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1. |NTRODUCTION

Let E be a real Banach space and Et be an arbitrary subspace & with
codimE; = 1. Let alsop be a linear continuous functional dhwith kery = E;.
Finally, letP be a class of functionp : [0, +o0) — R, which are non-decreasing on
[0, +o0) and left continuous ofD, +) and such that

tIirg+ pt)=p@©O) and sugp(t+1) - p(t) < +co.
- t>0

Consider now the following dlierential-integral equation

n t
OI_él(t(t) B d+;(t(t) + k;f [dpc (W] Fr(x(W)) =0, t=s20, (2.1)

where:ne N; prkeP, k=12..,nF:E—>E, k=12..,n

are continuos mappings; the integrals in (1.1) are Lebesque—StiItjes%ng%;and

—d+é(t(t) are the left and right derivatives of the soluti®(t) of (1.1) at the point,

respectively. Observe that at the point O the left derivative ofx(t) is %

which is compatible with the requiremetntojim(t) =p(0), k=12 ..,n, and the
continuity of Fx, k=1,2,...,n, onE.

As it is known (see, for example, [6]), each functipp(t), t >0, k=1,2,...,n,
can be represented in the form
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wherepc (t) is an absolutely continuous function on each segment of the farah [0
with a € (0, +0), while psi (t) and pyx (t) are the singular and discrete components
of pk (t), respectively.

If in (1.3) for everyt > 0

psk(t) =const k=1,2,..,n, (1.3)

then equation (1.1) is equivalent to dfdrential equation with impulse disturbance,
while if in (1.3) for everyt > 0

Psk (t) = const andpgk (t) =const k=1,2,..,n,

then equation (1.1) is equivalent to dfdrential equation without impulse distur-
bance. Such dierential equations have been studied in [3] and [8], whenElim
+00, and in [2]. Finally, note that if, in (1.3), for evety> O,

Pck (t) = const and psk (t) =const k=1,2,...n,

then equation (1.1) is equivalent to @fdrence equation, the theory of which has
been developed in [5].

The purpose of this article is to give conditions for oscillation of the solution of
equation (1.1) with respect to the subsp&gef the Banach spade. The notion of
such oscillation is stated and used successfully in [10] — [14] and [16] and is defined
as follows.

Definition 1. A solutionx(t) of equation (1.1) is said to be oscillatory with respect
to the subspack; of the Banach spacg, if for every numbea > 0 there are points
71,72 € (8, +00) such that

¢(11) ¢ (12) <0.

As it follows from [10] — [14] and [16], this definition is a convenient tool for the
investigation of oscillation of trajectories of dynamical systems with infinite dimen-
sional phase space. Note that, in the case wherkdim 1, the above definition of
the oscillation of a solution of (1.1) with respectigis equivalent to the correspond-
ing one given the real solutions of thdférential equations considered, for example,
in [9].

An interesting class of equations is the class dfedéntial equations with im-
pulse disturbance, which so far has not been investigatédisatly. Therefore, it
is very important for the theory of systems with impulse, as well as for the theory
of differential-integral equations to investigate the oscillatory nature of solutions of
equations of form (1.1).
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2. PRELIMINARIES

In order to state our main results, we need the following notions and assumptions.

() Assume that for any numbeg > 0 and for any sefxi, xo} c E equation
(1.1) admits a unique solutiax(t), which is defined and continuous on §8») and
satisfies the following two conditions:

X(to) = X1 (21)
and dox(t)
L+ X (lo _
at X2, (2.2)

where, if(x1, Xo) € E2, thenx(t) € E; for all t > to.
A solution of (1.1), satisfying (2.1) and (2.2), will be denoted by

X (t, to, X1, X2) .

For some sfiicient conditions, concerning the requirement (1), see [17].
(I1) Consider the sets

Ex={xeE:p(X)>0} andEz={xeE:¢(X) <0},
and the continuous mappings
Fk:E—->E, k=12..,n. (2.3)

Assume that the setS;, E; and E3 are invariant ones with respect to each of the
mappings (2.3), i.e.,

FEicEjforallk=1,2,....n,and alli = 1,2, 3.

(1) Let Dy be the set of all points of [@-0) in which the functionpx = pk (t) is
differentiable, and leD be the intersection of the sdlx, k = 1,2, ...,n. Denote by

@y the set of functionz = z (t) which are continuous on [8-) and diferentiable
on D with values inEj, i = 1, 2, 3, for each of which

(@), k=21,2,..,n,

is a monotone non-decreasing on{0o) function.
Note that, because of the inclusipne P, the set [0+c0)/Dy has zero Lebesque
measure.

