual direct sum of matrices. For a positive intégéat I
be thek x k identity matrix overlF

2. Proors oF THEOREMS 1 AND 2

Tue Proor oF Tueorem 1. The “if” part is obvious. The proof of the “only if” part
is divided into the following four steps.

Stepl: f(0) = 0and f(d) # Ofor every non-zero scalat. For any non-zero scalar
d, it follows from rank(dlx & 0) = k and the definition of that

£(0) )
ankl 0 f@ Co ok
: £(0)
‘ . ()
Q) o e 1O fO) ]

where the number of occurrences f(fl) is equal tok. This, together with the in-
equality 2< k < n, completes the present step.
Step2: f(1)f(xy) = f(X)f(y) for all x,y € F. For anyx, y € F, since

1 x
rank @ 10| =k,
( y Xy} - )
it follows from Step 1 (i. e.f(0) = 0) and the definition of that
f(1) f(X)] )
rank & f(Dl-1 0] =k,
(f(y) fo)| @ Tl

and hence

f1) )
det([f(y) (%)

By direct computation, one shows thigtl)< 1 (f(1)f (xy) — f(X)f(y)) = 0. This, to-
gether with Step 1 (i. ef(1) # 0), givesf(1)f(xy) = f(X) f(y).

& f(l)lk_l) =0.
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Step3: f(x+y) = f(X) + f(y) for all X,y € F. For anyx,y € F, in view of the

relation
01 X
rank[ 1 0 y |& Ik_zeao] =k,
1 1 x+y

it follows from Step 1 (i. e.f(0) = 0) and the definition of that

0 f(1) fx)
[ f(1) O f(y)
[f(1) f(1) f(x+y)

rank

2] f(1)|k_2®0] =k

Furthermore,

def|f(1) 0  f(y)

f(1) (1) fx+y)

Thus, f (L)X (f(y) + f(X) - f(x+ y)) = 0. This, together with Step 1 (i. ef(1) # 0),
implies thatf(x + y) = f(X) + f(y).

Step4: there exist a non-zero scalarand an injective field endomorphissrof
FF such thatf = cg. If we denotec = f(1) andé = ¢ 1f, thenf = c§ andcis a
non-zero scalar. Furthermore, it is easy to verify from Steps 1-3tisan injective
field endomorphism oF.

The proof is complete. O

[o f)  f(x

@ump4:a

Proor or THeorem 2. The “if” part. If f is a non-zero constant function, then,
clearly, f preserves rank-1 matrices of order

Now we prove the casé = ck, wherec is a non-zero scalar and: F — Fis a
multiplicative function withk(0) = 0 andk(1) = 1. For an arbitrary rank-1 matriA,
it can be written a®\ = [aib;], wherea;,bj € F,i = 1,--- ,n, andaphy # 0 for some
p, . HenceA" = [ck(a; bj)] = cl«(a;bj)]. Sincex is multiplicative, it can be concluded
that Al = c[«(a)«(bj)], which implies rankA" < 1. On the other hand, for any non-
zerod € F, it follows from dd™! = 1 and the multiplicativity ok thatx(d)«x(d™1) =
f(1). Using«(1) = 1, we havex(d) # 0. Therefore x(ap)x(bq) = x(aphg) # 0 since
apbg # 0. In summary, ranlh’ = 1, i. e., f is a function preserving rank-1 matrices
of ordern.

The “only if” part. For any non-zero scaldk it follows from rank(d @ 0) = 1 and
the definition off that

fd) f(0) --- f(0)

rank f(.O) 1) =1 (2.1)
: R 1(0)
f(o)y --- f(0) f(0)
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Casel. Suppose thatt(0) # 0. Then, by (2.1), we havé(d) = (0). Sinced is an
arbitrary non-zero scalar, we can claim tlidgs a non-zero constant function.
Case2. Suppose thatt(0) = 0. Then, by (2.1), we havé(d) # 0 for any non-zero
scalard. For anyx, y € IF, since
1 x
®0]=1,
;0]

it follows from f(0) = 0 and the definition of that

D) fM] )
() f(xw]@o)‘l'

ran k(

ran k(

Thus,

(1) |
celi(y) rgap| =0

i e., f()f(xy) = f(X)f(y). If we putc = f(1) andx = c™1f, thenf = ck andcis
a non-zero scalar. Furthermore, it is easily verified thit multiplicative function
from FF to itself such that withk(0) = 0 andk(1) = 1. This completes the proof. O
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