3. MAIN RESULTS

Here we formulate and prove affuient result (Theorem 1) and a necessary result
(Theorem 2) as follows.

Theorem 1. Consider equation (1.1), subject to the conditions (I) — (lll), and assume
thatfork=1,2,...,n:

@) inf £ > 0 forall zedyU s,
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(i) The improper integrals

f de (2(1))
. ¢ (Fk(z(1)))
converge for alz € ®, U @3 and
(i) 3 [ tdpc(t) = +oo.
k=1 o

Then all solutionsx(t, 0, X1, X2), where(xy, Xo) € E2\ E2, of equation (1.1) are
oscillatory with respect to the subspaEe.

Proof. Let z(t) be non-oscillatory with respect &, solution of (1.1), for which

( ). d+z(0))¢ E2. (3.1)

Then, without loss of generality, we can (and do) suppose that for aam(8, + )
¢(z(@) >0 and ¢(z()) >0, t>a (3.2)

Since, in view of (1.1), for arbitrary> aands > t

dz(9 d+ozlt(t) £y f [dpc(W)] =

ds
k=1Y

and consequently fa>t >0

<p(d‘z(s)) (d*z(t))+§l f dnWle(FezW) =0, (3.3)

ds

and, by (1) — (Ill) and (3.2), we have

n

S
>, [ 1dn@le Fez) > 0
k=1Y
for allt andswith s> t > a, we conclude that the functiqm(d+dzt(t)) is non-increasing
on [a, +o0). Thus, the functio (z(t)) is concave ond, +) (see, [18], page 17) and,
in view of (3.2) and the concavity of the functigrn(z(t)) on [a, +), we derive that

t—+00

lim ¢(d+§t(t)) —¢, cel0,+). (3.4)
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Now, (3.4) and (3.3) imply that functiop (z(t)) is monotone non-decreasing on
[a +o0) and for allt > a

(d+z(t)
Y

dt ): C+;J[dW(U)]¢(Fk(Z(U))). (3.5)

Denote bys the least of the numbers
B (GACIC))
20 ¢ (Fic (z(1)))
which, by (i), is positive. Taking into account the inclusioa ®@,, (ii) and (3.5), we
see that

>0, k=12 ..n and ze ®, U O3

+00 +o00 MQ
de(z(1)) de(%7Y)
too > af P (AEQ)) >a+f1 G —

+00

= [ le(t)»(“él tfoo[tlllfk(tl)]90(F|<(Z(U))))dt2

a+l
+00 [ 400 +00
> [ (f [dpc (u)] ‘;((FFkk((ZZ((Lt‘)))))))dt >6 [ (t-a-21)dp(t),
a+l \'t a+l
which implies that the improper integrals
+00
ftdp((t), k=12,..n,
a+l
are convergent. But this contradicts (iii). The contradiction obtained shows that the
assumption (2.3) is false and the proof of the theorem is complete. O

In order to state our next result, we need the following

Definition 2. A mappingh : E — E is called Lipschitzian, if for arbitraryp € E and
r € (0, +o0) there exists a constam > 0 such that

Ih(x) —hWlle < M[Ix-VYlle
forall x,ye B(b,r) = {xe E: ||x-bllg <r}.

Theorem 2. Consider equation (1.1), subject to the conditions (I) — (Ill), and assume
that:
(iv) the mappingsy, k=1,2,...,n, are:
(a) locally Lipschitzian, or
(b) completely continuous;
(v) the functiongx € P, k= 1,2, ...,n, are continuous of0, +o);
(vi) all solutionsx(t, 0, x1, X2), where(xg, X2) € E2 \ E2, of equation (1.1) are
oscillatory with respect t&.
Then condition (iii) of Theorem 1 holds, i. e.,
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n Tt
(i) Y [ tdpc(t) = +oo.
k=1 o

Proof. Case 1.The mappingsx, k = 1,2,...,n, are locally Lipschitzian, i.e. (iv,a)
holds. In this case, assume that (iii) is false, i.e.

o<y’ [ano < o (3.6)
k=179

For an arbitrary vectoy € E, U Es, and a closed baB(y,r), r > 0, for which
E1 N B(y,r) = 0, consider the equation

n +00
20=y- ) [ 1dp@Iu-)Fc). t>a @.7)
k=1Y
whereais chosen in such a way that
[dp«(U) [(u-a) surJ IFk(Qllg < T (3.8)
k— xXeB yr
and
n +0o0 n +00
sup kzl  [dpe ()] (u—t) Fy (zz (W) - kzl [ [dpc@]u-1t)Fe(zz )| <
> =1t =1t E
<3 supliz. (t) - 22 (Dlle
>a
(3.9)
for all E-valued functionsz (t), i = 1,2 which are continuous and bounded on

[a, +o0) for which
supliz () -ylle <r, i=12
t>a

Note that, because of (iv,a) and (3.3), the relations (3.8) and (3.9) are valid.
Next consider a Banach spa¥ef E-valued functions< = x(t) which are contin-
uous and bounded om,[+c0) with the norm

IXIle = suplix(t)lle -
t>a

Furthermore, consider a bounded, closed and conveX sétall functionsx € X,
such thatx € B(y,r) for allt > a, and an operatdd : X — X defined by the formula

UI®=y- ] [ Idp] - Felx(w) . t> 2 (3.10)
k=1%

Using (3.8) and (3.9), from (3.10) it follows thatY c X and|Uv-Uw||x <
%||v— w|xfor all v,w € Y. Hence, applying the contraction mapping principle (see,
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[15], page 72), we conclude that there is a funci@nY which is a solution of equa-

tion (3.7). The same functionis also a solution to equation (1.1). Indeed, by (3.6)
and (v), we see that

S =lim 12O - z(t-€) = lim ( z+f [dpx (U] (u—t) Fi (W) +
k=1 t

+ 3, T lap) -t ) (et -

J -
l(szltf 0P ] Fi(z() + £ [ 1dR] = t+6) Fe(z(w) -
t

= Z f [dpc ()] Fi (z(u)) + lim kﬁ [ [dpc(u)] R (z(u)+
k=1 t

=lt—¢

+lim ; f[d|q<(u)] Fi (z(u)),

where the two last terms tend to zero, because the integrand functions are bounded on

[t-e.1], t\t/ [Pk] = pis t\t/ [px] = pc®)—pk(t—¢), k=1,2,...,n, and the functions
pk (1), k=1,2,...,nare continuous on [-). Therefore, it follows that

20 . kZ’I tf [P ()] Fie(2(1)) (3.11)
In the same manner we see that
S = lim 2 (z(s+2) - 2(9)) = IgiLnoé( kzlsl [dpc (W] (U= S &) Fr (z(u)) +
) :fm[dm(U)] (u-9 Fk(Z(U))) = lim g(g él [dpe (U)] Fi (z(u)+
+ 3 T ian@iRcew) -
-3

3 [ 1dn @I Fc@@) + im 5 [ [dp )] SR 2)-

(=N

M3 m%‘gw%

&

I
—0

=~
I

1

J [dpc (W] Fr(z(u) =él fm[dp«(U)] Fk (z(u).

(3.12)
Subtracting (3.12) from (3.11), we obtain

dzt) d, z(s)
at

Z f [dp (W] Fi (z(u))-

n n ft
—kZ f [dpec(U)] Fi(z(W) = = 3 [[dpe(W)] Fr (z(W),

=1 s k=1s
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which was to be shown. As an elementYgfthe functionz(t) is not oscillatory with
respect tde;. By (1) — (ll), there is a solutiory (t) of equation (1.1), which coincides
with z(t) on [a, +0). For this solution it holds

(y(O),"*;’—fo)) cE?\E2

and, due to the uniqueness of a solutidt) of (1.1), we see that

d.x(0) _ duy(0)

x(0) =y(0) and i

Note that, if
d. x(0)
(X(O) ’ +dt ) € E%’

then equation (1.1) has a solutimit) for which

(x(O), d‘;(t(o)) cE? forall t>0.

From the above observation it follows that, if (iii) does not hold, then equation (1.1)
has a non-oscillatory solutian= x (t) with respect tde; for which

(X(O) , d+;|<t(0)

But this is a contradiction, which, in the case when the mappind = 1,2, ...,nare
locally Lipschitzian, proves the necessity of the condition (iii) for the oscillation of
solution of (1.1) with respect tg;.

Case 2.The mappingsy, k = 1,2,...,n, are completely continuous, i.e., (iv, b)
holds.

Assume that (iii) does not hold. Then (3.6) is satisfied. y.et E; U E3 be an
arbitrary vector and lat > 0 be a number such theg N B(y,r) = 0. Next, consider
the equation (3.7), whera € [0, +0) is such that (3.8) holds. Such a choiceaof
is possible because of (3.6) and the compactness of the magfaings= 1,2, ...,n.
Further, as in Case 1, consider the Banach spatikee bounded, closed and convex
setY of all functionsx € X for which x(t) € B(y,r) for all t > a, and the operator
U : X —» X defined by the formula (3.10). By (3.10) and (3.8), it follows that
Uy c X.

Consider now the function

2 2
)eE\El.

S(t) = LZf(u—t)dp((u),tza,
k=1t

where
L= max |[Fxk (X)lle -
1<k<n
xeB(y,r)
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For arbitraryy € Y andt, s€ [a, +0), t > s, we see that
I(Uy) (t+) - (Uy) (9llg = .
= szl [ [dpc(U)] (u—1) Fe(y(u)) - X [ [dpc(U)] (u - 9) Fi(y(u)
=1t =1ls

E

<
E

n t n +o©
= ’kgl [dpc ()] (U—1t) Fi(y(w) - (t—9) kg [ [dpc(U)] Fic(y (u))

1t
< L(t—s)é]l\;/[pk]+ Lt—95().

Hence, in view of the fact that

t+1
sup V [pk] < +oo,
1<k<n t
>0
and because of the boundedness of the funétipnon[a, +o0), we conclude that the

set of allze UY is equicontinuous org[ +o). Since for everg e UY
lz(t) -yllg <6(t), t>a

and
lim 6(t) =0,
t—+o00

in view of (i) and the generalized Arcela theorem (see, [4], page 110), we conclude
that the setJY is relatively compact. Thud) : Y — Y is a completely continuous
mapping. Consequently, according to Schauder’s Fixed Point Theorem (see, [7],
p. 37), the mapping) has a fixed point € Y, which is a solution of the equation
(1.1) on B, +).

Finally, using arguments similar to those in Case 1, we come again to a contradic-
tion. Therefore, the necessity of the condition (iii) for the oscillation of the solution
of (1.1) with respect td; in the case of compact mappikg, k=1,2,...,n, is also
established.

The proof of the theorem is complete. O

4. APPLICATIONS

Let T be an arbitrary countable set of real numhkgysn € N with

O<ti<bh<..<ty<.. and lim tp, = +o0.

n—+oo

Moreover, let fome N
Ck:[0,+00)\ T - [0,+0), k=1,2,...,m
be bounded and continuous functions,

Ok: T —[0,+c0), k=m+1m+2..,2m
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be arbitrary mappings with a bounded set of values, and
Gk:E—>E, k=1,2..,2m
be continuous mappings, for which
GkEicE forall k=1,2,...,2m and i=123.

Then, consider an impulse system, described by the equations

B0+ 5 G (X)) =0 104\ T,

©X _ o dxt“) ¢ T AOGXE-0) =0 teT, *1)
x(t+0)—x(t—0)—x(t) teT.
Furthermore, let
pk=pc) e, k=1,2..2m,
be functions defined as follows
t
[e(9ds for k=1,2,..m
() =1 o
> k() for k=m+1m+2,..,2m,
se[0,t)NT
t
Wheref Ck () dsis a Lebesque integral, while
0
pck) =0, k=m+1m+2..2m if [0,)nT =0,
and consider the equation
n
d- é‘(t) d+x(t) +Zf dpc(U)] Ge (X(W), t> 530, (4.2)
k=1

It is not difficult to see that every solution of system (4.1) is a solution of equation
(4.2) and vice versa. Therefore, Theorem 1 can be used to investigate the oscillation
of solutions of system (4.1). As an application of Theorem 1 to system (4.1), we state
the following result.

Theorem 3. Consider system (4.1) and assume that for arbitrary elemanis € E
system (4.1) has a unique solutir(t, O, X1, X») defined orf0, +0) ;

. ¢G@()

in >0, k=1,2,...,2m,
st20 ¢ (Gk (z(1)))
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forall ze &, U @3;
the improper integrals

J‘P(Gk(Z(t)))’ k=12,..,2m

converge for allz € ®, U @3, and

+00

m 2m
fthk(t)d'HZt Z Ok (t) = +oo.
0 k=1 teT  k=m+1

Then for arbitrary(xa, X2) € E? \ EZ solutionx (t, 0, Xy, Xo) of system (4.1) oscillates
with respect tde;.

Remark 1. 1. For sdficient conditions, ensuring the fulfillment of the conditions (B)
and (C) of Theorem 3, see [16].

2. As it is shown in [16], in the case of locally Lipschitzian or completely con-
tinuous mappingSy, k = 1,2,...,2m, the fulfilment of the condition(D) is also a
sufficient condition for oscillation of solutiorns(t, 0, X1, X2), with (x1, Xo) € E? \ E2,
of system (4.1) with respect .

3. Necessary and ficient conditions for oscillation of system (4.1), when=
1, dimE = 1 and conditior(C) is not satisfied, can be found in [15].

A special case of Theorems 1 and 2 is the following result, due to F. Atkinson [1]:

Theorem 4. Let p (t) be a continuous and positive function for 0, and letmbe an
integer greater than 1. Then the condition

+00

ftp(t) dt = +o0

0

is a necessary and gicient one for oscillation of all (except trivial) solutions of the
equation

y’ () +p@)y"™ () =0.
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